GPUs Open New Avenues in Medical MRI

Size: px
Start display at page:

Download "GPUs Open New Avenues in Medical MRI"

Transcription

1 GPUs Open New Avenues in Medical MRI Chris A. Cocosco D. Gallichan, F. Testud, M. Zaitsev, and J. Hennig Dept. of Radiology, Medical Physics, UNIVERSITY MEDICAL CENTER FREIBURG 1

2 Our research group: Biomedical Magnetic Resonance Imaging University Medical Center Freiburg, Germany: > 50 scientists & PhD students 2

3 B0 gradients (SEMs) for spatial encoding SEMs: spatial encoding magnetic fields + 0 -G +G k-space : 3

4 B0 gradients (SEMs) for spatial encoding SEMs: spatial encoding magnetic fields Traditional (Linear) + 0 -G +G Quadratic (Non-linear) + 4

5 PatLoc: PatLoc = Parallel Acquisition Technique using Localized Gradients [ Hennig J. et al., MAGMA 21(1-2):5-14 (2008) ]. has the potential to allow: (1) higher gradient switching rates while not exceeding the Peripheral Nerve Stimulation (PNS) limits; (2) novel encoding strategies (e.g. better suited to the anatomy). 5

6 First ever human PatLoc images: [ Schultz G. et al., Reconstruction of MRI Data Encoded with Arbitrarily Shaped, Curvilinear, Non-bijective Magnetic Fields, MRM 64(5): (2010) ] 6

7 Why PatLoc: TSE 256x256, TR 5000 ms, slice thickness 2mm, acquisition time ~3min for 5 slices. 7

8 Imaging forward model: m = E * p p : image [NP] NP : number of image pixels m : measured data [NT,NC] NT : number of measured ( k-space ) samples NC : number of RF receive coils E [ NT*NC, NP ] Typical magnitudes: NT,NC = 256 x 256 NC = 8 8

9 Conjugate Gradient Algorithm: Conjugate Gradient Algorithm: numerically estimate an image consistent with the measured data [ Pruessman et al., MRM 2001;46: ]. But: no gridding, no FFT! Repeat times : q = E * (E * p) 1. E * p 2. E * Ep update p 9

10 Compute-on-demand Implementation: E is very large, but: E = E ( Traj, SEM, B1map, B0map ) Traj [NT, NS] SEM [NP, NS] B1map [NP, NC] B0map [NP] Foreach( NP ) Foreach( NT ) Foreach( NC ) where NS = number of SEMs (B0 gradients) CUDA implementation: blocks + threads accumulator in shared memory + block reduce 10

11 Matlab implementation: key to performance: vectorize your code! vector / matrix operations are automatically multi-threaded Parallel Computing Toolbox matlabpool + parfor : loop-level run CUDA ptx kernels both: spmd 11

12 PatLoc wardware setup: Siemens MAGNETOM Trio Tim. PatLoc gradient insert coil [ Cocosco C.A. et al., ISMRM 2010 #3946 ]. Additional set of 3 gradient amplifiers; can synchronously drive all the available gradients simultaneously and independently. 12

13 First PatLoc gradient human coil: 13

14 Application 1: Higher-dim gradient encoding 4DRIO [ Gallichan D. et al., Simultaneously driven linear and nonlinear spatial encoding fields in MRI, MRM 65(3), 2011 ] NS= 4 NP= 320^2 NT= 256^2 NC= 8 E ~ 450 GB 14

15 Throughput CPU vs GPU: quad-socket Intel Xeon Nehalem-EX X7560 with 1024G RAM : 16 threads : 615s to compute E, 29s / iter 32 threads : 565s to compute E, 27s / iter dual-socket Intel Xeon Westmere-EP X5690 : 12 threads : 252s / iter Nvidia Tesla C2075 GPUs 8.1s / iter 7s / iter with hardcoded NS 4x Nvidia Tesla C2075 GPUs 2.3s / iter (3.5x) ( Matlab R2012a ; CUDA 4.1 ) 15

16 Application 2: Ultra-fast imaging single-shot imaging Layton et al: Region-specific trajectory design for single-shot imaging using linear and nonlinear magnetic encoding fields, ISMRM NS= 16 gradients (harmonics) NP= 128^2 NT= 131^2 NC= 8 E ~ 18 GB 16

17 Application 2: Ultra-fast imaging Use a Field Camera : C. Barmet, K. Pruessmann, Inst. for Biomedical Eng., University and ETH Zuerich [ Wilm et al, MRM 2011 ] 17

18 Throughput CPU vs GPU: dual-socket Intel Xeon Westmere-EP X5690, 96GB RAM : 12 threads : 37s to compute E, 3.7s/iter Nvidia Tesla C2075 GPUs 0.56s / iter 4x Nvidia Tesla C2075 GPUs 0.26s / iter ( Matlab R2012a ; CUDA 4.1 ) 18

