Learning Hierarchical Features for Scene Labeling

Size: px
Start display at page:

Download "Learning Hierarchical Features for Scene Labeling"

Transcription

1 Learning Hierarchical Features for Scene Labeling FB Informatik Knowledge Engineering Group Prof. Dr. Johannes Fürnkranz Seminar Machine Learning Author : Tanya Harizanova Seminar aus maschinellem Lernen 11

2 Contents Introduction Multiscale Feature Extraction For Scene Parsing Scene Labeling Strategies Experinments Important insights on the experiments Conclusion Questions / Discussion Seminar aus maschinellem Lernen 2

3 Introduction Scene Parsing Scene Parsing (full-scene-labeling) labeling every pixel in image to the category of the object it belongs to Seminar aus maschinellem Lernen 3

4 Introduction Scene Parsing(2) Questions to Scene Parsing : How to produce a good internal representation of the visual information? How to use contextual information to ensure the self-consistency of the interpretation? This Paper presents a Scene Parsing System, that relies on deep learning methods to approach both questions. Main Idea use a Convolutional Network operating on a large input window to produce label hypotheses for each pixel location Seminar aus maschinellem Lernen 4

5 Introduction Convolutional Network Convolutional Networks - are hierarchical architectures, which can be trained and are compose of multiple stage,each of which contains three layers : filter bank module,non-linarity module und spatial pooling module.the typical convolutional network are composed from two or three such stages,followed by classifying module Seminar aus maschinellem Lernen 5

6 Introduction Convolutional Network(2) Problem Labeling each Pixel by looking at a small region around is difficult, the category of a pixel may depend on relatively short-range information, but may also depend on long-range information. Solution of the problem Use of Multi-scale Convolutional Networks can take into account a large input windows, while keeping the number of free parameters to minimum Seminar aus maschinellem Lernen 6

7 Introduction Scene Parsing Architecture Scene Parsing Architektur of this system relies on two main components : 1. Multi-scale convolution representation 2. Graph-based classifikation Superpixels, Conditional random field over superpixels, Multilevel cut with class purity criterion Seminar aus maschinellem Lernen 7

8 Contents Introduction Multiscale Feature Extraction For Scene Parsing Scene Labeling Strategies Experinments Important insights on the experiments Conclusion Questions / Discussion Seminar aus maschinellem Lernen 8

9 Multiscale feature extraction for scene parsing Scene invariant, scene-level feature extraction Good iternal representations are hierarchical Convolutional networks provides a simple framework to learn such hierarchies of features, composed of multiple stages Feature extractor of this model is a three-stage convolutional network The convulational kernels are the actuall subject to training Seminar aus maschinellem Lernen 9

10 Multiscale feature extraction for scene parsing Scene invariant, scene-level feature extraction Convention : Bank of images as 3D arrays The maps of the pyramid computed using scaling/normalisation function g s as X s= g s ( I ) For network f s s 1,..., N with L layers f s ( X s ; θ s)=w L H L 1 where the vector of hidden units at layer l is H l = pool (tanh(w l H l 1 +b l )) H lp= pool (tanh (b lp+ W lp H l 1,q )) q parents ( p ) The outputs of the N networks unsampled und concatenated so as to produce F F =[ f 1,u( f 2 ),..., u( f N )], where u is an unsampling function Seminar aus maschinellem Lernen 10

11 Multiscale feature extraction for scene parsing Learning discriminative scale-invariant features Multiclass cross entropy loss function Normalized prediction vector Normalized predicticted probability destributions over classes c i,a c i Compute using softmax finction c i,a =e T Wa Fi / e T Wb Fi b classes W is a temporary weigth matrix only used to learn features The cross entropy between the predicted class distribution c and the target class distribution c penalizes their deviation and is measured by L = cat Seminar aus maschinellem Lernen 11 i pixels a classes ci, a ln( c i, a )

12 Contents Introduction Multiscale Feature Extraction For Scene Parsing Scene Labeling Strategies Experinments Important insights on the experiments Conclusion Questions / Discussion Seminar aus maschinellem Lernen 12

13 Scene Labeling Strategien The simplest strategy for scene labeling is to use a linear classifier and assign each pixel with argmax of the prediction of its location. The resulting labeling l, although fairly accurate, is not satisfying visually, as it lacks spatial consistency, and precise delineation of objects Seminar aus maschinellem Lernen 13

14 Scene Labeling Strategien Superpixels Predicting the class of each pixel indipendantly from its neighbors yields noisy prediction Classify each location of the image densely and aggregate these predictions in each superpixel, by computing the average class distribution within the superpixel. Superpixel not involve global understanding of the scene Seminar aus maschinellem Lernen 14

