File Classification Using Sub-Sequence Kernels

Size: px
Start display at page:

Download "File Classification Using Sub-Sequence Kernels"

Transcription

1 DIGITAL FORENSIC RESEARCH CONFERENCE File Classification Using Sub-Sequence Kernels By Olivier DeVel Presented At The Digital Forensic Research Conference DFRWS 2003 USA Cleveland, OH (Aug 6 th - 8 th ) DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics research. Ever since it organized the first open workshop devoted to digital forensics in 2001, DFRWS continues to bring academics and practitioners together in an informal environment. As a non-profit, volunteer organization, DFRWS sponsors technical working groups, annual conferences and challenges to help drive the direction of research and development.

2 1 File Classification Using Sub- Sequence Kernels Olivier de Vel Computer Forensics Group DSTO, Australia

3 2 Presentation: Document mining and computer forensics Semi-structured documents Broadband k-spectrum kernel Coloured generalized suffix tree representation Experimental methodology Results and Conclusion

4 3 Computer Forensics: Focus on Document Mining Eg, disk surface contents structured data semi-structured data unstructured data

5 4 Presentation: Document mining and computer forensics Semi-structured documents Broadband k-spectrum kernel Coloured generalized suffix tree representation Experimental methodology Results and Conclusion

6 5 Semi-Structured Documents May or may not include natural language text May be compound documents Include low-level, short-range structures. For example: byte block identifiers mark-up tokens

7 6 Semi-Structured Documents Traditional text mining techniques generally not appropriate.

8 7 Presentation: Document mining and computer forensics Semi-structured documents Broadband k-spectrum kernel Coloured generalized suffix tree representation Experimental methodology Results and Conclusion

9 8 Broadband k-spectrum Kernel: Use an extension to the string kernel. String (k-spectrum) Kernel: Is the set of all k-length contiguous subsequences that a sequence x i (of alphabet T, size T =l) contains Feature space dimension is up to T k (eg, if k=4 and T = 256 number of dimensions 10 9 ) X i = BOOKOOPERPPO (k=4) BOOK OOKO OKOO KOOP OOPE etc. Vector representation: ( 1 (x i ), 1 (x i ),, 1 (x i )) where 1, 2,, l T k

10 9 Broadband k-spectrum Kernel: Broadband k-spectrum Kernel: BOOKOOPERPPO Is the set of all (0, 1,..k)-length contiguous subsequences that a sequence (of alphabet T) contains Feature space dimension is even larger! (k=4) B, BO, BOO, BOOK O, OO, OOK, OOKO O, OK, OKO, OKOO K, KO, KOO, KOOP O, OO, OOP, OOPE etc.

11 10 Broadband k-spectrum Kernel: Matrix representation, (BB) (x i ) : ( 1 (1)(x i ) 2 (1)(x i ) l (1)(x i ), 1 (2)(x i ) 2 (2)(x i ) l (2)(x i ), : : : 1 (2)(x i ) 2 (2)(x i ) l (2)(x i )) where i (j) T j for i = 1, 2,..l

12 11 Broadband k-spectrum Kernel: What s the Big Deal? This allows us to define the inner product between two input sequences, x r and x s as: GramMatrix(x r, x s ) (BB) (x r ) (BB) (x s ) and use the kernel trick when maximising the margin of separation between two classes. The decision function for the SVM learning algorithm is: f(x) = sign( I y i [ (BB) (x r ) (BB) (x s )] + b) in the transformed feature space rather than the input feature space.

13 12 Presentation: Document mining and computer forensics Semi-structured documents Broadband k-spectrum kernel Coloured generalized suffix tree representation Experimental methodology Results and Conclusion

14 13 Coloured Generalized Suffix Tree (CGST): The CGST is a labelling of the GST representation of a sequence of symbols: It stores a count vector to be stored at each node in the GST each vector element value equals the frequency of the subsequence in the sequence. BOOKOOPERPPO PPEKOOBOKKOO (k=4) B O K K (1,1) (1,1) (0,1) O (1,0) E K O (1,1) (0,1) R (0,1) P (1,0) (1,0) (1,0) K K O (1,3) (0,1) (0,1) (1,2) (0,1) K (1,0) O (0,1) P O O O B (1,2) (0,1) (0,1) P (1,0)

15 14 CGST: Computing the Kernel (Gram) Matrix For N input sequences, the NxN Gram matrix G is computed as follows: initialize G r,s = 0 x r and x s traverse the CGST at each node, compute the product of each vector element pair and sum to G r,s

16 15 Presentation: Document mining and computer forensics Semi-structured documents Broadband k-spectrum kernel Coloured generalized suffix tree representation Experimental methodology Results and Conclusion

17 16 Experimental Methodology: Corpus Document corpus for a controlled experiment : 5 document classes (MSWord, JPEG, MSExcel, Java source, Adobe PDF) 465 documents (0.11KB min. to 523.3KB max. size) data are scaled to unit standard deviation and zero mean

18 17 Experimental Methodology: Classifier SVM light as the (two-way) classifier, Obtain two-way categorisation matrix for each document type category, using 10-fold cross-validation sampling, Calculate per-document-type category classification performance statistics precision, recall and F 1 statistics.

