Non-Iterative, Feature-Preserving Mesh Smoothing

Size: px
Start display at page:

Download "Non-Iterative, Feature-Preserving Mesh Smoothing"

Transcription

1 Non-Iterative, Feature-Preserving Mesh Smoothing Thouis R. Jones (MIT), Frédo Durand (MIT), Mathieu Desbrun (USC)

2 3D scanners are noisy... Why Smooth?

3 3D scanners are noisy... and have dropouts... Why Smooth?

4 Why Smooth? 3D scanners are noisy... and have dropouts... and usually require multiple scans.

5 Goals Fast smoothing of meshes Robust Geometrically: preserve features Topologically: no connectivity information Simple to implement

6 Goals Fast smoothing of meshes polygon soups Robust Geometrically: preserve features Topologically: no connectivity information Simple to implement

7 Fast Mesh Smoothing Previous Work on Smoothing Taubin 1995; Desbrun et al Feature Preserving Clarenz et al. 2000; Desbrun et al. 2000; Meyer et al. 2002; Zhang and Fiume 2002; Bajaj and Xu 2003 Diffusion on Normal Field Taubin 2001; Belyaev and Ohtake 2001; Ohtake et al. 2002; Tasdizen et al Wiener Filtering of Meshes Peng et al. 2001; Alexa 2002; Pauly and Gross 2001 (points)

8 Approach We cast feature-preserving filtering as a robust estimation problem on vertex positions. Extend Bilateral Filter to 3D. Smith and Brady 1997; 1998 Tomasi and Manduchi Use first-order predictors based on facets of model. Single pass.

9 Least Squares Error Norm Non-Robust Estimation 4 3 y x Outliers have unlimited influence on estimate.

10 Robust Error Norm 0.3 Robust Estimation y x Outliers have bounded influence on estimate.

11 Gaussian Filter (Non-robust) I s = p image I(p) spatial f(s p) I f I

12 Bilateral Filter (Robust) I s = 1 k s p image I(p) spatial f(s p) influence g(i s I p ) I f g fg I

13 Bilateral Filter (Robust) I s = 1 k s p image I(p) spatial f(s p) influence g(i s I p ) I f g fg I

14 Bilateral Filter (Robust) I s = 1 k s p image I(p) spatial f(s p) influence g(i s I p ) I f g fg I

15 Bilateral Filter (Robust) I s = 1 k s p image I(p) spatial f(s p) influence g(i s I p ) I f g fg I

16 Bilateral Filter (Robust) I s = 1 k s p image I(p) spatial f(s p) influence g(i s I p ) I f g fg I

17 Bilateral Filter (Robust) I s = 1 k s p image I(p) spatial f(s p) influence g(i s I p ) I f g fg I

18 Bilateral Filter (Robust) I s = 1 k s p image I(p) spatial f(s p) influence g(i s I p ) k s = p f(s p) g(i s I p )

19 Bilateral Filter Left: Jones and Jones 2003 Right: Bilaterally filtered.

20 Extending the Bilateral Filter to Meshes How to separate location and signal in a 3D model? Forming local frames requires a connected mesh. Instead, use first-order predictors based on facets: Π q( p) p No connectivity required between facets. q

21 Bilateral Filter for Meshes Estimate p, the new position for a vertex p p = 1 k(p) q S prediction Π q (p) spatial f( c q p ) influence g( Π q (p) p ) area a q

22 Bilateral Filter for Meshes Estimate p, the new position for a vertex p p = 1 k(p) q S prediction Π q (p) spatial f( c q p ) influence g( Π q (p) p ) area a q

23 Bilateral Filter for Meshes Estimate p, the new position for a vertex p p = 1 k(p) q S prediction Π q (p) spatial f( c q p ) influence g( Π q (p) p ) area a q

24 Bilateral Filter for Meshes Estimate p, the new position for a vertex p p = 1 k(p) q S prediction Π q (p) spatial f( c q p ) influence g( Π q (p) p ) area a q

25 Why we expect it to work Predictions across corners are ``outliers''.

26 Dealing with Noise Noise has a nonlinear effect on predictions. We must mollify (pre-smooth) normals.

27 Dealing with Noise Noise has a nonlinear effect on predictions. We must mollify (pre-smooth) normals.

28 Dealing with Noise Noise has a nonlinear effect on predictions. We must mollify (pre-smooth) normals.

29 Dealing with Noise Noise has a nonlinear effect on predictions. We must mollify (pre-smooth) normals.

30 Dealing with Noise Noise has a nonlinear effect on predictions. We must mollify (pre-smooth) normals.

31 Implementation 3K vertices / second (typical), 1.4 GHz Athlon. Gaussians for f and g. Optimizations Cutoff at twice spatial filter radius. Binning for spatially coherent computation. Data and non-optimized code available online.