19 What if the subject is... moving? E = E ( Traj, SEM, B1map, B0map ) Apply a 3D rigid-body transformation to SEM, B1map, B0map for each segment of measured data (e.g. 256 segments for a 256^2 image) Size explosion for pre-computing E, but approachable with the compute-on-demand GPU solution. Work in Progress No FFT, like in [ Bammer et al. Augmented generalized SENSE MRM2007;57(1):90-102] 19

20 Conclusions and outlook GPUs open new avenues in medical MRI Faster imaging: shorter sessions, more information Address limitations imposed by: physics, MRI hardware technology, human subject Practical R&D process Feasible clinical implementation Wish list: more memory bandwidth, more registers & shared memory, or both ;-) 20

21 Special Thanks to: Research funding: German Federal Ministry of Education and Research, grant #13N9208; European Research Council Advanced Grant 'OVOC' grant agreement Travel funding: Wissenschaftliche Gesellschaft in Freiburg im Breisgau. C. Barmet, K. Pruessmann, (Institute for Biomedical Engineering, University and ETH Zuerich, Switzerland). K. Layton (The University of Melbourne, Australia). J. Maclaren, and our colleagues in Medical Physics, Dept. of Radiology, University Medical Center Freiburg. Bruker Biospin, Siemens Healthcare. 21

22 GPUs Open New Avenues in Medical MRI Chris A. Cocosco 22

Role of Parallel Imaging in High Field Functional MRI

Role of Parallel Imaging in High Field Functional MRI Role of Parallel Imaging in High Field Functional MRI Douglas C. Noll & Bradley P. Sutton Department of Biomedical Engineering, University of Michigan Supported by NIH Grant DA15410 & The Whitaker Foundation

More information

Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing

Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing Peng Hu, Ph.D. Associate Professor Department of Radiological Sciences PengHu@mednet.ucla.edu 310-267-6838 MRI... MRI has low

More information

Institute of Cardiovascular Science, UCL Centre for Cardiovascular Imaging, London, United Kingdom, 2

Institute of Cardiovascular Science, UCL Centre for Cardiovascular Imaging, London, United Kingdom, 2 Grzegorz Tomasz Kowalik 1, Jennifer Anne Steeden 1, Bejal Pandya 1, David Atkinson 2, Andrew Taylor 1, and Vivek Muthurangu 1 1 Institute of Cardiovascular Science, UCL Centre for Cardiovascular Imaging,

More information

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Sparse sampling in MRI: From basic theory to clinical application R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Objective Provide an intuitive overview of compressed sensing

More information

THE STEP BY STEP INTERACTIVE GUIDE

THE STEP BY STEP INTERACTIVE GUIDE COMSATS Institute of Information Technology, Islamabad PAKISTAN A MATLAB BASED INTERACTIVE GRAPHICAL USER INTERFACE FOR ADVANCE IMAGE RECONSTRUCTION ALGORITHMS IN MRI Medical Image Processing Research

More information

Practical considerations for in vivo MRI with higher dimensional spatial encoding

Practical considerations for in vivo MRI with higher dimensional spatial encoding Magn Reson Mater Phy (2012) 25:419 431 DOI 10.1007s10334-012-0314-y RESEARCH ARTICLE Practical considerations for in vivo MRI with higher dimensional spatial encoding Daniel Gallichan Chris A. Cocosco

More information

Single Breath-hold Abdominal T 1 Mapping using 3-D Cartesian Sampling and Spatiotemporally Constrained Reconstruction

Single Breath-hold Abdominal T 1 Mapping using 3-D Cartesian Sampling and Spatiotemporally Constrained Reconstruction Single Breath-hold Abdominal T 1 Mapping using 3-D Cartesian Sampling and Spatiotemporally Constrained Reconstruction Felix Lugauer 1,3, Jens Wetzl 1, Christoph Forman 2, Manuel Schneider 1, Berthold Kiefer

More information

Large scale Imaging on Current Many- Core Platforms

Large scale Imaging on Current Many- Core Platforms Large scale Imaging on Current Many- Core Platforms SIAM Conf. on Imaging Science 2012 May 20, 2012 Dr. Harald Köstler Chair for System Simulation Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,

More information

GPU acceleration of 3D forward and backward projection using separable footprints for X-ray CT image reconstruction

GPU acceleration of 3D forward and backward projection using separable footprints for X-ray CT image reconstruction GPU acceleration of 3D forward and backward projection using separable footprints for X-ray CT image reconstruction Meng Wu and Jeffrey A. Fessler EECS Department University of Michigan Fully 3D Image