15 Scene Labeling Strategien Conditional Random Fields Classical CRF Model constructed on Superpixels. Each pixel in image is a vertex in graph, the edges are added between every neightbor nodes and it is defined an energy function. CRF energy minimized using alpha expansions Seminar aus maschinellem Lernen 15

16 Scene Labeling Strategien Parameter-free Multilevel Parsing Observation Level Problem Parameter-free Multilevel parsing method to analyze a family of segmentation and automatically discover the best observation level for each pixel in the image Seminar aus maschinellem Lernen 16

17 Scene Labeling Strategien Parameter-free Multilevel Parsing(2) Optimal Purity Cover optimization problem for search for most adapted neighborhood of a pixel k (i) of component that best explains this pixel this with the min cost S k (i) For each pixel i,we wish to find an index k (i)=argmin S k k i C k Seminar aus maschinellem Lernen 17

18 Scene Labeling Strategien Parameter-free Multilevel Parsing(3) Producing the confidence costs the construction of the cost function that is minimized S k with given set of components C k and using the set of (N ) O c :O [0,1] object descriptors k we define a function as predicting k the destribution( d ) of classes presents in component C k k Confidence Costs c Seminar aus maschinellem Lernen 18

19 Scene Labeling Strategien Parameter-free Multilevel Parsing(4) Training Procedure training procedure used by producing the confidence costs Segmentation collections (T )T τ are constructed on the entire training set, and, for all T τ train the classifier c to predict the destribution of the classes in component,as well as the costs S k Seminar aus maschinellem Lernen 19

20 Contents Introduction Multiscale Feature Extraction For Scene Parsing Scene Labeling Strategies Experinments Important insights on the experiments Conclusion Questions / Discussion Seminar aus maschinellem Lernen 20

21 Experiments Semantic scene understanding results on three different datasets Stanford Background contains 715 images of outdoor scenes composed in 8 classes,all of the images with 320x240 pixels, with atleast one foreground object. 5-fold cross validation : 572 images used for training and 143 for testing SIFT Flow composed of 2688, thoroughly labeled by LabelMe users,slitt in 2488 trainig images and 200 test images. Synonim correction used to obtain 33 semantic labels. Barcelona - has 14,871 training and 279 test images.the test set consists of street scenes from Barcelona, while the training set ranges in scene type but has no street scenes from Barcelona. Manually consolidated the synonyms in the label set to 170 unique labels Seminar aus maschinellem Lernen 21

22 Experiments on Stanford Background Data Sets Pixel Acc. Class Acc. CT (sec.) System based on convolutional network alone 66.0% 56.5% 0.35s Multiscale convolutional network with raw pixel prediction 78.8% 72.4% 0.6s Superpixel-based predictions 80.4% 74.56% 0.7s CRF-based predictions 80.4% 75.24% 61s Cover-based predictions 81.4% 76.0% 60.5s Seminar aus maschinellem Lernen 22

23 Experiments on Stanford Background Data Sets (2) Building Sky Grass Mountain Tree Object Seminar aus maschinellem Lernen 23

24 Experiments on SIFT Flow dataset Pixel Acc. Class Acc. raw multiscale net 67.9% 45.9% multiscale net + superpixels 71.9% 50.08% multiscale net + cover (1) 72.3% 50.08% multiscale net + cover (2) 78.5% 29.6% Seminar aus maschinellem Lernen 24

25 Experiments on SIFT Flow dataset (2) Seminar aus maschinellem Lernen 25

26 Experiments on Barcelona dataset Pixel Acc. Class Acc. raw multiscale net 37.8% 12.1% multiscale net + superpixels 44.1% 12.4% multiscale net + cover (1) 46.4% 12.5% multiscale net + cover (2) 67.8% 9.5% Seminar aus maschinellem Lernen 26

27 Real World Experiment For the real-world experiment Multiscale feature combined mit classification using Superpixel strategy trained on SIFT Flow dataset. The test movie build from 4 videos stiched to form a 360 video stream of 1280x256 images Result the system constitutes the first approach achieving real time performance,one of the frame being processed in less then a second using i7 4-core Intel(with dadicated FPGA Software can be reduced to 60 ms) Seminar aus maschinellem Lernen 27

28 Real World Experiment Video Real Time Performance Seminar aus maschinellem Lernen 28

29 Contents Introduction Multiscale Feature Extraction For Scene Parsing Scene Labeling Strategies Experinments Important insights on the experiments Conclusion Questions / Discussion Seminar aus maschinellem Lernen 29

30 Important Insights on the experiments Using high-capacity feature-learning system fed with raw pixels yields excellent result compared with systems using engineered features Feeding the system with a wide contextual window is critical to the quality of the results When a wide context is taken into accounts to produce each pixel label, the role of the post-processing is greatly reduced The use of highly sophisticated post-processing schemes does not seems to improve the results significantly over simple schemes Relying heavily on highly-accurate feed-foward pixel labeling system, while simplifying the post-processing module to its bare minnimum cuts down the inference times considerably Seminar aus maschinellem Lernen 30

