Smoothing & Fairing. Mario Botsch

Size: px
Start display at page:

Download "Smoothing & Fairing. Mario Botsch"

Transcription

1 Smoothing & Fairing Mario Botsch

2 Motivation Filter out high frequency noise Desbrun, Meyer, Schroeder, Barr: Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow, SIGGRAPH 99 2

3 Motivation Filter out high frequency noise 3

4 Motivation Advanced Filtering Original Low-Pass Exaggerate Kim, Rosignac: Geofilter: Geometric Selection of Mesh Filter Parameters, Eurographics 05 4

5 Motivation Fair Surface Design Schneider, Kobbelt: Geometric fairing of irregular meshes for free-form surface design, CAGD 18(4),

6 Motivation Hole-filling with energy-minimizing patches Liepa: Filling Holes in Meshses, SGP

7 Motivation Demo 7

8 Smoothing & Fairing

9 Smoothing How would you smooth a 1D/2D signal? 9

10 Diffusion Flow diffusion constant f t = λ f Laplace operator 10

11 Diffusion Flow 2nd order elliptic y, 2 f(x, y, 2 f(x, y, 2 Solve numerically Discretize in space & time Discretize time derivative Discretize spatial derivatives 11

12 Discretize in Space & Time Sample function f(x,y,t) on a regular grid Grid spacing h, time step δt f[i, j, t] = f (i h, j h, t t), y h i =1,...,n, j =1,..., m, t =0, 1, 2,... f[i,j,t] h x 12

13 Finite Differences Approximate f(x+h) from Taylor series f(x + h) = f(x)+hf 0 (x)+ h2 f(x)+hf 0 (x) 2! f 00 (x)+... Brook Taylor ( ) Approximate of f (x) f 0 (x) f(x + h) f(x) h 13

14 Finite Differences Approximate f(x-h) from Taylor series f(x h) = f(x) hf 0 (x)+ h2 2! f 00 (x)+... f(x) hf 0 (x) Brook Taylor ( ) Approximate of f (x) f 0 (x) f(x) f(x h) h 14

15 Finite Difference Method Approximation of spatial derivatives f x [i, j, t] f[i +1,j,t] f[i, j, t] h forward differences f x [i, j, t] f[i, j, t] f[i 1,j,t] h backward differences f x [i, j, t] f[i +1,j,t] f[i 1,j,t] 2h central differences 15

16 Finite Difference Method Approximation of higher-order derivatives f xx [i, j, t] f x[i, j, t] f x [i 1,j,t] h = f[i +1,j,t] 2f[i, j, t]+f[i 1,j,t] h 2 Approximation of Laplacian f[i, j, t] f xx [i, j, t]+f yy [i, j, t] = f[i +1,j,t]+f[i 1,j,t]+f[i, j +1,t]+f[i, j 1,t] 4f[i, j, t] h 2 16

17 Finite Differences Approximate f(t+δt) from Taylor series f(t + t) = f(t)+ t f(t)+ f(t)+ t f(t) t2 2! f(t)+... Brook Taylor ( ) Explicit Euler time integration f(t + t) f(t)+ t f(t) Leonhard Euler ( ) 17

18 Finite Difference Method Approximation of temporal derivative f t [i, j, t] f[i, j, t + 1] f[i, j, t] t 18

19 Diffusion Flow Continuous y, 2 f(x, y, 2 f(x, y, 2 Finite difference discretization f[i, j, t + 1] f[i, j, t] t = f[i +1,j,t]+f[i 1,j,t]+f[i, j +1,t]+f[i, j 1,t] 4f[i, j, t] h 2 f[i, j, t + 1] = f[i, j, t]+ t f[i +1,j,t]+f[i 1,j,t]+f[i, j +1,t]+f[i, j 1,t] 4f[i, j, t] h 2 δtλ has to be small (<=1 in this case) 19

20 Diffusion in 2D Demo 20

21 Diffusion Flow on = p δλ has to be small (~0.5 in exercises) Discretization p i p i + t p i 0 Iterations 10 Iterations 100 Iterations 21

22 Laplace Discretization Laplace discretization p i = P 1 v j 2N 1 (v i ) w ij X v j 2N 1 (v i ) w ij p j p i Uniform Laplace w ij =1 Note: No Voronoi area Ai for explicit smoothing Cotangent Laplace w ij = cot ij + cot ij ij v i ij v j 22