19 18 Presentation: Document mining and computer forensics Semi-structured documents Broadband k-spectrum kernel Coloured generalized suffix tree representation Experimental methodology Results and Conclusion

20 19 Experiments: Performance Results Classification performance was evaluated using the following parameters: Minimum and maximum sub-sequence window offset lengths,

21 20 Experiments: Performance Results Minimum and Maximum Sub-sequence Window Offset Length: Definition: For example; sub-sequence window (length = 5) MinSeqLength (=2) MaxSeqLength (=4)

22 21 Experiments: Performance Results Minimum Sub-sequence Offset Length, MinSeqLength: Optimal MinSeqLength= Use broadband spectrum 70 F1 Performance (%) PDF Faster drop-off for non-text Minimum Sub-sequence Offset Length 5 Java MSExcel documents (except JPEG) Document Type JPEG MSWord [Parameters: MaxStringLength=256 MaxSeqLength=5 MinSeqCount=10]

23 22 Experiments: Performance Results Maximum Sub-sequence Offset Length, MaxSeqLength: Optimal value is 4<MaxSeqLength<7 F1 Performance (%) No significant improvements Maximum Sub-sequence Offset Length JPEG MSWord PDF Java MSExcel Document Type for large sub-sequence offset values

24 23 Conclusions: Promising semi-structured document categorization results using the broadband k-spectrum kernel. Experiments suggest: use broadband kernels rather than narrow band kernels (ie fixed k-length sequence), document length can be small, use a minimum suffix count to achieve improved classification performance and tree compression. Extensions: Increase the number of document types Investigate techniques for capturing longer-range data structures in documents

25 24 Questions? Advertisement: Computer and Intrusion Forensics by G. Mohay, A. Anderson, B.Collie, O. de Vel and R. McKemmish Artech House ISBN (2003)

Categories of Digital Investigation Analysis Techniques Based On The Computer History Model

Categories of Digital Investigation Analysis Techniques Based On The Computer History Model DIGITAL FORENSIC RESEARCH CONFERENCE Categories of Digital Investigation Analysis Techniques Based On The Computer History Model By Brian Carrier, Eugene Spafford Presented At The Digital Forensic Research

More information

The Normalized Compression Distance as a File Fragment Classifier

The Normalized Compression Distance as a File Fragment Classifier DIGITAL FORENSIC RESEARCH CONFERENCE The Normalized Compression Distance as a File Fragment Classifier By Stefan Axelsson Presented At The Digital Forensic Research Conference DFRWS 2010 USA Portland,

More information

File Fragment Encoding Classification: An Empirical Approach

File Fragment Encoding Classification: An Empirical Approach DIGITAL FORENSIC RESEARCH CONFERENCE File Fragment Encoding Classification: An Empirical Approach By Vassil Roussev and Candice Quates Presented At The Digital Forensic Research Conference DFRWS 2013 USA

More information

Extracting Hidden Messages in Steganographic Images

Extracting Hidden Messages in Steganographic Images DIGITAL FORENSIC RESEARCH CONFERENCE Extracting Hidden Messages in Steganographic Images By Tu-Thach Quach Presented At The Digital Forensic Research Conference DFRWS 2014 USA Denver, CO (Aug 3 rd - 6

More information

Ranking Algorithms For Digital Forensic String Search Hits

Ranking Algorithms For Digital Forensic String Search Hits DIGITAL FORENSIC RESEARCH CONFERENCE Ranking Algorithms For Digital Forensic String Search Hits By Nicole Beebe and Lishu Liu Presented At The Digital Forensic Research Conference DFRWS 2014 USA Denver,

More information

Developing a New Digital Forensics Curriculum

Developing a New Digital Forensics Curriculum DIGITAL FORENSIC RESEARCH CONFERENCE Developing a New Digital Forensics Curriculum By Anthony Lang, Masooda Bashir, Roy Campbell and Lizanne Destefano Presented At The Digital Forensic Research Conference

More information

System for the Proactive, Continuous, and Efficient Collection of Digital Forensic Evidence

System for the Proactive, Continuous, and Efficient Collection of Digital Forensic Evidence DIGITAL FORENSIC RESEARCH CONFERENCE System for the Proactive, Continuous, and Efficient Collection of Digital Forensic Evidence By Clay Shields, Ophir Frieder and Mark Maloof Presented At The Digital

More information

Monitoring Access to Shared Memory-Mapped Files

Monitoring Access to Shared Memory-Mapped Files DIGITAL FORENSIC RESEARCH CONFERENCE Monitoring Access to Shared Memory-Mapped Files By Christian Sarmoria, Steve Chapin Presented At The Digital Forensic Research Conference DFRWS 2005 USA New Orleans,

More information

A Novel Approach of Mining Write-Prints for Authorship Attribution in Forensics

A Novel Approach of Mining Write-Prints for Authorship Attribution in  Forensics DIGITAL FORENSIC RESEARCH CONFERENCE A Novel Approach of Mining Write-Prints for Authorship Attribution in E-mail Forensics By Farkhund Iqbal, Rachid Hadjidj, Benjamin Fung, Mourad Debbabi Presented At

More information

Rapid Forensic Imaging of Large Disks with Sifting Collectors

Rapid Forensic Imaging of Large Disks with Sifting Collectors DIGITAL FORENSIC RESEARCH CONFERENCE Rapid Forensic Imaging of Large Disks with Sifting Collectors By Jonathan Grier and Golden Richard Presented At The Digital Forensic Research Conference DFRWS 2015