31 Contents Introduction Multiscale Feature Extraction For Scene Parsing Scene Labeling Strategies Experinments Important insights on the experiments Conclusion Questions / Discussion Seminar aus maschinellem Lernen 31

32 Conclusion Feed-foward convolutional network can produce state of art performance on standard scene parsing datasets Without relying on engineering features Even in the absense of any post-processing by simply labeling each pixel with the highest scoring category produced by convolutional network for that location, the system yields neat state-of-the-art pixel-wise accuracy, and better per class accuracy then all previous published results Results on datasets with few categories are good, but the accuracy of the best existing scene parsing system is still low by higher number of categories Seminar aus maschinellem Lernen 32

33 Contents Introduction Multiscale Feature Extraction For Scene Parsing Scene Labeling Strategies Experinments Important insights on the experiments Conclusion Questions / Discussion Seminar aus maschinellem Lernen 33

34 Questions?! Discussion Seminar aus maschinellem Lernen 34

35 Sources Seminar aus maschinellem Lernen 35

IMAGE UNDERSTANDING is a task of primary importance

IMAGE UNDERSTANDING is a task of primary importance 1 Learning Hierarchical Features for Scene Labeling Clément Farabet, Camille Couprie, Laurent Najman, Yann LeCun Abstract Scene labeling consists in labeling each pixel in an image with the category of

More information

Convolutional Networks in Scene Labelling

Convolutional Networks in Scene Labelling Convolutional Networks in Scene Labelling Ashwin Paranjape Stanford ashwinpp@stanford.edu Ayesha Mudassir Stanford aysh@stanford.edu Abstract This project tries to address a well known problem of multi-class

More information

Recurrent Convolutional Neural Networks for Scene Labeling

Recurrent Convolutional Neural Networks for Scene Labeling Recurrent Convolutional Neural Networks for Scene Labeling Pedro O. Pinheiro, Ronan Collobert Reviewed by Yizhe Zhang August 14, 2015 Scene labeling task Scene labeling: assign a class label to each pixel

More information

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon Deep Learning For Video Classification Presented by Natalie Carlebach & Gil Sharon Overview Of Presentation Motivation Challenges of video classification Common datasets 4 different methods presented in

More information

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution and Fully Connected CRFs Zhipeng Yan, Moyuan Huang, Hao Jiang 5/1/2017 1 Outline Background semantic segmentation Objective,

More information

Semantic Segmentation

Semantic Segmentation Semantic Segmentation UCLA:https://goo.gl/images/I0VTi2 OUTLINE Semantic Segmentation Why? Paper to talk about: Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell,

More information

A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images

A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images Marc Aurelio Ranzato Yann LeCun Courant Institute of Mathematical Sciences New York University - New York, NY 10003 Abstract

More information

A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images

A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images A Sparse and Locally Shift Invariant Feature Extractor Applied to Document Images Marc Aurelio Ranzato Yann LeCun Courant Institute of Mathematical Sciences New York University - New York, NY 10003 Abstract

More information

Segmentation. Bottom up Segmentation Semantic Segmentation

Segmentation. Bottom up Segmentation Semantic Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road,

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

A Deep Learning Framework for Authorship Classification of Paintings

A Deep Learning Framework for Authorship Classification of Paintings A Deep Learning Framework for Authorship Classification of Paintings Kai-Lung Hua ( 花凱龍 ) Dept. of Computer Science and Information Engineering National Taiwan University of Science and Technology Taipei,

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky 2 Comparison to Volumetric Fusion Higher-order ray

More information

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University

LSTM and its variants for visual recognition. Xiaodan Liang Sun Yat-sen University LSTM and its variants for visual recognition Xiaodan Liang xdliang328@gmail.com Sun Yat-sen University Outline Context Modelling with CNN LSTM and its Variants LSTM Architecture Variants Application in

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

P-CNN: Pose-based CNN Features for Action Recognition. Iman Rezazadeh

P-CNN: Pose-based CNN Features for Action Recognition. Iman Rezazadeh P-CNN: Pose-based CNN Features for Action Recognition Iman Rezazadeh Introduction automatic understanding of dynamic scenes strong variations of people and scenes in motion and appearance Fine-grained

More information

Region-based Segmentation and Object Detection

Region-based Segmentation and Object Detection Region-based Segmentation and Object Detection Stephen Gould Tianshi Gao Daphne Koller Presented at NIPS 2009 Discussion and Slides by Eric Wang April 23, 2010 Outline Introduction Model Overview Model