23 Comparison Original Uniform Laplace Cotan Laplace 23

24 Further Topics Implicit time integration p i (t + 1) = p i (t)+ t p i (t + 1) = ( 1) k+1 k p Boundary constraints Nonlinear flows, anisotropic flows 24

25 Smoothing & Fairing

26 Fairness Idea: Penalize unaesthetic behavior Measure fairness Principle of the simplest shape Physical interpretation Minimize some fairness functional Surface area, curvature Membrane energy, thin plate energy 26

27 Nonlinear Energies Membrane energy (surface area) S da min with S = c Thin-plate surface (curvature) S da min with S = c, n( S) =d Too complex... simplify energies 27

28 Membrane Surfaces Membrane energy (surface area) p u 2 + p v 2 dudv min 28

29 Variational Calculus in 1D 1D membrane energy L(f) = a b f 2 (x) dx min Add test function u with u(a) = u(b) = 0 L(f + u) = a b (f + u ) 2 = a b f f u + 2 u 2 If f minizes L, the following has to vanish L(f + u) =0 = b a 2f u! = 0 29

30 Variational Calculus in 1D Has to vanish for any u with u(a) = u(b) = 0 a b f u = [f u] b a =0 a b f u! = 0 u 0 1 f g = [fg] fg Only possible if f = f = 0 Euler-Lagrange equation 30

31 Membrane Surfaces Membrane energy (surface area) p u 2 + p v 2 dudv min Variational calculus p = 0 31

32 Thin-Plate Surfaces Thin-plate energy (curvature) p uu p uv 2 + p vv 2 dudv min Variational calculus 2 p = 0 32

33 Laplace Discretization Original Uniform Laplace Cotan Laplace 33

34 Smoothing Fairing Fair minimizer surfaces satisfy k p =0 Hence they are stationary points of = ( 1) k+1 k p Diffusion flow converges to fair surfaces k k 2 k k 2 k k k 2 dudv! min Explicit time integration corresponds to an iterative solution of the Euler-Lagrange equation 34

35 Literature Laplacian flow, curvature flow The Book: Chapter 4 Taubin, A Signal Processing Approach to Fair Surface Design, SIGGRAPH 1995 Desbrun, Meyer, Schröder, Barr: Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow, SIGGRAPH

36 Literature Nonlinear smoothing Bobenko & Schröder: Discrete Willmore Flow, SGP 2005 Anisotropic smoothing Bajaj & Xu: Anisotropic Diffusion of Surfaces and Functions of Surfaces, ACM Trans. on Graphics 22(1), 2003 Hildebrandt & Polthier, Anisotropic Filtering of Nonlinear Surface Feature, Eurographics 2004 Bilaterial smoothing Fleishman et al, Bilateral Mesh Denoising, SIGGRAPH 2003 Jones et al, Non-iterative Feature-Preserving Mesh Smoothing, SIGGRAPH

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 4. Geometric Registration 4.1 Rigid Registration Range Scanning: Reconstruction Set of raw scans Reconstructed

More information

A Global Laplacian Smoothing Approach with Feature Preservation

A Global Laplacian Smoothing Approach with Feature Preservation A Global Laplacian Smoothing Approach with Feature Preservation hongping Ji Ligang Liu Guojin Wang Department of Mathematics State Key Lab of CAD&CG hejiang University Hangzhou, 310027 P.R. China jzpboy@yahoo.com.cn,

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

1.7.1 Laplacian Smoothing

1.7.1 Laplacian Smoothing 1.7.1 Laplacian Smoothing 320491: Advanced Graphics - Chapter 1 434 Theory Minimize energy functional total curvature estimate by polynomial-fitting non-linear (very slow!) 320491: Advanced Graphics -

More information

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2009 3/4/2009 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, 2009 3/4/2009

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Fairing Scalar Fields by Variational Modeling of Contours

Fairing Scalar Fields by Variational Modeling of Contours Fairing Scalar Fields by Variational Modeling of Contours Martin Bertram University of Kaiserslautern, Germany Abstract Volume rendering and isosurface extraction from three-dimensional scalar fields are

More information

Geometric Modeling Assignment 3: Discrete Differential Quantities

Geometric Modeling Assignment 3: Discrete Differential Quantities Geometric Modeling Assignment : Discrete Differential Quantities Acknowledgements: Julian Panetta, Olga Diamanti Assignment (Optional) Topic: Discrete Differential Quantities with libigl Vertex Normals,

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

An Efficient, Geometric Multigrid Solver for the Anisotropic Diffusion Equation in Two and Three Dimensions