More information

A Correlation Method for Establishing Provenance of Timestamps in Digital Evidence

A Correlation Method for Establishing Provenance of Timestamps in Digital Evidence DIGITAL FORENSIC RESEARCH CONFERENCE A Correlation Method for Establishing Provenance of Timestamps in Digital Evidence By Bradley Schatz, George Mohay, Andrew Clark Presented At The Digital Forensic Research

More information

An Evaluation Platform for Forensic Memory Acquisition Software

An Evaluation Platform for Forensic Memory Acquisition Software DIGITAL FORENSIC RESEARCH CONFERENCE An Evaluation Platform for Forensic Memory Acquisition Software By Stefan Voemel and Johannes Stuttgen Presented At The Digital Forensic Research Conference DFRWS 2013

More information

Automated Identification of Installed Malicious Android Applications

Automated Identification of Installed Malicious Android Applications DIGITAL FORENSIC RESEARCH CONFERENCE Automated Identification of Installed Malicious Android Applications By Mark Guido, Justin Grover, Jared Ondricek, Dave Wilburn, Drew Hunt and Thanh Nguyen Presented

More information

CAT Detect: A Tool for Detecting Inconsistency in Computer Activity Timelines

CAT Detect: A Tool for Detecting Inconsistency in Computer Activity Timelines DIGITAL FORENSIC RESEARCH CONFERENCE CAT Detect: A Tool for Detecting Inconsistency in Computer Activity Timelines By Andrew Marrington, Ibrahim Baggili, George Mohay and Andrew Clark Presented At The

More information

A Functional Reference Model of Passive Network Origin Identification

A Functional Reference Model of Passive Network Origin Identification DIGITAL FORENSIC RESEARCH CONFERENCE A Functional Reference Model of Passive Network Origin Identification By Thomas Daniels Presented At The Digital Forensic Research Conference DFRWS 2003 USA Cleveland,

More information

Unification of Digital Evidence from Disparate Sources

Unification of Digital Evidence from Disparate Sources DIGITAL FORENSIC RESEARCH CONFERENCE Unification of Digital Evidence from Disparate Sources By Philip Turner Presented At The Digital Forensic Research Conference DFRWS 2005 USA New Orleans, LA (Aug 17

More information

Hash Based Disk Imaging Using AFF4

Hash Based Disk Imaging Using AFF4 DIGITAL FORENSIC RESEARCH CONFERENCE Hash Based Disk Imaging Using AFF4 By Michael Cohen and Bradley Schatz Presented At The Digital Forensic Research Conference DFRWS 2010 USA Portland, OR (Aug 2 nd -

More information

Design Tradeoffs for Developing Fragmented Video Carving Tools

Design Tradeoffs for Developing Fragmented Video Carving Tools DIGITAL FORENSIC RESEARCH CONFERENCE Design Tradeoffs for Developing Fragmented Video Carving Tools By Eoghan Casey and Rikkert Zoun Presented At The Digital Forensic Research Conference DFRWS 2014 USA

More information

Fast Indexing Strategies for Robust Image Hashes

Fast Indexing Strategies for Robust Image Hashes DIGITAL FORENSIC RESEARCH CONFERENCE Fast Indexing Strategies for Robust Image Hashes By Christian Winter, Martin Steinebach and York Yannikos Presented At The Digital Forensic Research Conference DFRWS

More information

Breaking the Performance Wall: The Case for Distributed Digital Forensics

Breaking the Performance Wall: The Case for Distributed Digital Forensics DIGITAL FORENSIC RESEARCH CONFERENCE Breaking the Performance Wall: The Case for Distributed Digital Forensics By Vassil Roussev, Golden Richard Presented At The Digital Forensic Research Conference DFRWS

More information

A Study of User Data Integrity During Acquisition of Android Devices

A Study of User Data Integrity During Acquisition of Android Devices DIGITAL FORENSIC RESEARCH CONFERENCE By Namheun Son, Yunho Lee, Dohyun Kim, Joshua I. James, Sangjin Lee and Kyungho Lee Presented At The Digital Forensic Research Conference DFRWS 2013 USA Monterey, CA

More information

On Criteria for Evaluating Similarity Digest Schemes

On Criteria for Evaluating Similarity Digest Schemes DIGITAL FORENSIC RESEARCH CONFERENCE On Criteria for Evaluating Similarity Digest Schemes By Jonathan Oliver Presented At The Digital Forensic Research Conference DFRWS 2015 EU Dublin, Ireland (Mar 23

More information

Privacy-Preserving Forensics

Privacy-Preserving  Forensics DIGITAL FORENSIC RESEARCH CONFERENCE Privacy-Preserving Email Forensics By Frederik Armknecht, Andreas Dewald and Michael Gruhn Presented At The Digital Forensic Research Conference DFRWS 2015 USA Philadelphia,

More information

Honeynets and Digital Forensics

Honeynets and Digital Forensics DIGITAL FORENSIC RESEARCH CONFERENCE Honeynets and Digital Forensics By Lance Spitzner Presented At The Digital Forensic Research Conference DFRWS 2004 USA Baltimore, MD (Aug 11 th - 13 th ) DFRWS is dedicated