More information

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601

Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network. Nathan Sun CIS601 Disguised Face Identification (DFI) with Facial KeyPoints using Spatial Fusion Convolutional Network Nathan Sun CIS601 Introduction Face ID is complicated by alterations to an individual s appearance Beard,

More information

Unsupervised Deep Learning for Scene Recognition

Unsupervised Deep Learning for Scene Recognition Unsupervised Deep Learning for Scene Recognition Akram Helou and Chau Nguyen May 19, 2011 1 Introduction Object and scene recognition are usually studied separately. However, research [2]shows that context

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Multiple-Choice Questionnaire Group C

Multiple-Choice Questionnaire Group C Family name: Vision and Machine-Learning Given name: 1/28/2011 Multiple-Choice naire Group C No documents authorized. There can be several right answers to a question. Marking-scheme: 2 points if all right

More information

SEMANTIC SEGMENTATION AVIRAM BAR HAIM & IRIS TAL

SEMANTIC SEGMENTATION AVIRAM BAR HAIM & IRIS TAL SEMANTIC SEGMENTATION AVIRAM BAR HAIM & IRIS TAL IMAGE DESCRIPTIONS IN THE WILD (IDW-CNN) LARGE KERNEL MATTERS (GCN) DEEP LEARNING SEMINAR, TAU NOVEMBER 2017 TOPICS IDW-CNN: Improving Semantic Segmentation

More information

Convolutional-Recursive Deep Learning for 3D Object Classification

Convolutional-Recursive Deep Learning for 3D Object Classification Convolutional-Recursive Deep Learning for 3D Object Classification Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, Andrew Y. Ng NIPS 2012 Iro Armeni, Manik Dhar Motivation Hand-designed

More information

Deep Learning on Graphs

Deep Learning on Graphs Deep Learning on Graphs with Graph Convolutional Networks Hidden layer Hidden layer Input Output ReLU ReLU, 22 March 2017 joint work with Max Welling (University of Amsterdam) BDL Workshop @ NIPS 2016

More information

Spatially Constrained Location Prior for Scene Parsing

Spatially Constrained Location Prior for Scene Parsing Spatially Constrained Location Prior for Scene Parsing Ligang Zhang, Brijesh Verma, David Stockwell, Sujan Chowdhury Centre for Intelligent Systems School of Engineering and Technology, Central Queensland

More information

Multi-Glance Attention Models For Image Classification

Multi-Glance Attention Models For Image Classification Multi-Glance Attention Models For Image Classification Chinmay Duvedi Stanford University Stanford, CA cduvedi@stanford.edu Pararth Shah Stanford University Stanford, CA pararth@stanford.edu Abstract We

More information

Structured Completion Predictors Applied to Image Segmentation

Structured Completion Predictors Applied to Image Segmentation Structured Completion Predictors Applied to Image Segmentation Dmitriy Brezhnev, Raphael-Joel Lim, Anirudh Venkatesh December 16, 2011 Abstract Multi-image segmentation makes use of global and local features

More information

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda 1 Observe novel applicability of DL techniques in Big Data Analytics. Applications of DL techniques for common Big Data Analytics problems. Semantic indexing

More information

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla DEEP LEARNING REVIEW Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature 2015 -Presented by Divya Chitimalla What is deep learning Deep learning allows computational models that are composed of multiple

More information

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus

Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture David Eigen, Rob Fergus Presented by: Rex Ying and Charles Qi Input: A Single RGB Image Estimate

More information

A Deep Learning Approach to Vehicle Speed Estimation

A Deep Learning Approach to Vehicle Speed Estimation A Deep Learning Approach to Vehicle Speed Estimation Benjamin Penchas bpenchas@stanford.edu Tobin Bell tbell@stanford.edu Marco Monteiro marcorm@stanford.edu ABSTRACT Given car dashboard video footage,

More information

Classification of objects from Video Data (Group 30)

Classification of objects from Video Data (Group 30) Classification of objects from Video Data (Group 30) Sheallika Singh 12665 Vibhuti Mahajan 12792 Aahitagni Mukherjee 12001 M Arvind 12385 1 Motivation Video surveillance has been employed for a long time

More information

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm

CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm CIS680: Vision & Learning Assignment 2.b: RPN, Faster R-CNN and Mask R-CNN Due: Nov. 21, 2018 at 11:59 pm Instructions This is an individual assignment. Individual means each student must hand in their

More information

A Hierarchical Conditional Random Field Model for Labeling and Segmenting Images of Street Scenes

A Hierarchical Conditional Random Field Model for Labeling and Segmenting Images of Street Scenes A Hierarchical Conditional Random Field Model for Labeling and Segmenting Images of Street Scenes Qixing Huang Stanford University huangqx@stanford.edu Mei Han Google Inc. meihan@google.com Bo Wu Google