32 Results - Smoothing Original Desbrun 1999 Our result

33 Results - Effect of g Original Without g Our result

34 Results - Effect of Mollification Original Without mollification Our result

35 Results - Connectivity 50% Original Smoothed All predictors

36 Results - Varying width of f and g Original Narrow spatial and influence

37 Results - Varying width of f and g Original Narrow spatial and wide influence

38 Results - Varying width of f and g Original Wide spatial and influence

39 Normalization factor k as ``Confidence'' Normalization term k(p) is sum of weights, and is a measure of confidence in the estimation at p. p = 1 k(p) q S Π q (p) f( c q p ) g( Π q (p) p ) a q k(p) = q S f( c q p ) g( Π q (p) p ) a q

40 Results - k as Confidence Low High

41 Results - k as Confidence Low High

42 Results - vs Wiener Filtering Original

43 Results - vs Wiener Filtering (Low Noise) Peng et al Our result

44 Results - vs Wiener Filtering (High Noise) Peng et al Our result

45 Results - vs Anisotropic Diffusion Original

46 Results - vs Anisotropic Diffusion Clarenz et al Our result

47 Similar Methods Bilateral Mesh Denoising, Fleishman et al (next talk) Iterative Local frame No mollification Different predictor Trilateral Filter, Cloudhury and Tumblin 2003 (EGSR) Images and Meshes Mollify normals, then vertices Different predictor

48 Future Work Extend to other types of data (point models, volume data). Using k to steer further processing. Iterative application.

49 Conclusions Fast, feature preserving filter. Simple to implement. Applicable to polygon soups. Take-home message: Robust estimation for smoothing. Points across features are outliers. First-order predictors remove connectivity requirements.

50 Acknowledgements SIGGRAPH reviewers, Caltech SigDraft and MIT pre-reviewers. Udo Diewald, Martin Rumpf, Jianbo Peng, Denis Zorin, and Jean-Yves Bouguet, and Stanford 3D Scanning Repository for models. Peter Shirley and Michael Cohen for comments on this presentation. We would like to thank the NSF (CCR , DMS , DMS , EEC , EIA ).

Non-Iterative, Feature-Preserving Mesh Smoothing

Non-Iterative, Feature-Preserving Mesh Smoothing Non-Iterative, Feature-Preserving Mesh Smoothing Thouis R. Jones MIT Frédo Durand MIT Mathieu Desbrun USC Figure 1: The dragon model (left) is artificially corrupted by Gaussian noise (σ = 1/5 of the mean

More information

Non-Iterative, Feature-Preserving Mesh Smoothing

Non-Iterative, Feature-Preserving Mesh Smoothing Non-Iterative, Feature-Preserving Mesh Smoothing Thouis R. Jones, Frédo Durand, Mathieu Desbrun Computer Science and Artificial Intelligence Laboratory, MIT Computer Science Department, USC Abstract With

More information

Non-Iterative, Feature-Preserving Mesh Smoothing

Non-Iterative, Feature-Preserving Mesh Smoothing Non-Iterative, Feature-Preserving Mesh Smoothing Thouis R. Jones MIT Frédo Durand MIT Mathieu Desbrun USC Figure 1: The dragon model (left) is artificially corrupted by Gaussian noise (σ = 1/5 of the mean

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 4. Geometric Registration 4.1 Rigid Registration Range Scanning: Reconstruction Set of raw scans Reconstructed

More information

Feature Preserving Smoothing of 3D Surface Scans. Thouis Raymond Jones

Feature Preserving Smoothing of 3D Surface Scans. Thouis Raymond Jones Feature Preserving Smoothing of 3D Surface Scans by Thouis Raymond Jones Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree

More information

A Global Laplacian Smoothing Approach with Feature Preservation

A Global Laplacian Smoothing Approach with Feature Preservation A Global Laplacian Smoothing Approach with Feature Preservation hongping Ji Ligang Liu Guojin Wang Department of Mathematics State Key Lab of CAD&CG hejiang University Hangzhou, 310027 P.R. China jzpboy@yahoo.com.cn,

More information

Point Cloud Denoising

Point Cloud Denoising Point Cloud Denoising Boris Mederos Luiz Velho Luiz Henrique de Figueiredo IMPA Instituto de Matemática Pura e Aplicada Estrada Dona Castorina 110, 22461-320 Rio Me Janeiro, RJ, Brazil boris@impa.br lvelho@impa.br

More information

Prof. Feng Liu. Winter /15/2019

Prof. Feng Liu. Winter /15/2019 Prof. Feng Liu Winter 2019 http://www.cs.pdx.edu/~fliu/courses/cs410/ 01/15/2019 Last Time Filter 2 Today More on Filter Feature Detection 3 Filter Re-cap noisy image naïve denoising Gaussian blur better

More information

Feature enhancing aerial LiDAR point cloud refinement

Feature enhancing aerial LiDAR point cloud refinement Feature enhancing aerial LiDAR point cloud refinement Zhenzhen Gao a and Ulrich Neumann b Dept. of Computer Science, Univ. of S. Calif./941 W. 37th Pl., LA, USA ABSTRACT Raw aerial LiDAR point clouds often

More information

A Fast and Accurate Denoising Algorithm for Two-Dimensional Curves

A Fast and Accurate Denoising Algorithm for Two-Dimensional Curves 199 A Fast and Accurate Denoising Algorithm for Two-Dimensional Curves Jie Shen and David Yoon University of Michigan-Dearborn, {shen dhyoon}@umich.edu ABSTRACT In this paper we propose a new concept,

More information

Smoothing & Fairing. Mario Botsch

Smoothing & Fairing. Mario Botsch Smoothing & Fairing Mario Botsch Motivation Filter out high frequency noise Desbrun, Meyer, Schroeder, Barr: Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow, SIGGRAPH 99 2 Motivation

More information

An Efficient Approach for Feature-preserving Mesh Denoising

An Efficient Approach for Feature-preserving Mesh Denoising An Efficient Approach for Feature-preserving Mesh Denoising Xuequan Lu a, Xiaohong Liu a, Zhigang Deng b, Wenzhi Chen a a X. Lu, X. Liu and W. Chen are with the College of Computer Science and Technology,

More information

How does bilateral filter relates with other methods?