An Efficient, Geometric Multigrid Solver for the Anisotropic Diffusion Equation in Two and Three Dimensions 1 n Efficient, Geometric Multigrid Solver for the nisotropic Diffusion Equation in Two and Three Dimensions Tolga Tasdizen, Ross Whitaker UUSCI-2004-002 Scientific Computing and Imaging Institute University

More information

Fairing Triangular Meshes with Highlight Line Model

Fairing Triangular Meshes with Highlight Line Model Fairing Triangular Meshes with Highlight Line Model Jun-Hai Yong, Bai-Lin Deng, Fuhua (Frank) Cheng and Kun Wu School of Software, Tsinghua University, Beijing 100084, P. R. China Department of Computer

More information

Removing local irregularities of triangular meshes with highlight line models

Removing local irregularities of triangular meshes with highlight line models Removing local irregularities of triangular meshes with highlight line models YONG Jun-Hai 1,4, DENG Bai-Lin 1,2,4, CHENG Fuhua 3, WANG Bin 1,4, WU Kun 1,2,4 & GU Hejin 5 1 School of Software, Tsinghua

More information

Non-Iterative, Feature-Preserving Mesh Smoothing

Non-Iterative, Feature-Preserving Mesh Smoothing Non-Iterative, Feature-Preserving Mesh Smoothing Thouis R. Jones (MIT), Frédo Durand (MIT), Mathieu Desbrun (USC) thouis@graphics.csail.mit.edu, fredo@graphics.csail.mit.edu, desbrun@usc.edu 3D scanners

More information

THE GEOMETRIC HEAT EQUATION AND SURFACE FAIRING

THE GEOMETRIC HEAT EQUATION AND SURFACE FAIRING THE GEOMETRIC HEAT EQUATION AN SURFACE FAIRING ANREW WILLIS BROWN UNIVERSITY, IVISION OF ENGINEERING, PROVIENCE, RI 02912, USA 1. INTROUCTION This paper concentrates on analysis and discussion of the heat

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

Deformation Transfer for Detail-Preserving Surface Editing

Deformation Transfer for Detail-Preserving Surface Editing Deformation Transfer for Detail-Preserving Surface Editing Mario Botsch Robert W Sumner 2 Mark Pauly 2 Markus Gross Computer Graphics Laboratory, ETH Zurich 2 Applied Geometry Group, ETH Zurich Abstract

More information

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany A Primer on Laplacians Max Wardetzky Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany Warm-up: Euclidean case Warm-up The Euclidean case Chladni s vibrating plates

More information

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Laplacian Meshes COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Outline Differential surface representation Ideas and applications Compact shape representation Mesh editing and manipulation

More information

Triangular surface mesh fairing via Gaussian curvature flow

Triangular surface mesh fairing via Gaussian curvature flow Journal of Computational and Applied Mathematics ( ) www.elsevier.com/locate/cam Triangular surface mesh fairing via Gaussian curvature flow Huanxi Zhao a,b,, Guoliang Xu b a Department of Mathematics,

More information

Today. Motivation. Motivation. Image gradient. Image gradient. Computational Photography

Today. Motivation. Motivation. Image gradient. Image gradient. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 009 Today Gradient domain image manipulation Introduction Gradient cut & paste Tone mapping Color-to-gray conversion Motivation Cut &

More information

Laplacian Mesh Optimization

Laplacian Mesh Optimization Laplacian Mesh Optimization Andrew Nealen TU Berlin Takeo Igarashi The University of Tokyo / PRESTO JST Olga Sorkine TU Berlin Marc Alexa TU Berlin Figure 1: Original HORSE mesh (left) triangle shape optimization

More information

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama

Introduction to Computer Graphics. Modeling (3) April 27, 2017 Kenshi Takayama Introduction to Computer Graphics Modeling (3) April 27, 2017 Kenshi Takayama Solid modeling 2 Solid models Thin shapes represented by single polygons Unorientable Clear definition of inside & outside

More information

ing and enhancing operations for shapes represented by level sets (isosurfaces) and applied unsharp masking to the level set normals. Their approach t

ing and enhancing operations for shapes represented by level sets (isosurfaces) and applied unsharp masking to the level set normals. Their approach t Shape Deblurring with Unsharp Masking Applied to Mesh Normals Hirokazu Yagou Λ Alexander Belyaev y Daming Wei z Λ y z ; ; Shape Modeling Laboratory, University of Aizu, Aizu-Wakamatsu 965-8580 Japan fm50534,