More information

Fully Convolutional Networks for Semantic Segmentation

Fully Convolutional Networks for Semantic Segmentation Fully Convolutional Networks for Semantic Segmentation Jonathan Long* Evan Shelhamer* Trevor Darrell UC Berkeley Chaim Ginzburg for Deep Learning seminar 1 Semantic Segmentation Define a pixel-wise labeling

More information

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic SEMANTIC COMPUTING Lecture 8: Introduction to Deep Learning Dagmar Gromann International Center For Computational Logic TU Dresden, 7 December 2018 Overview Introduction Deep Learning General Neural Networks

More information

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space Sikai Zhong February 14, 2018 COMPUTER SCIENCE Table of contents 1. PointNet 2. PointNet++ 3. Experiments 1 PointNet Property

More information

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL)

Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) Lecture 13 Segmentation and Scene Understanding Chris Choy, Ph.D. candidate Stanford Vision and Learning Lab (SVL) http://chrischoy.org Stanford CS231A 1 Understanding a Scene Objects Chairs, Cups, Tables,

More information

Classifying Images with Visual/Textual Cues. By Steven Kappes and Yan Cao

Classifying Images with Visual/Textual Cues. By Steven Kappes and Yan Cao Classifying Images with Visual/Textual Cues By Steven Kappes and Yan Cao Motivation Image search Building large sets of classified images Robotics Background Object recognition is unsolved Deformable shaped

More information

Conditional Random Fields as Recurrent Neural Networks

Conditional Random Fields as Recurrent Neural Networks BIL722 - Deep Learning for Computer Vision Conditional Random Fields as Recurrent Neural Networks S. Zheng, S. Jayasumana, B. Romera-Paredes V. Vineet, Z. Su, D. Du, C. Huang, P.H.S. Torr Introduction

More information

Hierarchically Gated Deep Networks for Semantic Segmentation

Hierarchically Gated Deep Networks for Semantic Segmentation Hierarchically Gated Deep Networks for Semantic Segmentation Guo-Jun Qi Department of Computer Science University of Central Florida guojun.qi@ucf.edu Abstract Semantic segmentation aims to parse the scene

More information

Separating Objects and Clutter in Indoor Scenes

Separating Objects and Clutter in Indoor Scenes Separating Objects and Clutter in Indoor Scenes Salman H. Khan School of Computer Science & Software Engineering, The University of Western Australia Co-authors: Xuming He, Mohammed Bennamoun, Ferdous

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

Markov Networks in Computer Vision. Sargur Srihari

Markov Networks in Computer Vision. Sargur Srihari Markov Networks in Computer Vision Sargur srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Important application area for MNs 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

3 Object Detection. BVM 2018 Tutorial: Advanced Deep Learning Methods. Paul F. Jaeger, Division of Medical Image Computing

3 Object Detection. BVM 2018 Tutorial: Advanced Deep Learning Methods. Paul F. Jaeger, Division of Medical Image Computing 3 Object Detection BVM 2018 Tutorial: Advanced Deep Learning Methods Paul F. Jaeger, of Medical Image Computing What is object detection? classification segmentation obj. detection (1 label per pixel)

More information

Deep Learning on Graphs

Deep Learning on Graphs Deep Learning on Graphs with Graph Convolutional Networks Hidden layer Hidden layer Input Output ReLU ReLU, 6 April 2017 joint work with Max Welling (University of Amsterdam) The success story of deep

More information

Learning Deep Structured Models for Semantic Segmentation. Guosheng Lin

Learning Deep Structured Models for Semantic Segmentation. Guosheng Lin Learning Deep Structured Models for Semantic Segmentation Guosheng Lin Semantic Segmentation Outline Exploring Context with Deep Structured Models Guosheng Lin, Chunhua Shen, Ian Reid, Anton van dan Hengel;

More information

Copyright by Jaechul Kim 2013

Copyright by Jaechul Kim 2013 Copyright by Jaechul Kim 2013 The Dissertation Committee for Jaechul Kim certifies that this is the approved version of the following dissertation: Region Detection and Matching for Object Recognition

More information

Beyond Bags of Features

Beyond Bags of Features : for Recognizing Natural Scene Categories Matching and Modeling Seminar Instructed by Prof. Haim J. Wolfson School of Computer Science Tel Aviv University December 9 th, 2015

More information

MASTER THESIS. A Local - Global Approach to Semantic Segmentation in Aerial Images

MASTER THESIS. A Local - Global Approach to Semantic Segmentation in Aerial Images University Politehnica of Bucharest Automatic Control and Computers Faculty, Computer Science and Engineering Department arxiv:1607.05620v1 [cs.cv] 19 Jul 2016 MASTER THESIS A Local - Global Approach to

More information

Know your data - many types of networks

Know your data - many types of networks Architectures Know your data - many types of networks Fixed length representation Variable length representation Online video sequences, or samples of different sizes Images Specific architectures for