How does bilateral filter relates with other methods? A Gentle Introduction to Bilateral Filtering and its Applications How does bilateral filter relates with other methods? Fredo Durand (MIT CSAIL) Slides by Pierre Kornprobst (INRIA) 0:35 Many people worked

More information

DIGITAL scanning devices are widely used to acquire

DIGITAL scanning devices are widely used to acquire IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010 1 Robust Feature-Preserving Mesh Denoising Based on Consistent Subneighborhoods Hanqi Fan, Yizhou Yu, and Qunsheng

More information

Fairing Triangular Meshes with Highlight Line Model

Fairing Triangular Meshes with Highlight Line Model Fairing Triangular Meshes with Highlight Line Model Jun-Hai Yong, Bai-Lin Deng, Fuhua (Frank) Cheng and Kun Wu School of Software, Tsinghua University, Beijing 100084, P. R. China Department of Computer

More information

Mesh Smoothing by Adaptive and Anisotropic Gaussian Filter Applied to Mesh Normals

Mesh Smoothing by Adaptive and Anisotropic Gaussian Filter Applied to Mesh Normals Mesh Smoothing by Adaptive and Anisotropic Gaussian Filter Applied to Mesh Normals Yutaka Ohtake Alexander Belyaev Hans-Peter Seidel Computer Graphics Group, Max-Planck-Institut für Informatik Stuhlsatzenhausweg

More information

Removing local irregularities of triangular meshes with highlight line models

Removing local irregularities of triangular meshes with highlight line models Removing local irregularities of triangular meshes with highlight line models YONG Jun-Hai 1,4, DENG Bai-Lin 1,2,4, CHENG Fuhua 3, WANG Bin 1,4, WU Kun 1,2,4 & GU Hejin 5 1 School of Software, Tsinghua

More information

Provably Good Moving Least Squares

Provably Good Moving Least Squares Provably Good Moving Least Squares Ravikrishna Kolluri Computer Science Division University of California at Berkeley 1 Problem Definition Given a set of samples on a closed surface build a representation

More information

Robust Moving Least-squares Fitting with Sharp Features

Robust Moving Least-squares Fitting with Sharp Features Survey of Methods in Computer Graphics: Robust Moving Least-squares Fitting with Sharp Features S. Fleishman, D. Cohen-Or, C. T. Silva SIGGRAPH 2005. Method Pipeline Input: Point to project on the surface.

More information

Robust Higher-Order Filtering of Points

Robust Higher-Order Filtering of Points INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE Robust Higher-Order Filtering of Points Florent Duguet, Frédo Durand and George Drettakis N 5165 April 2004 THÈME 3 apport de recherche

More information

ing and enhancing operations for shapes represented by level sets (isosurfaces) and applied unsharp masking to the level set normals. Their approach t

ing and enhancing operations for shapes represented by level sets (isosurfaces) and applied unsharp masking to the level set normals. Their approach t Shape Deblurring with Unsharp Masking Applied to Mesh Normals Hirokazu Yagou Λ Alexander Belyaev y Daming Wei z Λ y z ; ; Shape Modeling Laboratory, University of Aizu, Aizu-Wakamatsu 965-8580 Japan fm50534,

More information

Feature-Preserving Mesh Denoising via Anisotropic Surface Fitting

Feature-Preserving Mesh Denoising via Anisotropic Surface Fitting Wang J, Yu Z. Feature-preserving mesh denoising via anisotropic surface fitting. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 27(1): 163 173 Jan. 2012. DOI 10.1007/s11390-012-1214-3 Feature-Preserving Mesh

More information

Salient Critical Points for Meshes

Salient Critical Points for Meshes Salient Critical Points for Meshes Yu-Shen Liu Min Liu Daisuke Kihara Karthik Ramani Purdue University, West Lafayette, Indiana, USA (a) (b) (c) (d) Figure 1: Salient critical points (the blue, red, and

More information

Surfel Based Geometry Reconstruction

Surfel Based Geometry Reconstruction EG UK Theory and Practice of Computer Graphics (2010) John Collomosse, Ian Grimstead (Editors) Surfel Based Geometry Reconstruction Vedrana Andersen 1, Henrik Aanæs 1 and Andreas Bærentzen 1 1 Technical

More information

Anisotropic Filtering of Non-Linear Surface Features

Anisotropic Filtering of Non-Linear Surface Features EUROGRAPHICS 2004 / M.-P. Cani and M. Slater (Guest Editors) Volume 23 (2004), Number 3 Anisotropic Filtering of Non-Linear Surface Features Klaus Hildebrandt Konrad Polthier Zuse Institute Berlin, Germany