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

Anisotropic Filtering of Non-Linear Surface Features

Anisotropic Filtering of Non-Linear Surface Features EUROGRAPHICS 2004 / M.-P. Cani and M. Slater (Guest Editors) Volume 23 (2004), Number 3 Anisotropic Filtering of Non-Linear Surface Features Klaus Hildebrandt Konrad Polthier Zuse Institute Berlin, Germany

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

Filling Holes in Meshes

Filling Holes in Meshes Eurographics Symposium on Geometry Processing(2003) L. Kobbelt, P. Schröder, H. Hoppe (Editors) Filling Holes in Meshes Peter Liepa Alias Wavefront Abstract We describe a method for filling holes in unstructured

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces.

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. joint work with (S. Osher, R. Fedkiw and M. Kang) Desired properties for surface reconstruction:

More information

Anisotropic Smoothing of Point Sets,

Anisotropic Smoothing of Point Sets, Anisotropic Smoothing of Point Sets, Carsten Lange Konrad Polthier TU Berlin Zuse Institute Berlin (a) (b) (c) (d) (e) Figure 1: The initial point set of the Venus torso (a) was disturbed with a 3% normal

More information

Dual Interpolants for Finite Element Methods

Dual Interpolants for Finite Element Methods Dual Interpolants for Finite Element Methods Andrew Gillette joint work with Chandrajit Bajaj and Alexander Rand Department of Mathematics Institute of Computational Engineering and Sciences University

More information

Assignment 5: Shape Deformation

Assignment 5: Shape Deformation CSCI-GA.3033-018 - Geometric Modeling Assignment 5: Shape Deformation Goal of this exercise In this exercise, you will implement an algorithm to interactively deform 3D models. You will construct a two-level

More information

f xx + f yy = F (x, y)

f xx + f yy = F (x, y) Application of the 2D finite element method to Laplace (Poisson) equation; f xx + f yy = F (x, y) M. R. Hadizadeh Computer Club, Department of Physics and Astronomy, Ohio University 4 Nov. 2013 Domain

More information

Variational Methods II

Variational Methods II Mathematical Foundations of Computer Graphics and Vision Variational Methods II Luca Ballan Institute of Visual Computing Last Lecture If we have a topological vector space with an inner product and functionals

More information

Geometric Fairing of Irregular Meshes for Free-Form Surface Design

Geometric Fairing of Irregular Meshes for Free-Form Surface Design Geometric Fairing of Irregular Meshes for Free-Form Surface Design Robert Schneider, Leif Kobbelt 1 Max-Planck Institute for Computer Sciences, Stuhlsatzenhausweg 8, D-66123 Saarbrücken, Germany Abstract

More information

THIS paper presents the recent advances in mesh deformation

THIS paper presents the recent advances in mesh deformation 1 On Linear Variational Surface Deformation Methods Mario Botsch Computer Graphics Laboratory ETH Zurich Olga Sorkine Computer Graphics Group TU Berlin Abstract This survey reviews the recent advances

More information

An Intuitive Framework for Real-Time Freeform Modeling

An Intuitive Framework for Real-Time Freeform Modeling An Intuitive Framework for Real-Time Freeform Modeling Leif Kobbelt Shape Deformation Complex shapes Complex deformations User Interaction Very limited user interface 2D screen & mouse Intuitive metaphor

More information

Discrete Surface Modeling using Geometric Flows

Discrete Surface Modeling using Geometric Flows Discrete Surface Modeling using Geometric Flows Guoliang Xu Qing Pan Academy of Mathematics and System Science, Chinese Academy of Sciences, Beijing, China Email: xuguo@lsec.cc.ac.cn Chandrajit L. Bajaj

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

Interactive Mesh Deformation Using Equality-Constrained Least Squares

Interactive Mesh Deformation Using Equality-Constrained Least Squares Interactive Mesh Deformation Using Equality-Constrained Least Squares H. Masuda a,, Y. Yoshioka a, Y. Furukawa b a The University of Tokyo, Department of Environmental and Ocean Engineering, Hongo, Bunkyo-ku,

More information

Freeform Shape Representations for Efficient Geometry Processing

Freeform Shape Representations for Efficient Geometry Processing Freeform Shape Representations for Efficient Geometry Processing Leif Kobbelt Mario Botsch Computer Graphics Group RWTH Aachen Abstract The most important concepts for the handling and storage of freeform