More information

Multiple Kernel Learning for Emotion Recognition in the Wild

Multiple Kernel Learning for Emotion Recognition in the Wild Multiple Kernel Learning for Emotion Recognition in the Wild Karan Sikka, Karmen Dykstra, Suchitra Sathyanarayana, Gwen Littlewort and Marian S. Bartlett Machine Perception Laboratory UCSD EmotiW Challenge,

More information

Deep Learning for Object detection & localization

Deep Learning for Object detection & localization Deep Learning for Object detection & localization RCNN, Fast RCNN, Faster RCNN, YOLO, GAP, CAM, MSROI Aaditya Prakash Sep 25, 2018 Image classification Image classification Whole of image is classified

More information

A Keypoint Descriptor Inspired by Retinal Computation

A Keypoint Descriptor Inspired by Retinal Computation A Keypoint Descriptor Inspired by Retinal Computation Bongsoo Suh, Sungjoon Choi, Han Lee Stanford University {bssuh,sungjoonchoi,hanlee}@stanford.edu Abstract. The main goal of our project is to implement

More information

Classifying Depositional Environments in Satellite Images

Classifying Depositional Environments in Satellite Images Classifying Depositional Environments in Satellite Images Alex Miltenberger and Rayan Kanfar Department of Geophysics School of Earth, Energy, and Environmental Sciences Stanford University 1 Introduction

More information

JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS. Puyang Xu, Ruhi Sarikaya. Microsoft Corporation

JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS. Puyang Xu, Ruhi Sarikaya. Microsoft Corporation JOINT INTENT DETECTION AND SLOT FILLING USING CONVOLUTIONAL NEURAL NETWORKS Puyang Xu, Ruhi Sarikaya Microsoft Corporation ABSTRACT We describe a joint model for intent detection and slot filling based

More information

Deep Learning. Deep Learning. Practical Application Automatically Adding Sounds To Silent Movies

Deep Learning. Deep Learning. Practical Application Automatically Adding Sounds To Silent Movies http://blog.csdn.net/zouxy09/article/details/8775360 Automatic Colorization of Black and White Images Automatically Adding Sounds To Silent Movies Traditionally this was done by hand with human effort

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Announcements Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Seminar registration period starts on Friday We will offer a lab course in the summer semester Deep Robot Learning Topic:

More information

SuperParsing: Scalable Nonparametric Image Parsing with Superpixels

SuperParsing: Scalable Nonparametric Image Parsing with Superpixels SuperParsing: Scalable Nonparametric Image Parsing with Superpixels Joseph Tighe and Svetlana Lazebnik Dept. of Computer Science, University of North Carolina at Chapel Hill Chapel Hill, NC 27599-3175

More information

Semantic Pooling for Image Categorization using Multiple Kernel Learning

Semantic Pooling for Image Categorization using Multiple Kernel Learning Semantic Pooling for Image Categorization using Multiple Kernel Learning Thibaut Durand (1,2), Nicolas Thome (1), Matthieu Cord (1), David Picard (2) (1) Sorbonne Universités, UPMC Univ Paris 06, UMR 7606,

More information

Deep neural networks II

Deep neural networks II Deep neural networks II May 31 st, 2018 Yong Jae Lee UC Davis Many slides from Rob Fergus, Svetlana Lazebnik, Jia-Bin Huang, Derek Hoiem, Adriana Kovashka, Why (convolutional) neural networks? State of

More information

Sparse Models in Image Understanding And Computer Vision

Sparse Models in Image Understanding And Computer Vision Sparse Models in Image Understanding And Computer Vision Jayaraman J. Thiagarajan Arizona State University Collaborators Prof. Andreas Spanias Karthikeyan Natesan Ramamurthy Sparsity Sparsity of a vector

More information

Patrick Krabbe Fachbereich Informatik Seminar aus maschinellem Lernen 1

Patrick Krabbe Fachbereich Informatik Seminar aus maschinellem Lernen 1 Towards a Machine Learning Algorithm for Predicting Truck Compressor Failures Using Logged Vehicle Data By S. Nowaczyk, R. Prytz, T. Rögnvaldsson, S. Byttner 14.07.2015 Patrick Krabbe Fachbereich Informatik

More information

Su et al. Shape Descriptors - III

Su et al. Shape Descriptors - III Su et al. Shape Descriptors - III Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 Funkhouser; Feng, Liu, Gong Recap Global A shape descriptor is a set of numbers that describes a shape in a way that

More information

Deep Learning. Deep Learning provided breakthrough results in speech recognition and image classification. Why?