More information

An Application of Markov Random Fields to Range Sensing

An Application of Markov Random Fields to Range Sensing An Application of Markov Random Fields to Range Sensing James Diebel and Sebastian Thrun Stanford AI Lab Stanford University, Stanford, CA 94305 Abstract This paper describes a highly successful application

More information

Cut-and-Paste Editing of Multiresolution Surfaces

Cut-and-Paste Editing of Multiresolution Surfaces Cut-and-Paste Editing of Multiresolution Surfaces Henning Biermann, Ioana Martin, Fausto Bernardini, Denis Zorin NYU Media Research Lab IBM T. J. Watson Research Center Surface Pasting Transfer geometry

More information

Graphical Models 73 (2011) Contents lists available at ScienceDirect. Graphical Models. journal homepage:

Graphical Models 73 (2011) Contents lists available at ScienceDirect. Graphical Models. journal homepage: Graphical Models 73 (2011) 127 139 Contents lists available at ScienceDirect Graphical Models journal homepage: www.elsevier.com/locate/gmod Quality mesh smoothing via local surface fitting and optimum

More information

Triangular surface mesh fairing via Gaussian curvature flow

Triangular surface mesh fairing via Gaussian curvature flow Journal of Computational and Applied Mathematics ( ) www.elsevier.com/locate/cam Triangular surface mesh fairing via Gaussian curvature flow Huanxi Zhao a,b,, Guoliang Xu b a Department of Mathematics,

More information

Transfer Facial Expressions with Identical Topology

Transfer Facial Expressions with Identical Topology Transfer Facial Expressions with Identical Topology Alice J. Lin Department of Computer Science University of Kentucky Lexington, KY 40506, USA alice.lin@uky.edu Fuhua (Frank) Cheng Department of Computer

More information

Spider: A robust curvature estimator for noisy, irregular meshes

Spider: A robust curvature estimator for noisy, irregular meshes Spider: A robust curvature estimator for noisy, irregular meshes Technical report CSRG-531, Dynamic Graphics Project, Department of Computer Science, University of Toronto, c September 2005 Patricio Simari

More information

Artistic Stylization of Images and Video Part III Anisotropy and Filtering Eurographics 2011

Artistic Stylization of Images and Video Part III Anisotropy and Filtering Eurographics 2011 Artistic Stylization of Images and Video Part III Anisotropy and Filtering Eurographics 2011 Hasso-Plattner-Institut, University of Potsdam, Germany Image/Video Abstraction Stylized Augmented Reality for

More information

Fairing Scalar Fields by Variational Modeling of Contours

Fairing Scalar Fields by Variational Modeling of Contours Fairing Scalar Fields by Variational Modeling of Contours Martin Bertram University of Kaiserslautern, Germany Abstract Volume rendering and isosurface extraction from three-dimensional scalar fields are

More information

Markov Random Fields on Triangle Meshes

Markov Random Fields on Triangle Meshes Downloaded from orbit.dtu.dk on: Jun 21, 2018 Markov Random Fields on Triangle Meshes Dahl, Vedrana Andersen; Aanæs, Henrik; Bærentzen, Jakob Andreas; Nielsen, Mads Published in: 18th International Conference

More information

Mesh Editing with Poisson-Based Gradient Field Manipulation

Mesh Editing with Poisson-Based Gradient Field Manipulation Mesh Editing with Poisson-Based Gradient Field Manipulation Yizhou Yu Kun Zhou Dong Xu Xiaohan Shi Hujun Bao Baining Guo Heung-Yeung Shum University of Illinois at Urbana-Champaign Microsoft Research Asia

More information

Dynamic Meshes for Accurate Polygonization of Implicit Surfaces with Sharp Features

Dynamic Meshes for Accurate Polygonization of Implicit Surfaces with Sharp Features Dynamic Meshes for Accurate Polygonization of Implicit Surfaces with Sharp Features Yutaka Ohtake d8011101@u-aizu.ac.jp The University of Aizu Aizu-Wakamatsu 968-8580 Japan Alexander Belyaev belyaev@u-aizu.ac.jp

More information

Similarity based filtering of point clouds

Similarity based filtering of point clouds Similarity based filtering of point clouds Julie Digne INRIA Sophia-Antipolis julie.digne@inria.fr Figure 1. A point cloud and its denoising with our method (AIM@shape repository) Abstract Denoising surfaces

More information

Anisotropic Smoothing of Point Sets,

Anisotropic Smoothing of Point Sets, Anisotropic Smoothing of Point Sets, Carsten Lange Konrad Polthier TU Berlin Zuse Institute Berlin (a) (b) (c) (d) (e) Figure 1: The initial point set of the Venus torso (a) was disturbed with a 3% normal

More information

Surface Reconstruction. Gianpaolo Palma

Surface Reconstruction. Gianpaolo Palma Surface Reconstruction Gianpaolo Palma Surface reconstruction Input Point cloud With or without normals Examples: multi-view stereo, union of range scan vertices Range scans Each scan is a triangular mesh

