Mesh Processing Pipeline

Size: px
Start display at page:

Download "Mesh Processing Pipeline"

Transcription

1 Mesh Smoothing 1

2 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2

3 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3

4 Mesh Quality Visual inspection of sensitive attributes Specular shading 4

5 Mesh Quality Visual inspection of sensitive attributes Specular shading Reflection lines 5

6 Mesh Quality Visual inspection of sensitive attributes Specular shading Reflection lines differentiability one order lower than surface can be efficiently computed using graphics hardware 6

7 Mesh Quality Visual inspection of sensitive attributes Specular shading Reflection lines Curvature Mean curvature 7

8 Mesh Quality Visual inspection of sensitive attributes Specular shading Reflection lines Curvature Mean curvature Gaussian curvature 8

9 Motivation Filter out high frequency noise 9

10 Mesh Smoothing (aka Denoising, Filtering, Fairing) Input: Noisy mesh (scanned or other) Output: Smooth mesh How: Filter out high frequency noise 10

11 Laplacian Smoothing An easier problem: How to smooth a curve? p i = (x i, y i ) p i-1 p i+1 (p i-1 + p i+1 )/2- p i 15

12 Laplacian Smoothing An easier problem: How to smooth a curve? p i = (x i, y i ) p i-1 p i+1 Finite difference discretization of second derivative = Laplace operator in one dimension 16

13 Laplacian Smoothing Algorithm: Repeat for m iterations (for non boundary points): For which? 0 < < 1 Closed curve converges to? Single point 17

14 Laplacian Smoothing on Meshes Same as for curves: N i = {k,l,m,n} p i = (x i, y i, z i ) What is p i? p m p l p n p k 22

15 Laplacian Smoothing on Meshes 0 Iterations 5 Iterations 20 Iterations 23

16 Problem - Shrinkage Repeated iterations of Laplacian smoothing shrinks the mesh original 3 steps 6 steps 18 steps original 24

17 Taubin Smoothing Iterate: with > 0 and < 0 Shrink Inflate original 10 steps 50 steps 200 steps From Taubin, Siggraph

18 Laplacian Smoothing p i = mean curvature normal mean curvature flow 27

19 Laplace Operator Discretization The Problem Sanity check what should happen if the mesh lies in the plane: p i = (x i, y i, 0)? 0 Iterations 5 Iterations 28

20 Laplace Operator Discretization The Problem Not good A flat mesh is smooth, should stay the same after smoothing 0 Iterations 5 Iterations 29

21 Laplace Operator Discretization The Problem Not good The result should not depend on triangle sizes From Desbrun et al., Siggraph

22 Laplace Operator Discretization What Went Wrong? Back to curves: p i-1 p i p i+1 Same weight for both neighbors, although one is closer 31

23 Laplace Operator Discretization The Solution Use a weighted average to define Which weights? p j l ij p i l ik p k Straight curves will be invariant to smoothing 32

24 Laplace Operator Discretiztion Cotangent Weights Use a weighted average to define N i = {k,l,m,n} Which weights?? p i p i l p i ij p j l ij p j p m p l h 2 p n h 1 p k 33

25 Laplace Operator Discretiztion Cotangent Weights Use a weighted average to define Which weights? N i = {k,l,m,n} p i p i p j p m p l α ij β ij p n w h + h 1 2 ij ij 1 ij = = cot ij + cot ij lij 2 ( a b ) p k Planar meshes will be invariant to smoothing 34

26 Smoothing with the Cotangent Laplacian normal and tangential movement normal movement original Uniform weights Cotangent weights From Desbrun et al., Siggraph

27 Geometry Filtering Demo: From Vallet et al., Eurographics

28 Surface Fairing Find surfaces which are as smooth as possible Applications Smooth blends Hole filling 41

29 Fairness Idea: Penalize unaesthetic behavior Measure fairness Principle of the simplest shape Physical interpretation Minimize some fairness functional Surface area, curvature Membrane energy, thin plate energy 42