More information

Discrete Differential Geometry. Differential Geometry

Discrete Differential Geometry. Differential Geometry Discrete Differential Geometry Yiying Tong CSE 891 Sect 004 Differential Geometry Why do we care? theory: special surfaces minimal, CMC, integrable, etc. computation: simulation/processing Grape (u. of

More information

An introduction to mesh generation Part IV : elliptic meshing

An introduction to mesh generation Part IV : elliptic meshing Elliptic An introduction to mesh generation Part IV : elliptic meshing Department of Civil Engineering, Université catholique de Louvain, Belgium Elliptic Curvilinear Meshes Basic concept A curvilinear

More information

Overview of Traditional Surface Tracking Methods

Overview of Traditional Surface Tracking Methods Liquid Simulation With Mesh-Based Surface Tracking Overview of Traditional Surface Tracking Methods Matthias Müller Introduction Research lead of NVIDIA PhysX team PhysX GPU acc. Game physics engine www.nvidia.com\physx

More information

Semester Final Report

Semester Final Report CSUMS SemesterFinalReport InLaTex AnnKimball 5/20/2009 ThisreportisageneralsummaryoftheaccumulationofknowledgethatIhavegatheredthroughoutthis semester. I was able to get a birds eye view of many different

More information

The p-laplacian on Graphs with Applications in Image Processing and Classification

The p-laplacian on Graphs with Applications in Image Processing and Classification The p-laplacian on Graphs with Applications in Image Processing and Classification Abderrahim Elmoataz 1,2, Matthieu Toutain 1, Daniel Tenbrinck 3 1 UMR6072 GREYC, Université de Caen Normandie 2 Université

More information

APPLICATION OF INTERACTIVE DEFORMATION TO ASSEMBLED MESH MODELS FOR CAE ANALYSIS

APPLICATION OF INTERACTIVE DEFORMATION TO ASSEMBLED MESH MODELS FOR CAE ANALYSIS Proceedings of the ASME 007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 007 September 4-7, 007, Las Vegas, Nevada, USA DETC007-34636

More information

Markov Random Fields on Triangle Meshes

Markov Random Fields on Triangle Meshes Downloaded from orbit.dtu.dk on: Jun 21, 2018 Markov Random Fields on Triangle Meshes Dahl, Vedrana Andersen; Aanæs, Henrik; Bærentzen, Jakob Andreas; Nielsen, Mads Published in: 18th International Conference

More information

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo 12 - Spatial And Skeletal Deformations Space Deformations Space Deformation Displacement function defined on the ambient space Evaluate the function on the points of the shape embedded in the space Twist

More information

Geometric Surface Processing via Normal Maps

Geometric Surface Processing via Normal Maps Geometric Surface Processing via Normal Maps TOLGA TASDIZEN and ROSS WHITAKER University of Utah and PAUL BURCHARD and STANLEY OSHER UCLA We propose that the generalization of signal and image processing

More information

Mesh Denoising via L0 Minimization

Mesh Denoising via L0 Minimization Mesh Denoising via L0 Minimization Lei He Texas A&M University Scott Schaefer Texas A&M University Figure 1: From left to right: initial surface, surface corrupted by Gaussian noise in random directions

More information

Kernel-Based Laplacian Smoothing Method for 3D Mesh Denoising

Kernel-Based Laplacian Smoothing Method for 3D Mesh Denoising Kernel-Based Laplacian Smoothing Method for 3D Mesh Denoising Hicham Badri, Mohammed El Hassouni, Driss Aboutajdine To cite this version: Hicham Badri, Mohammed El Hassouni, Driss Aboutajdine. Kernel-Based

More information

Laplacian Operator and Smoothing

Laplacian Operator and Smoothing Laplacian Operator and Smoothing Xifeng Gao Acknowledgements for the slides: Olga Sorkine-Hornung, Mario Botsch, and Daniele Panozzo Applications in Geometry Processing Smoothing Parameterization Remeshing

More information

Spider: A robust curvature estimator for noisy, irregular meshes

Spider: A robust curvature estimator for noisy, irregular meshes Spider: A robust curvature estimator for noisy, irregular meshes Technical report CSRG-531, Dynamic Graphics Project, Department of Computer Science, University of Toronto, c September 2005 Patricio Simari

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

Nonlocal Discrete Regularization on Weighted Graphs: a Framework for Image and Manifold Processing