More information

Mesh Denoising via L0 Minimization

Mesh Denoising via L0 Minimization Mesh Denoising via L0 Minimization Lei He Texas A&M University Scott Schaefer Texas A&M University Figure 1: From left to right: initial surface, surface corrupted by Gaussian noise in random directions

More information

Polygonal Meshes. Thomas Funkhouser Princeton University COS 526, Fall 2016

Polygonal Meshes. Thomas Funkhouser Princeton University COS 526, Fall 2016 Polygonal Meshes Thomas Funkhouser Princeton University COS 526, Fall 2016 Digital Geometry Processing Processing of 3D surfaces Creation, acquisition Storage, transmission Editing, animation, simulation

More information

A Bayesian Method for Probable Surface Reconstruction and Decimation

A Bayesian Method for Probable Surface Reconstruction and Decimation A Bayesian Method for Probable Surface Reconstruction and Decimation JAMES R. DIEBEL and SEBASTIAN THRUN Stanford University and MICHAEL BRUENIG Robert Bosch Corporation We present a Bayesian technique

More information

A Gentle Introduction to Bilateral Filtering and its Applications 10/10: Conclusions

A Gentle Introduction to Bilateral Filtering and its Applications 10/10: Conclusions A Gentle Introduction to Bilateral Filtering and its Applications 10/10: Conclusions Jack Tumblin EECS, Northwestern University The Bilateral Filter As Simple as Weights from two Gaussian Functions; Has

More information

Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling

Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling Locally Weighted Least Squares Regression for Image Denoising, Reconstruction and Up-sampling Moritz Baecher May 15, 29 1 Introduction Edge-preserving smoothing and super-resolution are classic and important

More information

Surface fitting based on a feature sensitive parametrization

Surface fitting based on a feature sensitive parametrization Surface fitting based on a feature sensitive parametrization Yu-Kun Lai a, Shi-Min Hu a Helmut Pottmann b a Tsinghua University, Beijing, China b Vienna Univ. of Technology, Wiedner Hauptstr. 8 10/104,

More information

EECS 556 Image Processing W 09. Image enhancement. Smoothing and noise removal Sharpening filters

EECS 556 Image Processing W 09. Image enhancement. Smoothing and noise removal Sharpening filters EECS 556 Image Processing W 09 Image enhancement Smoothing and noise removal Sharpening filters What is image processing? Image processing is the application of 2D signal processing methods to images Image

More information

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations

1. Introduction. 2. Parametrization of General CCSSs. 3. One-Piece through Interpolation. 4. One-Piece through Boolean Operations Subdivision Surface based One-Piece Representation Shuhua Lai Department of Computer Science, University of Kentucky Outline. Introduction. Parametrization of General CCSSs 3. One-Piece through Interpolation

More information

ENGN2911I: 3D Photography and Geometry Processing Assignment 1: 3D Photography using Planar Shadows

ENGN2911I: 3D Photography and Geometry Processing Assignment 1: 3D Photography using Planar Shadows ENGN2911I: 3D Photography and Geometry Processing Assignment 1: 3D Photography using Planar Shadows Instructor: Gabriel Taubin Assignment written by: Douglas Lanman 29 January 2009 Figure 1: 3D Photography

More information

3D Video Over Time. Presented on by. Daniel Kubacki

3D Video Over Time. Presented on by. Daniel Kubacki 3D Video Over Time Presented on 3-10-11 by Daniel Kubacki Co-Advisors: Minh Do & Sanjay Patel This work funded by the Universal Parallel Computing Resource Center 2 What s the BIG deal? Video Rate Capture

More information

Curves & Surfaces. MIT EECS 6.837, Durand and Cutler

Curves & Surfaces. MIT EECS 6.837, Durand and Cutler Curves & Surfaces Schedule Sunday October 5 th, * 3-5 PM * Review Session for Quiz 1 Extra Office Hours on Monday Tuesday October 7 th : Quiz 1: In class 1 hand-written 8.5x11 sheet of notes allowed Wednesday

More information

Research Article Adaptive Image Enhancement Algorithm Combining Kernel Regression and Local Homogeneity

Research Article Adaptive Image Enhancement Algorithm Combining Kernel Regression and Local Homogeneity Mathematical Problems in Engineering Volume 010, Article ID 69353, 14 pages doi:10.1155/010/69353 Research Article Adaptive Image Enhancement Algorithm Combining Kernel Regression and Local Homogeneity

More information

Kernel-Based Laplacian Smoothing Method for 3D Mesh Denoising

Kernel-Based Laplacian Smoothing Method for 3D Mesh Denoising Kernel-Based Laplacian Smoothing Method for 3D Mesh Denoising Hicham Badri, Mohammed El Hassouni, Driss Aboutajdine To cite this version: Hicham Badri, Mohammed El Hassouni, Driss Aboutajdine. Kernel-Based

More information

Mesh Smoothing via Mean and Median Filtering Applied to Face Normals

Mesh Smoothing via Mean and Median Filtering Applied to Face Normals Mesh Smoothing via Mean and ing Applied to Face Normals Ý Hirokazu Yagou Yutaka Ohtake Ý Alexander G. Belyaev Ý Shape Modeling Lab, University of Aizu, Aizu-Wakamatsu 965-8580 Japan Computer Graphics Group,