More information

A Framework for Attack Patterns Discovery in Honeynet Data

A Framework for Attack Patterns Discovery in Honeynet Data DIGITAL FORENSIC RESEARCH CONFERENCE A Framework for Attack Patterns Discovery in Honeynet Data By Olivier Thonnard, Marc Dacier Presented At The Digital Forensic Research Conference DFRWS 2008 USA Baltimore,

More information

Multidimensional Investigation of Source Port 0 Probing

Multidimensional Investigation of Source Port 0 Probing DIGITAL FORENSIC RESEARCH CONFERENCE Multidimensional Investigation of Source Port 0 Probing By Elias Bou-Harb, Nour-Eddine Lakhdari, Hamad Binsalleeh and Mourad Debbabi Presented At The Digital Forensic

More information

Designing Robustness and Resilience in Digital Investigation Laboratories

Designing Robustness and Resilience in Digital Investigation Laboratories DIGITAL FORENSIC RESEARCH CONFERENCE Designing Robustness and Resilience in Digital Investigation Laboratories By Philipp Amann and Joshua James Presented At The Digital Forensic Research Conference DFRWS

More information

Leveraging CybOX to Standardize Representation and Exchange of Digital Forensic Information

Leveraging CybOX to Standardize Representation and Exchange of Digital Forensic Information DIGITAL FORENSIC RESEARCH CONFERENCE Leveraging CybOX to Standardize Representation and Exchange of Digital Forensic Information By Eoghan Casey, Greg Back, and Sean Barnum Presented At The Digital Forensic

More information

CSE 417T: Introduction to Machine Learning. Lecture 22: The Kernel Trick. Henry Chai 11/15/18

CSE 417T: Introduction to Machine Learning. Lecture 22: The Kernel Trick. Henry Chai 11/15/18 CSE 417T: Introduction to Machine Learning Lecture 22: The Kernel Trick Henry Chai 11/15/18 Linearly Inseparable Data What can we do if the data is not linearly separable? Accept some non-zero in-sample

More information

Android Forensics: Automated Data Collection And Reporting From A Mobile Device

Android Forensics: Automated Data Collection And Reporting From A Mobile Device DIGITAL FORENSIC RESEARCH CONFERENCE Android Forensics: Automated Data Collection And Reporting From A Mobile Device By Justin Grover Presented At The Digital Forensic Research Conference DFRWS 2013 USA

More information

Archival Science, Digital Forensics and New Media Art

Archival Science, Digital Forensics and New Media Art DIGITAL FORENSIC RESEARCH CONFERENCE Archival Science, Digital Forensics and New Media Art By Dianne Dietrich and Frank Adelstein Presented At The Digital Forensic Research Conference DFRWS 2015 USA Philadelphia,

More information

BinComp: A Stratified Approach to Compiler Provenance Attribution

BinComp: A Stratified Approach to Compiler Provenance Attribution DIGITAL FORENSIC RESEARCH CONFERENCE BinComp: A Stratified Approach to Compiler Provenance Attribution By Saed Alrabaee, Paria Shirani, Mourad Debbabi, Ashkan Rahimian and Lingyu Wang Presented At The

More information

Can Digital Evidence Endure the Test of Time?

Can Digital Evidence Endure the Test of Time? DIGITAL FORENSIC RESEARCH CONFERENCE By Michael Duren, Chet Hosmer Presented At The Digital Forensic Research Conference DFRWS 2002 USA Syracuse, NY (Aug 6 th - 9 th ) DFRWS is dedicated to the sharing

More information

Automatic training example selection for scalable unsupervised record linkage

Automatic training example selection for scalable unsupervised record linkage Automatic training example selection for scalable unsupervised record linkage Peter Christen Department of Computer Science, The Australian National University, Canberra, Australia Contact: peter.christen@anu.edu.au

More information

A Strategy for Testing Hardware Write Block Devices

A Strategy for Testing Hardware Write Block Devices DIGITAL FORENSIC RESEARCH CONFERENCE A Strategy for Testing Hardware Write Block Devices By James Lyle Presented At The Digital Forensic Research Conference DFRWS 2006 USA Lafayette, IN (Aug 14 th - 16

More information

Robust PDF Table Locator

Robust PDF Table Locator Robust PDF Table Locator December 17, 2016 1 Introduction Data scientists rely on an abundance of tabular data stored in easy-to-machine-read formats like.csv files. Unfortunately, most government records

More information

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University Frequently asked questions from the previous class survey CS 370: OPERATING SYSTEMS [MEMORY MANAGEMENT] Shrideep Pallickara Computer Science Colorado State University MS-DOS.COM? How does performing fast

More information

Automated Classification. Lars Marius Garshol Topic Maps

Automated Classification. Lars Marius Garshol Topic Maps Automated Classification Lars Marius Garshol Topic Maps 2007 2007-03-21 Automated classification What is it? Why do it? 2 What is automated classification? Create parts of a topic map

More information

Introduction to Kernels (part II)Application to sequences p.1

Introduction to Kernels (part II)Application to sequences p.1 Introduction to Kernels (part II) Application to sequences Liva Ralaivola liva@ics.uci.edu School of Information and Computer Science Institute for Genomics and Bioinformatics Introduction to Kernels (part