30 Energy Functionals Membrane Surface Thin Plate Surface Minimum Variation Surface 43

31 Non-Linear Energies Membrane energy (surface area) Thin-plate energy (curvature) Too complex... simplify energies 44

32 Membrane Surfaces Linearized Energy Surface parameterization Membrane energy (surface area) Variational calculus 45

33 Thin-Plate Surfaces Linearized Energy Surface parameterization Thin-plate energy (curvature) Variational calculus 46

34 Fair Surfaces Membrane Thin Plate Demo Minimal Curvature Variation 47

Smoothing & Fairing. Mario Botsch

Smoothing & Fairing. Mario Botsch Smoothing & Fairing Mario Botsch Motivation Filter out high frequency noise Desbrun, Meyer, Schroeder, Barr: Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow, SIGGRAPH 99 2 Motivation

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 4. Geometric Registration 4.1 Rigid Registration Range Scanning: Reconstruction Set of raw scans Reconstructed

More information

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2009 3/4/2009 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, 2009 3/4/2009

More information

A Global Laplacian Smoothing Approach with Feature Preservation

A Global Laplacian Smoothing Approach with Feature Preservation A Global Laplacian Smoothing Approach with Feature Preservation hongping Ji Ligang Liu Guojin Wang Department of Mathematics State Key Lab of CAD&CG hejiang University Hangzhou, 310027 P.R. China jzpboy@yahoo.com.cn,

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape

What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape Geometry Processing What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape What is Geometry Processing? Understanding the math of 3D shape and applying

More information

Laplacian Operator and Smoothing

Laplacian Operator and Smoothing Laplacian Operator and Smoothing Xifeng Gao Acknowledgements for the slides: Olga Sorkine-Hornung, Mario Botsch, and Daniele Panozzo Applications in Geometry Processing Smoothing Parameterization Remeshing

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Geometry Processing TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA

Geometry Processing TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA Geometry Processing What is Geometry Processing? Understanding the math of 3D shape What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape What is Geometry

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Laplacian Meshes COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Outline Differential surface representation Ideas and applications Compact shape representation Mesh editing and manipulation

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 15 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Justin Solomon MIT, Spring

Justin Solomon MIT, Spring Justin Solomon MIT, Spring 2017 http://www.gogeometry.com Instructor: Justin Solomon Email: jsolomon@mit.edu Office: 32-D460 Office hours: Wednesdays, 1pm-3pm Geometric Data Processing

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

A Discrete Spring Model for Generating Fair Curves and Surfaces

A Discrete Spring Model for Generating Fair Curves and Surfaces A Discrete Spring Model for Generating Fair Curves and Surfaces Atsushi Yamada 1, Kenji Shimada 2, Tomotake Furuhata 1, and Ko-Hsiu Hou 2 1 Tokyo Research Laboratory, IBM Japan Ltd., LAB-S73 623-14, Shimotsuruma,

More information

Structured light 3D reconstruction

Structured light 3D reconstruction Structured light 3D reconstruction Reconstruction pipeline and industrial applications rodola@dsi.unive.it 11/05/2010 3D Reconstruction 3D reconstruction is the process of capturing the shape and appearance

More information

CSE 554 Lecture 7: Deformation II

CSE 554 Lecture 7: Deformation II CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize

More information

Illumination Models & Shading

Illumination Models & Shading Illumination Models & Shading Lighting vs. Shading Lighting Interaction between materials and light sources Physics Shading Determining the color of a pixel Computer Graphics ZBuffer(Scene) PutColor(x,y,Col(P));

More information

Registration of Deformable Objects

Registration of Deformable Objects Registration of Deformable Objects Christopher DeCoro Includes content from: Consistent Mesh Parameterizations, Praun et. al, Siggraph 2001 The Space of Human Body Shapes, Allen et. al, Siggraph 2003 Shape-based

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform Overview Spectral Processing of Point- Sampled Geometry Introduction Fourier transform Spectral processing pipeline Spectral filtering Adaptive subsampling Summary Point-Based Computer Graphics Markus

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Discrete Differential Geometry. Differential Geometry

Discrete Differential Geometry. Differential Geometry Discrete Differential Geometry Yiying Tong CSE 891 Sect 004 Differential Geometry Why do we care? theory: special surfaces minimal, CMC, integrable, etc. computation: simulation/processing Grape (u. of