More information

Surface fitting based on a feature sensitive parametrization

Surface fitting based on a feature sensitive parametrization Surface fitting based on a feature sensitive parametrization Yu-Kun Lai a, Shi-Min Hu a Helmut Pottmann b a Tsinghua University, Beijing, China b Vienna Univ. of Technology, Wiedner Hauptstr. 8 10/104,

More information

Image Denoising and Blind Deconvolution by Non-uniform Method

Image Denoising and Blind Deconvolution by Non-uniform Method Image Denoising and Blind Deconvolution by Non-uniform Method B.Kalaiyarasi 1, S.Kalpana 2 II-M.E(CS) 1, AP / ECE 2, Dhanalakshmi Srinivasan Engineering College, Perambalur. Abstract Image processing allows

More information

Shape Modeling with Point-Sampled Geometry

Shape Modeling with Point-Sampled Geometry Shape Modeling with Point-Sampled Geometry Mark Pauly Richard Keiser Leif Kobbelt Markus Gross ETH Zürich ETH Zürich RWTH Aachen ETH Zürich Motivation Surface representations Explicit surfaces (B-reps)

More information

TEL-AVIV UNIVERSITY. The Raymond and Beverly Sackler Faculty of Exact Sciences School of Computer Science POINT SET SURFACES

TEL-AVIV UNIVERSITY. The Raymond and Beverly Sackler Faculty of Exact Sciences School of Computer Science POINT SET SURFACES TEL-AVIV UNIVERSITY The Raymond and Beverly Sackler Faculty of Exact Sciences School of Computer Science POINT SET SURFACES Submitted in partial fulfillment of the requirements for the degree of doctor

More information

CPSC 695. Methods for interpolation and analysis of continuing surfaces in GIS Dr. M. Gavrilova

CPSC 695. Methods for interpolation and analysis of continuing surfaces in GIS Dr. M. Gavrilova CPSC 695 Methods for interpolation and analysis of continuing surfaces in GIS Dr. M. Gavrilova Overview Data sampling for continuous surfaces Interpolation methods Global interpolation Local interpolation

More information

Fast and EffectiveL 0 Gradient Minimization by Region Fusion

Fast and EffectiveL 0 Gradient Minimization by Region Fusion Fast and EffectiveL 0 Gradient Minimization by Region Fusion Rang M. H. Nguyen Michael S. Brown School of Computing, National University of Singapore nguyenho@comp.nus.edu.sg brown@comp.nus.edu.sg Abstract

More information

SIGNAL filtering, the process of modifying signals to

SIGNAL filtering, the process of modifying signals to 1 Static/Dynamic Filtering for Mesh Geometry Juyong Zhang, Bailin Deng, Yang Hong, Yue Peng, Wenjie Qin, and Ligang Liu arxiv:1712.03574v2 [cs.gr] 14 Mar 2018 Abstract The joint bilateral filter, which

More information

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform Overview Spectral Processing of Point- Sampled Geometry Introduction Fourier transform Spectral processing pipeline Spectral filtering Adaptive subsampling Summary Point-Based Computer Graphics Markus

More information

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview Mesh Simplification Mesh Simplification Adam Finkelstein Princeton University COS 56, Fall 008 Slides from: Funkhouser Division, Viewpoint, Cohen Mesh Simplification Motivation Interactive visualization

More information

Storage Efficient NL-Means Burst Denoising for Programmable Cameras

Storage Efficient NL-Means Burst Denoising for Programmable Cameras Storage Efficient NL-Means Burst Denoising for Programmable Cameras Brendan Duncan Stanford University brendand@stanford.edu Miroslav Kukla Stanford University mkukla@stanford.edu Abstract An effective

More information

Sparse Surface Reconstruction with Adaptive Partition of Unity and Radial Basis Functions

Sparse Surface Reconstruction with Adaptive Partition of Unity and Radial Basis Functions Sparse Surface Reconstruction with Adaptive Partition of Unity and Radial Basis Functions Yutaka Ohtake 1 Alexander Belyaev 2 Hans-Peter Seidel 2 1 Integrated V-CAD System Research Program, RIKEN, Japan

More information

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION Dan Englesson danen344@student.liu.se Sunday 12th April, 2011 Abstract In this lab assignment which was done in the course TNM079, Modeling and animation,

More information

arxiv: v1 [cs.cv] 17 Feb 2016

arxiv: v1 [cs.cv] 17 Feb 2016 Density-based Denoising of Point Cloud Faisal Zaman, Ya Ping Wong, Boon Yian Ng Faculty of Computing and Informatics Multimedia University, Malaysia arxiv:1602.05312v1 [cs.cv] 17 Feb 2016 Abstract. Point

More information

Denoising Cryotomograms with IMOD

Denoising Cryotomograms with IMOD Denoising Cryotomograms with IMOD Reasons to Denoise Cryotomograms Easier segmentation of features Presentation Particle picking for subvolume averaging The high-resolution information that you hope to

More information

Filtering Images in the Spatial Domain Chapter 3b G&W. Ross Whitaker (modified by Guido Gerig) School of Computing University of Utah