More information

Behavioral Data Mining. Lecture 10 Kernel methods and SVMs

Behavioral Data Mining. Lecture 10 Kernel methods and SVMs Behavioral Data Mining Lecture 10 Kernel methods and SVMs Outline SVMs as large-margin linear classifiers Kernel methods SVM algorithms SVMs as large-margin classifiers margin The separating plane maximizes

More information

CHEMINSTRUMENTS DYNAMIC SHEAR TESTER MODEL DS-1000 OPERATING INSTRUCTIONS

CHEMINSTRUMENTS DYNAMIC SHEAR TESTER MODEL DS-1000 OPERATING INSTRUCTIONS CHEMINSTRUMENTS DYNAMIC SHEAR TESTER MODEL DS-1000 OPERATING INSTRUCTIONS Overview...3 Operation...4 Load Cell Calibration...5 Units...5 Speed...5 Offset...5 Auto Return...6 Break Percent...6 Help...6

More information

LECTURE 5: DUAL PROBLEMS AND KERNELS. * Most of the slides in this lecture are from

LECTURE 5: DUAL PROBLEMS AND KERNELS. * Most of the slides in this lecture are from LECTURE 5: DUAL PROBLEMS AND KERNELS * Most of the slides in this lecture are from http://www.robots.ox.ac.uk/~az/lectures/ml Optimization Loss function Loss functions SVM review PRIMAL-DUAL PROBLEM Max-min

More information

Support vector machine (II): non-linear SVM. LING 572 Fei Xia

Support vector machine (II): non-linear SVM. LING 572 Fei Xia Support vector machine (II): non-linear SVM LING 572 Fei Xia 1 Linear SVM Maximizing the margin Soft margin Nonlinear SVM Kernel trick A case study Outline Handling multi-class problems 2 Non-linear SVM

More information

Irfan Ahmed, Kyung-Suk Lhee, Hyun-Jung Shin and Man-Pyo Hong

Irfan Ahmed, Kyung-Suk Lhee, Hyun-Jung Shin and Man-Pyo Hong Chapter 5 FAST CONTENT-BASED FILE TYPE IDENTIFICATION Irfan Ahmed, Kyung-Suk Lhee, Hyun-Jung Shin and Man-Pyo Hong Abstract Digital forensic examiners often need to identify the type of a file or file

More information

Coding for Random Projects

Coding for Random Projects Coding for Random Projects CS 584: Big Data Analytics Material adapted from Li s talk at ICML 2014 (http://techtalks.tv/talks/coding-for-random-projections/61085/) Random Projections for High-Dimensional

More information

Predicting the Types of File Fragments

Predicting the Types of File Fragments Predicting the Types of File Fragments William C. Calhoun and Drue Coles Department of Mathematics, Computer Science and Statistics Bloomsburg, University of Pennsylvania Bloomsburg, PA 17815 Thanks to

More information

Code Type Revealing Using Experiments Framework

Code Type Revealing Using Experiments Framework Code Type Revealing Using Experiments Framework Rami Sharon, Sharon.Rami@gmail.com, the Open University, Ra'anana, Israel. Ehud Gudes, ehud@cs.bgu.ac.il, Ben-Gurion University, Beer-Sheva, Israel. Abstract.

More information

Supervised Learning Classification Algorithms Comparison

Supervised Learning Classification Algorithms Comparison Supervised Learning Classification Algorithms Comparison Aditya Singh Rathore B.Tech, J.K. Lakshmipat University -------------------------------------------------------------***---------------------------------------------------------

More information

CSE141 Problem Set #4 Solutions

CSE141 Problem Set #4 Solutions CSE141 Problem Set #4 Solutions March 5, 2002 1 Simple Caches For this first problem, we have a 32 Byte cache with a line length of 8 bytes. This means that we have a total of 4 cache blocks (cache lines)

More information

Profile-based String Kernels for Remote Homology Detection and Motif Extraction

Profile-based String Kernels for Remote Homology Detection and Motif Extraction Profile-based String Kernels for Remote Homology Detection and Motif Extraction Ray Kuang, Eugene Ie, Ke Wang, Kai Wang, Mahira Siddiqi, Yoav Freund and Christina Leslie. Department of Computer Science

More information

12 Classification using Support Vector Machines

12 Classification using Support Vector Machines 160 Bioinformatics I, WS 14/15, D. Huson, January 28, 2015 12 Classification using Support Vector Machines This lecture is based on the following sources, which are all recommended reading: F. Markowetz.

More information

Annotated Suffix Trees for Text Clustering

Annotated Suffix Trees for Text Clustering Annotated Suffix Trees for Text Clustering Ekaterina Chernyak and Dmitry Ilvovsky National Research University Higher School of Economics Moscow, Russia echernyak,dilvovsky@hse.ru Abstract. In this paper

More information

Approach Research of Keyword Extraction Based on Web Pages Document

Approach Research of Keyword Extraction Based on Web Pages Document 2017 3rd International Conference on Electronic Information Technology and Intellectualization (ICEITI 2017) ISBN: 978-1-60595-512-4 Approach Research Keyword Extraction Based on Web Pages Document Yangxin

More information

Text Classification using String Kernels

Text Classification using String Kernels Text Classification using String Kernels Huma Lodhi John Shawe-Taylor Nello Cristianini Chris Watkins Department of Computer Science Royal Holloway, University of London Egham, Surrey TW20 0E, UK fhuma,