Nonlocal Discrete Regularization on Weighted Graphs: a Framework for Image and Manifold Processing 1 Nonlocal Discrete Regularization on Weighted Graphs: a Framework for Image and Manifold Processing Abderrahim Elmoataz, Olivier Lezoray, Sébastien Bougleux Abstract We introduce a nonlocal discrete regularization

More information

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger For Inverse Obstacle Problems Martin Burger Outline Introduction Optimal Geometries Inverse Obstacle Problems & Shape Optimization Sensitivity Analysis based on Gradient Flows Numerical Methods University

More information

Surface Reconstruction. Gianpaolo Palma

Surface Reconstruction. Gianpaolo Palma Surface Reconstruction Gianpaolo Palma Surface reconstruction Input Point cloud With or without normals Examples: multi-view stereo, union of range scan vertices Range scans Each scan is a triangular mesh

More information

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION Dan Englesson danen344@student.liu.se Sunday 12th April, 2011 Abstract In this lab assignment which was done in the course TNM079, Modeling and animation,

More information

Yunyun Yang, Chunming Li, Chiu-Yen Kao and Stanley Osher. Speaker: Chiu-Yen Kao (Math Department, The Ohio State University) BIRS, Banff, Canada

Yunyun Yang, Chunming Li, Chiu-Yen Kao and Stanley Osher. Speaker: Chiu-Yen Kao (Math Department, The Ohio State University) BIRS, Banff, Canada Yunyun Yang, Chunming Li, Chiu-Yen Kao and Stanley Osher Speaker: Chiu-Yen Kao (Math Department, The Ohio State University) BIRS, Banff, Canada Outline Review of Region-based Active Contour Models Mumford

More information

G 1 B-Spline Surface Construction By Geometric Partial Differential Equations

G 1 B-Spline Surface Construction By Geometric Partial Differential Equations G 1 B-Spline Surface Construction By Geometric Partial Differential Equations Ming Li Guoliang Xu LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy

More information

Iterative Refinement by Smooth Curvature Correction for PDE-based Image Restoration

Iterative Refinement by Smooth Curvature Correction for PDE-based Image Restoration Iterative Refinement by Smooth Curvature Correction for PDE-based Image Restoration Anup Gautam 1, Jihee Kim 2, Doeun Kwak 3, and Seongjai Kim 4 1 Department of Mathematics and Statistics, Mississippi

More information

An Efficient Approach for Feature-preserving Mesh Denoising

An Efficient Approach for Feature-preserving Mesh Denoising An Efficient Approach for Feature-preserving Mesh Denoising Xuequan Lu a, Xiaohong Liu a, Zhigang Deng b, Wenzhi Chen a a X. Lu, X. Liu and W. Chen are with the College of Computer Science and Technology,

More information

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations The Level Set Method Lecture Notes, MIT 16.920J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations Per-Olof Persson persson@mit.edu March 7, 2005 1 Evolving Curves and Surfaces Evolving

More information

Discrete Coons patches

Discrete Coons patches Computer Aided Geometric Design 16 (1999) 691 700 Discrete Coons patches Gerald Farin a,, Dianne Hansford b,1 a Computer Science and Engineering, Arizona State University, Tempe, AZ 85287-5406, USA b NURBS

More information

Salient Critical Points for Meshes

Salient Critical Points for Meshes Salient Critical Points for Meshes Yu-Shen Liu Min Liu Daisuke Kihara Karthik Ramani Purdue University, West Lafayette, Indiana, USA (a) (b) (c) (d) Figure 1: Salient critical points (the blue, red, and

More information

Non-Iterative, Feature-Preserving Mesh Smoothing

Non-Iterative, Feature-Preserving Mesh Smoothing Non-Iterative, Feature-Preserving Mesh Smoothing Thouis R. Jones MIT Frédo Durand MIT Mathieu Desbrun USC Figure 1: The dragon model (left) is artificially corrupted by Gaussian noise (σ = 1/5 of the mean

More information

Almost Curvature Continuous Fitting of B-Spline Surfaces

Almost Curvature Continuous Fitting of B-Spline Surfaces Journal for Geometry and Graphics Volume 2 (1998), No. 1, 33 43 Almost Curvature Continuous Fitting of B-Spline Surfaces Márta Szilvási-Nagy Department of Geometry, Mathematical Institute, Technical University

More information

GeoFilter: Geometric Selection of Mesh Filter Parameters

GeoFilter: Geometric Selection of Mesh Filter Parameters EUROGRAPHICS 5 / M. Alexa and J. Marks (Guest Editors) Volume 4 (5), Number 3 GeoFilter: Geometric Selection of Mesh Filter Parameters ByungMoon Kim Georgia Institute of Technology, Jarek Rossignac Atlanta,