Filtering Images in the Spatial Domain Chapter 3b G&W. Ross Whitaker (modified by Guido Gerig) School of Computing University of Utah Filtering Images in the Spatial Domain Chapter 3b G&W Ross Whitaker (modified by Guido Gerig) School of Computing University of Utah 1 Overview Correlation and convolution Linear filtering Smoothing, kernels,

More information

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information

Matching and Recognition in 3D. Based on slides by Tom Funkhouser and Misha Kazhdan

Matching and Recognition in 3D. Based on slides by Tom Funkhouser and Misha Kazhdan Matching and Recognition in 3D Based on slides by Tom Funkhouser and Misha Kazhdan From 2D to 3D: Some Things Easier No occlusion (but sometimes missing data instead) Segmenting objects often simpler From

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 426, Fall 2000 Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman,

More information

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1 MIT 6.837 Monte-Carlo Ray Tracing MIT EECS 6.837, Cutler and Durand 1 Schedule Review Session: Tuesday November 18 th, 7:30 pm bring lots of questions! Quiz 2: Thursday November 20 th, in class (one weeks

More information

Manufacturing Classification of CAD Models Using Curvature and SVMs

Manufacturing Classification of CAD Models Using Curvature and SVMs Manufacturing Classification of CAD Models Using Curvature and SVMs Cheuk Yiu Ip William C. Regli Geometric and Intelligent Computing Laboratory Department of Computer Science, College of Engineering Drexel

More information

Bilateral Filtering: Theory and Applications. Contents

Bilateral Filtering: Theory and Applications. Contents Foundations and Trends R in Computer Graphics and Vision Vol. 4, No. 1 (2008) 1 73 c 2009 S. Paris, P. Kornprobst, J. Tumblin and F. Durand DOI: 10.1561/0600000020 Bilateral Filtering: Theory and Applications

More information

Multi-level Partition of Unity Implicits

Multi-level Partition of Unity Implicits Multi-level Partition of Unity Implicits Diego Salume October 23 rd, 2013 Author: Ohtake, et.al. Overview Goal: Use multi-level partition of unity (MPU) implicit surface to construct surface models. 3

More information

Filters. Advanced and Special Topics: Filters. Filters

Filters. Advanced and Special Topics: Filters. Filters Filters Advanced and Special Topics: Filters Dr. Edmund Lam Department of Electrical and Electronic Engineering The University of Hong Kong ELEC4245: Digital Image Processing (Second Semester, 2016 17)

More information

Robust Filtering of Noisy Scattered Point Data

Robust Filtering of Noisy Scattered Point Data Eurographics Symposium on Point-Based Graphics (2005) M. Pauly, M. Zwicker, (Editors) Robust Filtering of Noisy Scattered Point Data Oliver Schall Alexander Belyaev Hans-Peter Seidel Max-Planck-Institut

More information

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo 3 - Reconstruction Acknowledgements: Olga Sorkine-Hornung Geometry Acquisition Pipeline Scanning: results in range images Registration: bring all range images to one coordinate system Stitching/ reconstruction:

More information

Polygonal Meshes. 3D Object Representations. 3D Object Representations. 3D Polygonal Mesh. 3D Polygonal Mesh. Geometry background

Polygonal Meshes. 3D Object Representations. 3D Object Representations. 3D Polygonal Mesh. 3D Polygonal Mesh. Geometry background 3D Object Representations Polygonal Meshes Adam Finkelstein & Tim Weyrich Princeton University C0S 426, Spring 2008 Points o Range image o Point cloud Surfaces o Polygonal mesh o Subdivision o Parametric

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing 1. Research Team Project Leader: Graduate Students: Industrial Partner(s): Prof. Mathieu Desbrun, Computer Science Sean Cahill, Maithili Dandige, Ilya Eckstein, Yiying Tong

More information

A non-local algorithm for image denoising

A non-local algorithm for image denoising A non-local algorithm for image denoising Antoni Buades, Bartomeu Coll Dpt. Matemàtiques i Informàtica, UIB Ctra. Valldemossa Km. 7.5, 07122 Palma de Mallorca, Spain vdmiabc4@uib.es, tomeu.coll@uib.es

More information

Motivation. towards more realism. + Texture Mapping Texture Mapping

Motivation. towards more realism. + Texture Mapping Texture Mapping Texture Mapping Wireframe Model + Lighting & Shading Motivation + Texture Mapping http://www.3drender.com/jbirn/productions.html towards more realism 2 Idea Add surface detail without raising geometric

More information

Salient Point SUSAN 3D operator for triangles meshes

Salient Point SUSAN 3D operator for triangles meshes Salient Point SUSAN 3D operator for triangles meshes N. Walter, O. Laligant, O. Aubreton Le2i Laboratory, 12 rue de la fonderie, Le Creusot, FRANCE, {Nicolas.Walter Olivier.Aubreton o.laligant}@u-bourgogne.fr

More information

VOLUME CONSERVATION OF 3D SURFACE TRIANGULAR MESH SMOOTHING

VOLUME CONSERVATION OF 3D SURFACE TRIANGULAR MESH SMOOTHING 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information

A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions

A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions Shape Modeling International 2003 Seoul, Korea A Multi-scale Approach to 3D Scattered Data Interpolation with Compactly Supported Basis Functions Yutaa Ohtae Alexander Belyaev Hans-Peter Seidel Objective