More information

Geometric Modeling in Graphics

Geometric Modeling in Graphics Geometric Modeling in Graphics Part 10: Surface reconstruction Martin Samuelčík www.sccg.sk/~samuelcik samuelcik@sccg.sk Curve, surface reconstruction Finding compact connected orientable 2-manifold surface

More information

Geometric Registration for Deformable Shapes 2.2 Deformable Registration

Geometric Registration for Deformable Shapes 2.2 Deformable Registration Geometric Registration or Deormable Shapes 2.2 Deormable Registration Variational Model Deormable ICP Variational Model What is deormable shape matching? Example? What are the Correspondences? Eurographics

More information

THE GEOMETRIC HEAT EQUATION AND SURFACE FAIRING

THE GEOMETRIC HEAT EQUATION AND SURFACE FAIRING THE GEOMETRIC HEAT EQUATION AN SURFACE FAIRING ANREW WILLIS BROWN UNIVERSITY, IVISION OF ENGINEERING, PROVIENCE, RI 02912, USA 1. INTROUCTION This paper concentrates on analysis and discussion of the heat

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

Planar quad meshes from relative principal curvature lines

Planar quad meshes from relative principal curvature lines Planar quad meshes from relative principal curvature lines Alexander Schiftner Institute of Discrete Mathematics and Geometry Vienna University of Technology 15.09.2007 Alexander Schiftner (TU Vienna)

More information

Research Proposal: Computational Geometry with Applications on Medical Images

Research Proposal: Computational Geometry with Applications on Medical Images Research Proposal: Computational Geometry with Applications on Medical Images MEI-HENG YUEH yueh@nctu.edu.tw National Chiao Tung University 1 Introduction My research mainly focuses on the issues of computational

More information

THIS paper presents the recent advances in mesh deformation

THIS paper presents the recent advances in mesh deformation 1 On Linear Variational Surface Deformation Methods Mario Botsch Computer Graphics Laboratory ETH Zurich Olga Sorkine Computer Graphics Group TU Berlin Abstract This survey reviews the recent advances

More information

Final Project, Digital Geometry Processing

Final Project, Digital Geometry Processing Final Project, Digital Geometry Processing Shayan Hoshyari Student #: 81382153 December 2016 Introduction In this project an adaptive surface remesher has been developed based on the paper [1]. An algorithm

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

Pipeline Operations. CS 4620 Lecture 10

Pipeline Operations. CS 4620 Lecture 10 Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination

More information

Computer Graphics I Lecture 11

Computer Graphics I Lecture 11 15-462 Computer Graphics I Lecture 11 Midterm Review Assignment 3 Movie Midterm Review Midterm Preview February 26, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry Lecturer: Adrian Butscher, Justin Solomon Scribe: Adrian Buganza-Tepole CS 468 (Spring 2013) Discrete Differential Geometry Lecture 19: Conformal Geometry Conformal maps In previous lectures we have explored

More information

How Much Geometry Lies in The Laplacian?

How Much Geometry Lies in The Laplacian? How Much Geometry Lies in The Laplacian? Encoding and recovering the discrete metric on triangle meshes Distance Geometry Workshop in Bad Honnef, November 23, 2017 Maks Ovsjanikov Joint with: E. Corman,

More information

Research in Computational Differential Geomet

Research in Computational Differential Geomet Research in Computational Differential Geometry November 5, 2014 Approximations Often we have a series of approximations which we think are getting close to looking like some shape. Approximations Often

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany A Primer on Laplacians Max Wardetzky Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany Warm-up: Euclidean case Warm-up The Euclidean case Chladni s vibrating plates

More information

Justin Solomon MIT, Spring Numerical Geometry of Nonrigid Shapes

Justin Solomon MIT, Spring Numerical Geometry of Nonrigid Shapes Justin Solomon MIT, Spring 2017 Numerical Geometry of Nonrigid Shapes Intrinsically far Extrinsically close Geodesic distance [jee-uh-des-ik dis-tuh-ns]: Length of the shortest path, constrained not to

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 04 130131 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Histogram Equalization Image Filtering Linear