Deep Learning. Deep Learning provided breakthrough results in speech recognition and image classification. Why? Data Mining Deep Learning Deep Learning provided breakthrough results in speech recognition and image classification. Why? Because Speech recognition and image classification are two basic examples of

More information

ImageCLEF 2011

ImageCLEF 2011 SZTAKI @ ImageCLEF 2011 Bálint Daróczy joint work with András Benczúr, Róbert Pethes Data Mining and Web Search Group Computer and Automation Research Institute Hungarian Academy of Sciences Training/test

More information

arxiv: v3 [cs.cv] 3 Oct 2012

arxiv: v3 [cs.cv] 3 Oct 2012 Combined Descriptors in Spatial Pyramid Domain for Image Classification Junlin Hu and Ping Guo arxiv:1210.0386v3 [cs.cv] 3 Oct 2012 Image Processing and Pattern Recognition Laboratory Beijing Normal University,

More information

Mask R-CNN. By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi

Mask R-CNN. By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi Mask R-CNN By Kaiming He, Georgia Gkioxari, Piotr Dollar and Ross Girshick Presented By Aditya Sanghi Types of Computer Vision Tasks http://cs231n.stanford.edu/ Semantic vs Instance Segmentation Image

More information

Two-Stream Convolutional Networks for Action Recognition in Videos

Two-Stream Convolutional Networks for Action Recognition in Videos Two-Stream Convolutional Networks for Action Recognition in Videos Karen Simonyan Andrew Zisserman Cemil Zalluhoğlu Introduction Aim Extend deep Convolution Networks to action recognition in video. Motivation

More information

Deep Learning for Cloud Detection

Deep Learning for Cloud Detection Deep Learning for Cloud Detection M. Le Goff (1) (1,2), J.-Y. Tourneret(1), H. Wendt(1), M. Ortner(2), and M. Spigai(2) IRIT/ENSEEIHT/Te SA, University of Toulouse and Keywords: Deep learning, feature

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

Artistic ideation based on computer vision methods

Artistic ideation based on computer vision methods Journal of Theoretical and Applied Computer Science Vol. 6, No. 2, 2012, pp. 72 78 ISSN 2299-2634 http://www.jtacs.org Artistic ideation based on computer vision methods Ferran Reverter, Pilar Rosado,

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

An Exploration of Computer Vision Techniques for Bird Species Classification

An Exploration of Computer Vision Techniques for Bird Species Classification An Exploration of Computer Vision Techniques for Bird Species Classification Anne L. Alter, Karen M. Wang December 15, 2017 Abstract Bird classification, a fine-grained categorization task, is a complex

More information

Storyline Reconstruction for Unordered Images

Storyline Reconstruction for Unordered Images Introduction: Storyline Reconstruction for Unordered Images Final Paper Sameedha Bairagi, Arpit Khandelwal, Venkatesh Raizaday Storyline reconstruction is a relatively new topic and has not been researched

More information

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep CS395T paper review Indoor Segmentation and Support Inference from RGBD Images Chao Jia Sep 28 2012 Introduction What do we want -- Indoor scene parsing Segmentation and labeling Support relationships

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

Sky is Not the Limit: Semantic-Aware Sky Replacement

Sky is Not the Limit: Semantic-Aware Sky Replacement Sky is Not the Limit: Semantic-Aware Sky Replacement ACM Transactions on Graphics (SIGGRAPH), 2016 Yi-Hsuan Tsai UC Merced Xiaohui Shen Adobe Research Zhe Lin Adobe Research Kalyan Sunkavalli Adobe Research

More information

Object Detection Using Segmented Images

Object Detection Using Segmented Images Object Detection Using Segmented Images Naran Bayanbat Stanford University Palo Alto, CA naranb@stanford.edu Jason Chen Stanford University Palo Alto, CA jasonch@stanford.edu Abstract Object detection

More information

Deep Learning and Its Applications

Deep Learning and Its Applications Convolutional Neural Network and Its Application in Image Recognition Oct 28, 2016 Outline 1 A Motivating Example 2 The Convolutional Neural Network (CNN) Model 3 Training the CNN Model 4 Issues and Recent

More information

Computer Vision Lecture 16

Computer Vision Lecture 16 Computer Vision Lecture 16 Deep Learning Applications 11.01.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar registration period starts

More information

Structured Models in. Dan Huttenlocher. June 2010

Structured Models in. Dan Huttenlocher. June 2010 Structured Models in Computer Vision i Dan Huttenlocher June 2010 Structured Models Problems where output variables are mutually dependent or constrained E.g., spatial or temporal relations Such dependencies

More information

Learning-based Localization

Learning-based Localization Learning-based Localization Eric Brachmann ECCV 2018 Tutorial on Visual Localization - Feature-based vs. Learned Approaches Torsten Sattler, Eric Brachmann Roadmap Machine Learning Basics [10min] Convolutional

More information

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research)