More information

An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014

An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014 An Introduction To Automatic Tissue Classification Of Brain MRI Colm Elliott Mar 2014 Tissue Classification Tissue classification is part of many processing pipelines. We often want to classify each voxel

More information

Feature-Preserving Surface Mesh Smoothing via Suboptimal Delaunay Triangulation

Feature-Preserving Surface Mesh Smoothing via Suboptimal Delaunay Triangulation Feature-Preserving Surface Mesh Smoothing via Suboptimal Delaunay Triangulation Zhanheng Gao a,b, Zeyun Yu b,, Michael Holst c a College of Computer Science and Technology, Jilin University, China b Department

More information

Level Set Models for Computer Graphics

Level Set Models for Computer Graphics Level Set Models for Computer Graphics David E. Breen Department of Computer Science Drexel University Ross T. Whitaker School of Computing University of Utah Ken Museth Department of Science and Technology

More information

Image Processing with Nonparametric Neighborhood Statistics

Image Processing with Nonparametric Neighborhood Statistics Image Processing with Nonparametric Neighborhood Statistics Ross T. Whitaker Scientific Computing and Imaging Institute School of Computing University of Utah PhD Suyash P. Awate University of Pennsylvania,

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

3D Object Representation. Michael Kazhdan ( /657)

3D Object Representation. Michael Kazhdan ( /657) 3D Object Representation Michael Kazhdan (601.457/657) 3D Objects How can this object be represented in a computer? 3D Objects This one? H&B Figure 10.46 3D Objects This one? H&B Figure 9.9 3D Objects

More information

ADVANCES in 3D acquisition technology [1], [2], [3] make

ADVANCES in 3D acquisition technology [1], [2], [3] make 252 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 10, NO. 3, MAY/JUNE 2004 Fuzzy Vector Median-Based Surface Smoothing Yuzhong Shen, Student Member, IEEE, and Kenneth E. Barner, Senior

More information

EDGE-AWARE IMAGE PROCESSING WITH A LAPLACIAN PYRAMID BY USING CASCADE PIECEWISE LINEAR PROCESSING

EDGE-AWARE IMAGE PROCESSING WITH A LAPLACIAN PYRAMID BY USING CASCADE PIECEWISE LINEAR PROCESSING EDGE-AWARE IMAGE PROCESSING WITH A LAPLACIAN PYRAMID BY USING CASCADE PIECEWISE LINEAR PROCESSING 1 Chien-Ming Lu ( 呂建明 ), 1 Sheng-Jie Yang ( 楊勝傑 ), 1 Chiou-Shann Fuh ( 傅楸善 ) Graduate Institute of Computer

More information

Computing Curvature CS468 Lecture 8 Notes

Computing Curvature CS468 Lecture 8 Notes Computing Curvature CS468 Lecture 8 Notes Scribe: Andy Nguyen April 4, 013 1 Motivation In the previous lecture we developed the notion of the curvature of a surface, showing a bunch of nice theoretical

More information

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity

Schedule. MIT Monte-Carlo Ray Tracing. Radiosity. Review of last week? Limitations of radiosity. Radiosity Schedule Review Session: Tuesday November 18 th, 7:30 pm, Room 2-136 bring lots of questions! MIT 6.837 Monte-Carlo Ray Tracing Quiz 2: Thursday November 20 th, in class (one weeks from today) MIT EECS

More information

A MAP Algorithm for AVO Seismic Inversion Based on the Mixed (L 2, non-l 2 ) Norms to Separate Primary and Multiple Signals in Slowness Space

A MAP Algorithm for AVO Seismic Inversion Based on the Mixed (L 2, non-l 2 ) Norms to Separate Primary and Multiple Signals in Slowness Space A MAP Algorithm for AVO Seismic Inversion Based on the Mixed (L 2, non-l 2 ) Norms to Separate Primary and Multiple Signals in Slowness Space Harold Ivan Angulo Bustos Rio Grande do Norte State University

More information

Double-Guided Filtering: Image Smoothing with Structure and Texture Guidance

Double-Guided Filtering: Image Smoothing with Structure and Texture Guidance Double-Guided Filtering: Image Smoothing with Structure and Texture Guidance Kaiyue Lu, Shaodi You, Nick Barnes Data61, CSIRO Research School of Engineering, Australian National University Email: {Kaiyue.Lu,

More information

Automatic method for sharp feature extraction from 3D data of man-made objects

Automatic method for sharp feature extraction from 3D data of man-made objects Automatic method for sharp feature extraction from 3D data of man-made objects Trung-Thien Tran 1, Van-Toan Cao 1, Van Tung Nguyen 1, Sarah Ali 1 and Denis Laurendeau 1 1 Computer Vision and Systems Laboratory,

More information

Automatic least-squares projection of points onto point clouds with applications in reverse engineering

Automatic least-squares projection of points onto point clouds with applications in reverse engineering Computer-Aided Design 38 (2006) 1251 1263 www.elsevier.com/locate/cad Automatic least-squares projection of points onto point clouds with applications in reverse engineering Yu-Shen Liu a,b,, Jean-Claude

More information