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics So Far wireframe hidden surfaces Next step 1 2 Light! Need to understand: How lighting works Types of lights Types of surfaces How shading works Shading algorithms What s Missing? Lighting vs. Shading

More information

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11 Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

More information

FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (4) 20 STEPS OF NEW ALGORITHM WITH = 0:33 = 0:34 FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (

FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING (4) 20 STEPS OF NEW ALGORITHM WITH = 0:33 = 0:34 FREE-FORM SURFACE DESIGN: SUBDIVISION + SMOOTHING ( SMOOTH INTERPOLATION (2) ONE CONSTRAINT (x N C ) 1 = x 1 WRITE DESIRED CONSTRAINED SMOOTH SIGNAL x N AS SUM OF C UNCONSTRAINED SMOOTH SIGNAL x N = Fx (F = f(k) N ) PLUS SMOOTH DEFORMATION d 1 x N C = xn

More information

3D Rasterization II COS 426

3D Rasterization II COS 426 3D Rasterization II COS 426 3D Rendering Pipeline (for direct illumination) 3D Primitives Modeling Transformation Lighting Viewing Transformation Projection Transformation Clipping Viewport Transformation

More information

Time-of-Flight Surface De-noising through Spectral Decomposition

Time-of-Flight Surface De-noising through Spectral Decomposition Time-of-Flight Surface De-noising through Spectral Decomposition Thiago R. dos Santos, Alexander Seitel, Hans-Peter Meinzer, Lena Maier-Hein Div. Medical and Biological Informatics, German Cancer Research

More information

Spider: A robust curvature estimator for noisy, irregular meshes

Spider: A robust curvature estimator for noisy, irregular meshes Spider: A robust curvature estimator for noisy, irregular meshes Technical report CSRG-531, Dynamic Graphics Project, Department of Computer Science, University of Toronto, c September 2005 Patricio Simari

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry CS 468 (Spring 2013) Discrete Differential Geometry 1 Math Review Lecture 14 15 May 2013 Discrete Exterior Calculus Lecturer: Justin Solomon Scribe: Cassidy Saenz Before we dive into Discrete Exterior

More information

Manufacturing Classification of CAD Models Using Curvature and SVMs

Manufacturing Classification of CAD Models Using Curvature and SVMs Manufacturing Classification of CAD Models Using Curvature and SVMs Cheuk Yiu Ip William C. Regli Geometric and Intelligent Computing Laboratory Department of Computer Science, College of Engineering Drexel

More information

Pipeline Operations. CS 4620 Lecture 14

Pipeline Operations. CS 4620 Lecture 14 Pipeline Operations CS 4620 Lecture 14 2014 Steve Marschner 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives

More information

Multi-Scale Free-Form Surface Description

Multi-Scale Free-Form Surface Description Multi-Scale Free-Form Surface Description Farzin Mokhtarian, Nasser Khalili and Peter Yuen Centre for Vision Speech and Signal Processing Dept. of Electronic and Electrical Engineering University of Surrey,

More information

Cut-and-Paste Editing of Multiresolution Surfaces

Cut-and-Paste Editing of Multiresolution Surfaces Cut-and-Paste Editing of Multiresolution Surfaces Henning Biermann, Ioana Martin, Fausto Bernardini, Denis Zorin NYU Media Research Lab IBM T. J. Watson Research Center Surface Pasting Transfer geometry

More information

Meshless Modeling, Animating, and Simulating Point-Based Geometry

Meshless Modeling, Animating, and Simulating Point-Based Geometry Meshless Modeling, Animating, and Simulating Point-Based Geometry Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Graphics Primitives - Points The emergence of points

More information

Non-Differentiable Image Manifolds

Non-Differentiable Image Manifolds The Multiscale Structure of Non-Differentiable Image Manifolds Michael Wakin Electrical l Engineering i Colorado School of Mines Joint work with Richard Baraniuk, Hyeokho Choi, David Donoho Models for

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

ECS 175 COMPUTER GRAPHICS. Ken Joy.! Winter 2014

ECS 175 COMPUTER GRAPHICS. Ken Joy.! Winter 2014 ECS 175 COMPUTER GRAPHICS Ken Joy Winter 2014 Shading To be able to model shading, we simplify Uniform Media no scattering of light Opaque Objects No Interreflection Point Light Sources RGB Color (eliminating