More information

Image Smoothing and Segmentation by Graph Regularization

Image Smoothing and Segmentation by Graph Regularization Image Smoothing and Segmentation by Graph Regularization Sébastien Bougleux 1 and Abderrahim Elmoataz 1 GREYC CNRS UMR 6072, Université de Caen Basse-Normandie ENSICAEN 6 BD du Maréchal Juin, 14050 Caen

More information

Mesh Repairing and Simplification. Gianpaolo Palma

Mesh Repairing and Simplification. Gianpaolo Palma Mesh Repairing and Simplification Gianpaolo Palma Mesh Repairing Removal of artifacts from geometric model such that it becomes suitable for further processing Input: a generic 3D model Output: (hopefully)a

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Predicting Tumour Location by Modelling the Deformation of the Breast using Nonlinear Elasticity

Predicting Tumour Location by Modelling the Deformation of the Breast using Nonlinear Elasticity Predicting Tumour Location by Modelling the Deformation of the Breast using Nonlinear Elasticity November 8th, 2006 Outline Motivation Motivation Motivation for Modelling Breast Deformation Mesh Generation

More information

Barycentric Finite Element Methods

Barycentric Finite Element Methods University of California, Davis Barycentric Finite Element Methods N. Sukumar University of California at Davis SIAM Conference on Geometric Design and Computing November 8, 2007 Collaborators and Acknowledgements

More information

Image Denoising Using Mean Curvature of Image Surface. Tony Chan (HKUST)

Image Denoising Using Mean Curvature of Image Surface. Tony Chan (HKUST) Image Denoising Using Mean Curvature of Image Surface Tony Chan (HKUST) Joint work with Wei ZHU (U. Alabama) & Xue-Cheng TAI (U. Bergen) In honor of Bob Plemmons 75 birthday CUHK Nov 8, 03 How I Got to

More information

Surface Reconstruction

Surface Reconstruction Eurographics Symposium on Geometry Processing (2006) Surface Reconstruction 2009.12.29 Some methods for surface reconstruction Classification 1. Based on Delaunay triangulation(or Voronoi diagram) Alpha

More information

Filters. Advanced and Special Topics: Filters. Filters

Filters. Advanced and Special Topics: Filters. Filters Filters Advanced and Special Topics: Filters Dr. Edmund Lam Department of Electrical and Electronic Engineering The University of Hong Kong ELEC4245: Digital Image Processing (Second Semester, 2016 17)

More information

Computing Curvature CS468 Lecture 8 Notes

Computing Curvature CS468 Lecture 8 Notes Computing Curvature CS468 Lecture 8 Notes Scribe: Andy Nguyen April 4, 013 1 Motivation In the previous lecture we developed the notion of the curvature of a surface, showing a bunch of nice theoretical

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing 1. Research Team Project Leader: Graduate Students: Industrial Partner(s): Prof. Mathieu Desbrun, Computer Science Sean Cahill, Maithili Dandige, Ilya Eckstein, Yiying Tong

More information

Salient Point SUSAN 3D operator for triangles meshes

Salient Point SUSAN 3D operator for triangles meshes Salient Point SUSAN 3D operator for triangles meshes N. Walter, O. Laligant, O. Aubreton Le2i Laboratory, 12 rue de la fonderie, Le Creusot, FRANCE, {Nicolas.Walter Olivier.Aubreton o.laligant}@u-bourgogne.fr

More information

Curvature-Domain Shape Processing

Curvature-Domain Shape Processing EUROGRAPHICS 2008 / G. Drettakis and R. Scopigno (Guest Editors) Volume 27 (2008), Number 2 Curvature-Domain Shape Processing Michael Eigensatz Robert W. Sumner Mark Pauly Applied Geometry Group ETH Zurich

More information

Numerical Methods on the Image Processing Problems

Numerical Methods on the Image Processing Problems Numerical Methods on the Image Processing Problems Department of Mathematics and Statistics Mississippi State University December 13, 2006 Objective Develop efficient PDE (partial differential equations)

More information

Spectral mesh deformation

Spectral mesh deformation Visual Comput (2008) 24: 787 796 DOI 10.1007/s00371-008-0260-x ORIGINAL ARTICLE Guodong Rong Yan Cao Xiaohu Guo Spectral mesh deformation Published online: 29 May 2008 Springer-Verlag 2008 Electronic supplementary