More information

Classification. 1 o Semestre 2007/2008

Classification. 1 o Semestre 2007/2008 Classification Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Slides baseados nos slides oficiais do livro Mining the Web c Soumen Chakrabarti. Outline 1 2 3 Single-Class

More information

Self-tuning ongoing terminology extraction retrained on terminology validation decisions

Self-tuning ongoing terminology extraction retrained on terminology validation decisions Self-tuning ongoing terminology extraction retrained on terminology validation decisions Alfredo Maldonado and David Lewis ADAPT Centre, School of Computer Science and Statistics, Trinity College Dublin

More information

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs)

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs) Data Mining: Concepts and Techniques Chapter 9 Classification: Support Vector Machines 1 Support Vector Machines (SVMs) SVMs are a set of related supervised learning methods used for classification Based

More information

STUDYING OF CLASSIFYING CHINESE SMS MESSAGES

STUDYING OF CLASSIFYING CHINESE SMS MESSAGES STUDYING OF CLASSIFYING CHINESE SMS MESSAGES BASED ON BAYESIAN CLASSIFICATION 1 LI FENG, 2 LI JIGANG 1,2 Computer Science Department, DongHua University, Shanghai, China E-mail: 1 Lifeng@dhu.edu.cn, 2

More information

The Bhopal School of Social Sciences, Bhopal

The Bhopal School of Social Sciences, Bhopal Marking scheme for M.Sc. (Computer Science) II Sem. Semester II Paper Title of the paper Theory CCE Total I Data Structure & Algorithms 70 30 100 II Operating System 70 30 100 III Computer Networks with

More information

KBSVM: KMeans-based SVM for Business Intelligence

KBSVM: KMeans-based SVM for Business Intelligence Association for Information Systems AIS Electronic Library (AISeL) AMCIS 2004 Proceedings Americas Conference on Information Systems (AMCIS) December 2004 KBSVM: KMeans-based SVM for Business Intelligence

More information

Surveying The User Space Through User Allocations

Surveying The User Space Through User Allocations DIGITAL FORENSIC RESEARCH CONFERENCE Surveying The User Space Through User Allocations By Andrew White, Bradley Schatz and Ernest Foo Presented At The Digital Forensic Research Conference DFRWS 2012 USA

More information

Chapter 5: Summary and Conclusion CHAPTER 5 SUMMARY AND CONCLUSION. Chapter 1: Introduction

Chapter 5: Summary and Conclusion CHAPTER 5 SUMMARY AND CONCLUSION. Chapter 1: Introduction CHAPTER 5 SUMMARY AND CONCLUSION Chapter 1: Introduction Data mining is used to extract the hidden, potential, useful and valuable information from very large amount of data. Data mining tools can handle

More information

A Novel Support Vector Machine Approach to High Entropy Data Fragment Classification

A Novel Support Vector Machine Approach to High Entropy Data Fragment Classification A Novel Support Vector Machine Approach to High Entropy Data Fragment Classification Q. Li 1, A. Ong 2, P. Suganthan 2 and V. Thing 1 1 Cryptography & Security Dept., Institute for Infocomm Research, Singapore

More information

K- Nearest Neighbors(KNN) And Predictive Accuracy

K- Nearest Neighbors(KNN) And Predictive Accuracy Contact: mailto: Ammar@cu.edu.eg Drammarcu@gmail.com K- Nearest Neighbors(KNN) And Predictive Accuracy Dr. Ammar Mohammed Associate Professor of Computer Science ISSR, Cairo University PhD of CS ( Uni.

More information

SVM in Oracle Database 10g: Removing the Barriers to Widespread Adoption of Support Vector Machines

SVM in Oracle Database 10g: Removing the Barriers to Widespread Adoption of Support Vector Machines SVM in Oracle Database 10g: Removing the Barriers to Widespread Adoption of Support Vector Machines Boriana Milenova, Joseph Yarmus, Marcos Campos Data Mining Technologies Oracle Overview Support Vector

More information

New String Kernels for Biosequence Data

New String Kernels for Biosequence Data Workshop on Kernel Methods in Bioinformatics New String Kernels for Biosequence Data Christina Leslie Department of Computer Science Columbia University Biological Sequence Classification Problems Protein

More information

Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy

Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy Lecture 6 K- Nearest Neighbors(KNN) And Predictive Accuracy Machine Learning Dr.Ammar Mohammed Nearest Neighbors Set of Stored Cases Atr1... AtrN Class A Store the training samples Use training samples

More information

Exercise 4. AMTH/CPSC 445a/545a - Fall Semester October 30, 2017

Exercise 4. AMTH/CPSC 445a/545a - Fall Semester October 30, 2017 Exercise 4 AMTH/CPSC 445a/545a - Fall Semester 2016 October 30, 2017 Problem 1 Compress your solutions into a single zip file titled assignment4.zip, e.g. for a student named Tom

More information

Naïve Bayes for text classification

Naïve Bayes for text classification Road Map Basic concepts Decision tree induction Evaluation of classifiers Rule induction Classification using association rules Naïve Bayesian classification Naïve Bayes for text classification Support