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

An introduction to mesh generation Part IV : elliptic meshing

An introduction to mesh generation Part IV : elliptic meshing Elliptic An introduction to mesh generation Part IV : elliptic meshing Department of Civil Engineering, Université catholique de Louvain, Belgium Elliptic Curvilinear Meshes Basic concept A curvilinear

More information

VOLUME CONSERVATION OF 3D SURFACE TRIANGULAR MESH SMOOTHING

VOLUME CONSERVATION OF 3D SURFACE TRIANGULAR MESH SMOOTHING 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information

Large Mesh Deformation Using the Volumetric Graph Laplacian

Large Mesh Deformation Using the Volumetric Graph Laplacian Large Mesh Deformation Using the Volumetric Graph Laplacian Kun Zhou1 Jin Huang2 John Snyder3 Xinguo Liu1 Hujun Bao2 Baining Guo1 Heung-Yeung Shum1 1 Microsoft Research Asia 2 Zhejiang University 3 Microsoft

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

Geometric Fairing of Irregular Meshes for Free-Form Surface Design

Geometric Fairing of Irregular Meshes for Free-Form Surface Design Geometric Fairing of Irregular Meshes for Free-Form Surface Design Robert Schneider, Leif Kobbelt 1 Max-Planck Institute for Computer Sciences, Stuhlsatzenhausweg 8, D-66123 Saarbrücken, Germany Abstract

More information

Removing local irregularities of triangular meshes with highlight line models

Removing local irregularities of triangular meshes with highlight line models Removing local irregularities of triangular meshes with highlight line models YONG Jun-Hai 1,4, DENG Bai-Lin 1,2,4, CHENG Fuhua 3, WANG Bin 1,4, WU Kun 1,2,4 & GU Hejin 5 1 School of Software, Tsinghua

More information

Surface Reconstruction. Gianpaolo Palma

Surface Reconstruction. Gianpaolo Palma Surface Reconstruction Gianpaolo Palma Surface reconstruction Input Point cloud With or without normals Examples: multi-view stereo, union of range scan vertices Range scans Each scan is a triangular mesh

More information

Deformation Transfer for Detail-Preserving Surface Editing

Deformation Transfer for Detail-Preserving Surface Editing Deformation Transfer for Detail-Preserving Surface Editing Mario Botsch Robert W Sumner 2 Mark Pauly 2 Markus Gross Computer Graphics Laboratory, ETH Zurich 2 Applied Geometry Group, ETH Zurich Abstract

More information

Kernel-Based Laplacian Smoothing Method for 3D Mesh Denoising

Kernel-Based Laplacian Smoothing Method for 3D Mesh Denoising Kernel-Based Laplacian Smoothing Method for 3D Mesh Denoising Hicham Badri, Mohammed El Hassouni, Driss Aboutajdine To cite this version: Hicham Badri, Mohammed El Hassouni, Driss Aboutajdine. Kernel-Based

More information

Fairing Scalar Fields by Variational Modeling of Contours

Fairing Scalar Fields by Variational Modeling of Contours Fairing Scalar Fields by Variational Modeling of Contours Martin Bertram University of Kaiserslautern, Germany Abstract Volume rendering and isosurface extraction from three-dimensional scalar fields are

More information

Computational Design. Stelian Coros

Computational Design. Stelian Coros Computational Design Stelian Coros Schedule for presentations February 3 5 10 12 17 19 24 26 March 3 5 10 12 17 19 24 26 30 April 2 7 9 14 16 21 23 28 30 Send me: ASAP: 3 choices for dates + approximate

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

Comparison and affine combination of generalized barycentric coordinates for convex polygons

Comparison and affine combination of generalized barycentric coordinates for convex polygons Annales Mathematicae et Informaticae 47 (2017) pp. 185 200 http://ami.uni-eszterhazy.hu Comparison and affine combination of generalized barycentric coordinates for convex polygons Ákos Tóth Department