More information

Module 2: Single Step Methods Lecture 4: The Euler Method. The Lecture Contains: The Euler Method. Euler's Method (Analytical Interpretations)

Module 2: Single Step Methods Lecture 4: The Euler Method. The Lecture Contains: The Euler Method. Euler's Method (Analytical Interpretations) The Lecture Contains: The Euler Method Euler's Method (Analytical Interpretations) An Analytical Example file:///g /Numerical_solutions/lecture4/4_1.htm[8/26/2011 11:14:40 AM] We shall now describe methods

More information

Three-dimensional Modeling of Carbon Fiber Cloth Surface from Dense and Scattered Points Cloud

Three-dimensional Modeling of Carbon Fiber Cloth Surface from Dense and Scattered Points Cloud Send Orders for Reprints to reprints@benthamscience.ae 152 The Open Materials Science Journal, 2015, 9, 152-157 Open Access Three-dimensional Modeling of Carbon Fiber Cloth Surface from Dense and Scattered

More information

Geometric Surface Processing via Normal Maps a

Geometric Surface Processing via Normal Maps a Geometric Surface Processing via Normal Maps a Tolga Tasdizen Ross Whitaker Paul Burchard Stanley Osher Univ. of Utah Univ. of Utah UCLA UCLA tolga@cs.utah.edu whitaker@cs.utah.edu burchard@pobox.com sjo@math.ucla.edu

More information

Mesh Generation for Aircraft Engines based on the Medial Axis

Mesh Generation for Aircraft Engines based on the Medial Axis Mesh Generation for Aircraft Engines based on the Medial Axis J. Barner, F. Buchegger,, D. Großmann, B. Jüttler Institute of Applied Geometry Johannes Kepler University, Linz, Austria MTU Aero Engines

More information

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Level Set Methods Overview Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Convection Upwind ddifferencingi

More information

Introduction to Computer Graphics. Image Processing (1) June 8, 2017 Kenshi Takayama

Introduction to Computer Graphics. Image Processing (1) June 8, 2017 Kenshi Takayama Introduction to Computer Graphics Image Processing (1) June 8, 2017 Kenshi Takayama Today s topics Edge-aware image processing Gradient-domain image processing 2 Image smoothing using Gaussian Filter Smoothness

More information

Introduction to Multigrid and its Parallelization

Introduction to Multigrid and its Parallelization Introduction to Multigrid and its Parallelization! Thomas D. Economon Lecture 14a May 28, 2014 Announcements 2 HW 1 & 2 have been returned. Any questions? Final projects are due June 11, 5 pm. If you are

More information

Isogeometric analysis with Axel

Isogeometric analysis with Axel Isogeometric analysis with Axel Gang Xu, Régis Duvigneau,Bernard Mourrain INRIA Sophia-Antipolis gxu@sophia.inria.fr SAGA Workshop, March 18th, 2010 Outline 1 Isogeometric toolbox in EXCITING 2 Isogeometric

More information

linearize discretize Galerkin optimize sample

linearize discretize Galerkin optimize sample Fairing by Finite Dierence Methods Leif Kobbelt Abstract. We propose an ecient and exible scheme to fairly interpolate or approximate the vertices of a given triangular mesh. Instead of generating a piecewise

More information

Advanced Computer Graphics

Advanced Computer Graphics G22.2274 001, Fall 2009 Advanced Computer Graphics Project details and tools 1 Project Topics Computer Animation Geometric Modeling Computational Photography Image processing 2 Optimization All projects

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012048 TITLE: Discrete Fairing of Curves and Surfaces Based on Linear Curvature Distribution DISTRIBUTION: Approved for public

More information

Efficient Imaging Algorithms on Many-Core Platforms

Efficient Imaging Algorithms on Many-Core Platforms Efficient Imaging Algorithms on Many-Core Platforms H. Köstler Dagstuhl, 22.11.2011 Contents Imaging Applications HDR Compression performance of PDE-based models Image Denoising performance of patch-based

More information

Non-Rigid Image Registration III

Non-Rigid Image Registration III Non-Rigid Image Registration III CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (CS6240) Non-Rigid Image Registration

More information

Spectral Compression of Mesh Geometry

Spectral Compression of Mesh Geometry Spectral Compression of Mesh Geometry Zachi Karni, Craig Gotsman SIGGRAPH 2000 1 Introduction Thus far, topology coding drove geometry coding. Geometric data contains far more information (15 vs. 3 bits/vertex).

More information