Joint Inference in Image Databases via Dense Correspondence. Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) Joint Inference in Image Databases via Dense Correspondence Michael Rubinstein MIT CSAIL (while interning at Microsoft Research) My work Throughout the year (and my PhD thesis): Temporal Video Analysis

More information

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Atul Kanaujia, CBIM, Rutgers Cristian Sminchisescu, TTI-C Dimitris Metaxas,CBIM, Rutgers 3D Human Pose Inference Difficulties Towards

More information

Unstructured Data. CS102 Winter 2019

Unstructured Data. CS102 Winter 2019 Winter 2019 Big Data Tools and Techniques Basic Data Manipulation and Analysis Performing well-defined computations or asking well-defined questions ( queries ) Data Mining Looking for patterns in data

More information

Image Segmentation. Srikumar Ramalingam School of Computing University of Utah. Slides borrowed from Ross Whitaker

Image Segmentation. Srikumar Ramalingam School of Computing University of Utah. Slides borrowed from Ross Whitaker Image Segmentation Srikumar Ramalingam School of Computing University of Utah Slides borrowed from Ross Whitaker Segmentation Semantic Segmentation Indoor layout estimation What is Segmentation? Partitioning

More information

Decomposing a Scene into Geometric and Semantically Consistent Regions

Decomposing a Scene into Geometric and Semantically Consistent Regions Decomposing a Scene into Geometric and Semantically Consistent Regions Stephen Gould sgould@stanford.edu Richard Fulton rafulton@cs.stanford.edu Daphne Koller koller@cs.stanford.edu IEEE International

More information

CNN for Low Level Image Processing. Huanjing Yue

CNN for Low Level Image Processing. Huanjing Yue CNN for Low Level Image Processing Huanjing Yue 2017.11 1 Deep Learning for Image Restoration General formulation: min Θ L( x, x) s. t. x = F(y; Θ) Loss function Parameters to be learned Key issues The

More information

Face Recognition A Deep Learning Approach

Face Recognition A Deep Learning Approach Face Recognition A Deep Learning Approach Lihi Shiloh Tal Perl Deep Learning Seminar 2 Outline What about Cat recognition? Classical face recognition Modern face recognition DeepFace FaceNet Comparison

More information

Deep (1) Matthieu Cord LIP6 / UPMC Paris 6

Deep (1) Matthieu Cord LIP6 / UPMC Paris 6 Deep (1) Matthieu Cord LIP6 / UPMC Paris 6 Syllabus 1. Whole traditional (old) visual recognition pipeline 2. Introduction to Neural Nets 3. Deep Nets for image classification To do : Voir la leçon inaugurale

More information

SEMANTIC segmentation has a wide array of applications

SEMANTIC segmentation has a wide array of applications IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017 2481 SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation Vijay Badrinarayanan,

More information

Unsupervised discovery of category and object models. The task

Unsupervised discovery of category and object models. The task Unsupervised discovery of category and object models Martial Hebert The task 1 Common ingredients 1. Generate candidate segments 2. Estimate similarity between candidate segments 3. Prune resulting (implicit)

More information

A Study of MatchPyramid Models on Ad hoc Retrieval

A Study of MatchPyramid Models on Ad hoc Retrieval A Study of MatchPyramid Models on Ad hoc Retrieval Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Xueqi Cheng Institute of Computing Technology, Chinese Academy of Sciences Text Matching Many text based

More information

Weighted Convolutional Neural Network. Ensemble.

Weighted Convolutional Neural Network. Ensemble. Weighted Convolutional Neural Network Ensemble Xavier Frazão and Luís A. Alexandre Dept. of Informatics, Univ. Beira Interior and Instituto de Telecomunicações Covilhã, Portugal xavierfrazao@gmail.com

More information

Multiple cosegmentation

Multiple cosegmentation Armand Joulin, Francis Bach and Jean Ponce. INRIA -Ecole Normale Supérieure April 25, 2012 Segmentation Introduction Segmentation Supervised and weakly-supervised segmentation Cosegmentation Segmentation

More information

Additive hedonic regression models for the Austrian housing market ERES Conference, Edinburgh, June

Additive hedonic regression models for the Austrian housing market ERES Conference, Edinburgh, June for the Austrian housing market, June 14 2012 Ao. Univ. Prof. Dr. Fachbereich Stadt- und Regionalforschung Technische Universität Wien Dr. Strategic Risk Management Bank Austria UniCredit, Wien Inhalt

More information

Yiqi Yan. May 10, 2017

Yiqi Yan. May 10, 2017 Yiqi Yan May 10, 2017 P a r t I F u n d a m e n t a l B a c k g r o u n d s Convolution Single Filter Multiple Filters 3 Convolution: case study, 2 filters 4 Convolution: receptive field receptive field

More information