More information

Grafica 3D per i beni culturali: MeshLab features. Lezione 7: 22 Marzo 2013

Grafica 3D per i beni culturali: MeshLab features. Lezione 7: 22 Marzo 2013 Grafica 3D per i beni culturali: MeshLab features Lezione 7: 22 Marzo 2013 0 Cleaning Cleaning Cleaning a mesh is an operation which is often necessary before, during and after the processing of a mesh

More information

Fast marching methods

Fast marching methods 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Metric discretization 2 Approach I:

More information

Distance Functions 1

Distance Functions 1 Distance Functions 1 Distance function Given: geometric object F (curve, surface, solid, ) Assigns to each point the shortest distance from F Level sets of the distance function are trimmed offsets F p

More information

Geometric Modeling Assignment 3: Discrete Differential Quantities

Geometric Modeling Assignment 3: Discrete Differential Quantities Geometric Modeling Assignment : Discrete Differential Quantities Acknowledgements: Julian Panetta, Olga Diamanti Assignment (Optional) Topic: Discrete Differential Quantities with libigl Vertex Normals,

More information

From Graphics to Visualization

From Graphics to Visualization From Graphics to Visualization Introduction Light Sources Surface Lighting Effects Basic (Local ) Illumination Models Polgon-Rendering Methods Texture Mapping Transparenc and Blending Visualization Pipeline

More information

Three Points Make a Triangle Or a Circle

Three Points Make a Triangle Or a Circle Three Points Make a Triangle Or a Circle Peter Schröder joint work with Liliya Kharevych, Boris Springborn, Alexander Bobenko 1 In This Section Circles as basic primitive it s all about the underlying

More information

Surface Rendering. Surface Rendering

Surface Rendering. Surface Rendering Surface Rendering Surface Rendering Introduce Mapping Methods - Texture Mapping - Environmental Mapping - Bump Mapping Go over strategies for - Forward vs backward mapping 2 1 The Limits of Geometric Modeling

More information

Triangular surface mesh fairing via Gaussian curvature flow

Triangular surface mesh fairing via Gaussian curvature flow Journal of Computational and Applied Mathematics ( ) www.elsevier.com/locate/cam Triangular surface mesh fairing via Gaussian curvature flow Huanxi Zhao a,b,, Guoliang Xu b a Department of Mathematics,

More information

Least-squares Meshes. Olga Sorkine Tel Aviv University Daniel Cohen-Or Tel Aviv University Abstract.

Least-squares Meshes. Olga Sorkine Tel Aviv University Daniel Cohen-Or Tel Aviv University Abstract. Least-squares Meshes Olga Sorkine Tel Aviv University sorkine@tau.ac.il Daniel Cohen-Or Tel Aviv University dcor@tau.ac.il Abstract In this paper we introduce Least-squares Meshes: meshes with a prescribed

More information

Lecture 7: Most Common Edge Detectors

Lecture 7: Most Common Edge Detectors #1 Lecture 7: Most Common Edge Detectors Saad Bedros sbedros@umn.edu Edge Detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

Interpolation using scanline algorithm

Interpolation using scanline algorithm Interpolation using scanline algorithm Idea: Exploit knowledge about already computed color values. Traverse projected triangle top-down using scanline. Compute start and end color value of each pixel

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Saab. Kyle McDonald. Polygon Meshes

Saab. Kyle McDonald. Polygon Meshes Saab Kyle McDonald Polygon Meshes Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 What is a polygon mesh? Like a point cloud, it is a discrete sampling of a surface... but, it adds linear (flat)

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

Outline. Visualization Discretization Sampling Quantization Representation Continuous Discrete. Noise

Outline. Visualization Discretization Sampling Quantization Representation Continuous Discrete. Noise Fundamentals Data Outline Visualization Discretization Sampling Quantization Representation Continuous Discrete Noise 2 Data Data : Function dependent on one or more variables. Example Audio (1D) - depends

More information

Spectral Compression of Mesh Geometry

Spectral Compression of Mesh Geometry Spectral Compression of Mesh Geometry Zachi Karni, Craig Gotsman SIGGRAPH 2000 1 Introduction Thus far, topology coding drove geometry coding. Geometric data contains far more information (15 vs. 3 bits/vertex).

More information