More information

IMPROVING INFORMATION RETRIEVAL BASED ON QUERY CLASSIFICATION ALGORITHM

IMPROVING INFORMATION RETRIEVAL BASED ON QUERY CLASSIFICATION ALGORITHM IMPROVING INFORMATION RETRIEVAL BASED ON QUERY CLASSIFICATION ALGORITHM Myomyo Thannaing 1, Ayenandar Hlaing 2 1,2 University of Technology (Yadanarpon Cyber City), near Pyin Oo Lwin, Myanmar ABSTRACT

More information

Advanced Data Mining Techniques

Advanced Data Mining Techniques Advanced Data Mining Techniques David L. Olson Dursun Delen Advanced Data Mining Techniques Dr. David L. Olson Department of Management Science University of Nebraska Lincoln, NE 68588-0491 USA dolson3@unl.edu

More information

Web Service Matchmaking Using Web Search Engine and Machine Learning

Web Service Matchmaking Using Web Search Engine and Machine Learning International Journal of Web Engineering 2012, 1(1): 1-5 DOI: 10.5923/j.web.20120101.01 Web Service Matchmaking Using Web Search Engine and Machine Learning Incheon Paik *, Eigo Fujikawa School of Computer

More information

Module 4. Non-linear machine learning econometrics: Support Vector Machine

Module 4. Non-linear machine learning econometrics: Support Vector Machine Module 4. Non-linear machine learning econometrics: Support Vector Machine THE CONTRACTOR IS ACTING UNDER A FRAMEWORK CONTRACT CONCLUDED WITH THE COMMISSION Introduction When the assumption of linearity

More information

Outline of the course

Outline of the course Outline of the course Introduction to Digital Libraries (15%) Description of Information (30%) Access to Information (30%) User Services (10%) Additional topics (15%) Buliding of a (small) digital library

More information

ESERCITAZIONE PIATTAFORMA WEKA. Croce Danilo Web Mining & Retrieval 2015/2016

ESERCITAZIONE PIATTAFORMA WEKA. Croce Danilo Web Mining & Retrieval 2015/2016 ESERCITAZIONE PIATTAFORMA WEKA Croce Danilo Web Mining & Retrieval 2015/2016 Outline Weka: a brief recap ARFF Format Performance measures Confusion Matrix Precision, Recall, F1, Accuracy Question Classification

More information

Information Assurance In A Distributed Forensic Cluster

Information Assurance In A Distributed Forensic Cluster DIGITAL FORENSIC RESEARCH CONFERENCE Information Assurance In A Distributed Forensic Cluster By Nicholas Pringle and Mikhaila Burgess Presented At The Digital Forensic Research Conference DFRWS 2014 EU

More information

TEXT CHAPTER 5. W. Bruce Croft BACKGROUND

TEXT CHAPTER 5. W. Bruce Croft BACKGROUND 41 CHAPTER 5 TEXT W. Bruce Croft BACKGROUND Much of the information in digital library or digital information organization applications is in the form of text. Even when the application focuses on multimedia

More information

Determinant of homography-matrix-based multiple-object recognition

Determinant of homography-matrix-based multiple-object recognition Determinant of homography-matrix-based multiple-object recognition 1 Nagachetan Bangalore, Madhu Kiran, Anil Suryaprakash Visio Ingenii Limited F2-F3 Maxet House Liverpool Road Luton, LU1 1RS United Kingdom

More information

Topic 1 Classification Alternatives

Topic 1 Classification Alternatives Topic 1 Classification Alternatives [Jiawei Han, Micheline Kamber, Jian Pei. 2011. Data Mining Concepts and Techniques. 3 rd Ed. Morgan Kaufmann. ISBN: 9380931913.] 1 Contents 2. Classification Using Frequent

More information

SVM cont d. Applications face detection [IEEE INTELLIGENT SYSTEMS]

SVM cont d. Applications face detection [IEEE INTELLIGENT SYSTEMS] SVM cont d A method of choice when examples are represented by vectors or matrices Input space cannot be readily used as attribute-vector (e.g. too many attrs) Kernel methods: map data from input space

More information

Packet Classification using Support Vector Machines with String Kernels

Packet Classification using Support Vector Machines with String Kernels RESEARCH ARTICLE Packet Classification using Support Vector Machines with String Kernels Sarthak Munshi *Department Of Computer Engineering, Pune Institute Of Computer Technology, Savitribai Phule Pune

More information

Machine Learning: Algorithms and Applications Mockup Examination

Machine Learning: Algorithms and Applications Mockup Examination Machine Learning: Algorithms and Applications Mockup Examination 14 May 2012 FIRST NAME STUDENT NUMBER LAST NAME SIGNATURE Instructions for students Write First Name, Last Name, Student Number and Signature

More information

Classification by Support Vector Machines

Classification by Support Vector Machines Classification by Support Vector Machines Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Practical DNA Microarray Analysis 2003 1 Overview I II III

More information

Chakra Chennubhotla and David Koes

Chakra Chennubhotla and David Koes MSCBIO/CMPBIO 2065: Support Vector Machines Chakra Chennubhotla and David Koes Nov 15, 2017 Sources mmds.org chapter 12 Bishop s book Ch. 7 Notes from Toronto, Mark Schmidt (UBC) 2 SVM SVMs and Logistic

More information

Adding Source Code Searching Capability to Yioop

Adding Source Code Searching Capability to Yioop Adding Source Code Searching Capability to Yioop Advisor - Dr Chris Pollett Committee Members Dr Sami Khuri and Dr Teng Moh Presented by Snigdha Rao Parvatneni AGENDA Introduction Preliminary work Git

More information

2. Design Methodology

2. Design Methodology Content-aware Email Multiclass Classification Categorize Emails According to Senders Liwei Wang, Li Du s Abstract People nowadays are overwhelmed by tons of coming emails everyday at work or in their daily

More information

Predict the Likelihood of Responding to Direct Mail Campaign in Consumer Lending Industry

Predict the Likelihood of Responding to Direct Mail Campaign in Consumer Lending Industry Predict the Likelihood of Responding to Direct Mail Campaign in Consumer Lending Industry Jincheng Cao, SCPD Jincheng@stanford.edu 1. INTRODUCTION When running a direct mail campaign, it s common practice

More information

Chapter 3: Important Concepts (3/29/2015)

Chapter 3: Important Concepts (3/29/2015) CISC 3595 Operating System Spring, 2015 Chapter 3: Important Concepts (3/29/2015) 1 Memory from programmer s perspective: you already know these: Code (functions) and data are loaded into memory when the

More information

IEE 520 Data Mining. Project Report. Shilpa Madhavan Shinde

IEE 520 Data Mining. Project Report. Shilpa Madhavan Shinde IEE 520 Data Mining Project Report Shilpa Madhavan Shinde Contents I. Dataset Description... 3 II. Data Classification... 3 III. Class Imbalance... 5 IV. Classification after Sampling... 5 V. Final Model...

More information

Tutorial on Machine Learning Tools

Tutorial on Machine Learning Tools Tutorial on Machine Learning Tools Yanbing Xue Milos Hauskrecht Why do we need these tools? Widely deployed classical models No need to code from scratch Easy-to-use GUI Outline Matlab Apps Weka 3 UI TensorFlow

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Chapter 9 Chapter 9 1 / 50 1 91 Maximal margin classifier 2 92 Support vector classifiers 3 93 Support vector machines 4 94 SVMs with more than two classes 5 95 Relationshiop to

More information

Robust 1-Norm Soft Margin Smooth Support Vector Machine

Robust 1-Norm Soft Margin Smooth Support Vector Machine Robust -Norm Soft Margin Smooth Support Vector Machine Li-Jen Chien, Yuh-Jye Lee, Zhi-Peng Kao, and Chih-Cheng Chang Department of Computer Science and Information Engineering National Taiwan University

More information

DATA SCIENCE INTRODUCTION QSHORE TECHNOLOGIES. About the Course:

DATA SCIENCE INTRODUCTION QSHORE TECHNOLOGIES. About the Course: DATA SCIENCE About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst/Analytics Manager/Actuarial Scientist/Business

More information

Transductive Learning: Motivation, Model, Algorithms

Transductive Learning: Motivation, Model, Algorithms Transductive Learning: Motivation, Model, Algorithms Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, FRANCE olivier.bousquet@m4x.org University of New Mexico, January 2002 Goal

More information

Multi-version Data recovery for Cluster Identifier Forensics Filesystem with Identifier Integrity

Multi-version Data recovery for Cluster Identifier Forensics Filesystem with Identifier Integrity Multi-version Data recovery for Cluster Identifier Forensics Filesystem with Identifier Integrity Mohammed Alhussein, Duminda Wijesekera Department of Computer Science George Mason University Fairfax,

More information

Content Based Image Retrieval system with a combination of Rough Set and Support Vector Machine

Content Based Image Retrieval system with a combination of Rough Set and Support Vector Machine Shahabi Lotfabadi, M., Shiratuddin, M.F. and Wong, K.W. (2013) Content Based Image Retrieval system with a combination of rough set and support vector machine. In: 9th Annual International Joint Conferences

More information

6 Model selection and kernels

6 Model selection and kernels 6. Bias-Variance Dilemma Esercizio 6. While you fit a Linear Model to your data set. You are thinking about changing the Linear Model to a Quadratic one (i.e., a Linear Model with quadratic features φ(x)

More information

CS294-1 Final Project. Algorithms Comparison

CS294-1 Final Project. Algorithms Comparison CS294-1 Final Project Algorithms Comparison Deep Learning Neural Network AdaBoost Random Forest Prepared By: Shuang Bi (24094630) Wenchang Zhang (24094623) 2013-05-15 1 INTRODUCTION In this project, we

More information

Automatic Domain Partitioning for Multi-Domain Learning

Automatic Domain Partitioning for Multi-Domain Learning Automatic Domain Partitioning for Multi-Domain Learning Di Wang diwang@cs.cmu.edu Chenyan Xiong cx@cs.cmu.edu William Yang Wang ww@cmu.edu Abstract Multi-Domain learning (MDL) assumes that the domain labels

More information

CPSC 340: Machine Learning and Data Mining. Logistic Regression Fall 2016

CPSC 340: Machine Learning and Data Mining. Logistic Regression Fall 2016 CPSC 340: Machine Learning and Data Mining Logistic Regression Fall 2016 Admin Assignment 1: Marks visible on UBC Connect. Assignment 2: Solution posted after class. Assignment 3: Due Wednesday (at any

More information