More information

MRI Physics II: Gradients, Imaging

MRI Physics II: Gradients, Imaging MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

GADGETRON. Michael S. Hansen, PhD. Magnetic Resonance Technology Program National Institutes of Health - NHLBI

GADGETRON. Michael S. Hansen, PhD. Magnetic Resonance Technology Program National Institutes of Health - NHLBI GADGETRON Michael S. Hansen, PhD Magnetic Resonance Technology Program National Institutes of Health - NHLBI QUESTIONS/COMMENTS EMAIL: michael.hansen@nih.gov Twi8er: @ReconstructThis Outline Gadgetron

More information

Mit MATLAB auf der Überholspur Methoden zur Beschleunigung von MATLAB Anwendungen

Mit MATLAB auf der Überholspur Methoden zur Beschleunigung von MATLAB Anwendungen Mit MATLAB auf der Überholspur Methoden zur Beschleunigung von MATLAB Anwendungen Frank Graeber Application Engineering MathWorks Germany 2013 The MathWorks, Inc. 1 Speed up the serial code within core

More information

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing G16.4428 Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine Compressed Sensing Ricardo Otazo, PhD ricardo.otazo@nyumc.org Compressed

More information

Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm

Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm L.P. Panych 1,3, B. Madore 1,3, W.S. Hoge 1,3, R.V. Mulkern 2,3 1 Brigham and

More information

From Image to Video: Real-time Medical Imaging with MRI

From Image to Video: Real-time Medical Imaging with MRI From Image to Video: Real-time Medical Imaging with MRI Sebastian Schaetz, Martin Uecker BiomedNMR Forschungs GmbH at the MPI for biophysical Chemistry, Goettingen, Germany Electrical Engineering and Computer

More information

A Fast GPU-Based Approach to Branchless Distance-Driven Projection and Back-Projection in Cone Beam CT

A Fast GPU-Based Approach to Branchless Distance-Driven Projection and Back-Projection in Cone Beam CT A Fast GPU-Based Approach to Branchless Distance-Driven Projection and Back-Projection in Cone Beam CT Daniel Schlifske ab and Henry Medeiros a a Marquette University, 1250 W Wisconsin Ave, Milwaukee,

More information

Multicore Computer, GPU 및 Cluster 환경에서의 MATLAB Parallel Computing 기능

Multicore Computer, GPU 및 Cluster 환경에서의 MATLAB Parallel Computing 기능 Multicore Computer, GPU 및 Cluster 환경에서의 MATLAB Parallel Computing 기능 성호현 MathWorks Korea 2012 The MathWorks, Inc. 1 A Question to Consider Do you want to speed up your algorithms? If so Do you have a multi-core

More information

Matlab for Engineers

Matlab for Engineers Matlab for Engineers Alistair Johnson 31st May 2012 Centre for Doctoral Training in Healthcare Innovation Institute of Biomedical Engineering Department of Engineering Science University of Oxford Supported

More information

Combination of Parallel Imaging and Compressed Sensing for high acceleration factor at 7T

Combination of Parallel Imaging and Compressed Sensing for high acceleration factor at 7T Combination of Parallel Imaging and Compressed Sensing for high acceleration factor at 7T DEDALE Workshop Nice Loubna EL GUEDDARI (NeuroSPin) Joint work with: Carole LAZARUS, Alexandre VIGNAUD and Philippe

More information

6 credits. BMSC-GA Practical Magnetic Resonance Imaging II

6 credits. BMSC-GA Practical Magnetic Resonance Imaging II BMSC-GA 4428 - Practical Magnetic Resonance Imaging II 6 credits Course director: Ricardo Otazo, PhD Course description: This course is a practical introduction to image reconstruction, image analysis

More information

Zigzag Sampling for Improved Parallel Imaging

Zigzag Sampling for Improved Parallel Imaging Magnetic Resonance in Medicine 60:474 478 (2008) Zigzag Sampling for Improved Parallel Imaging Felix A. Breuer, 1 * Hisamoto Moriguchi, 2 Nicole Seiberlich, 3 Martin Blaimer, 1 Peter M. Jakob, 1,3 Jeffrey

More information

radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li NCAAPM Spring Meeting 2010 Madison, WI

radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li NCAAPM Spring Meeting 2010 Madison, WI GPU-Accelerated autosegmentation for adaptive radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li agodley@mcw.edu NCAAPM Spring Meeting 2010 Madison, WI Overview Motivation Adaptive

More information

Journey through k-space: an interactive educational tool.

Journey through k-space: an interactive educational tool. Biomedical Research 2017; 28 (4): 1618-1623 Journey through k-space: an interactive educational tool. ISSN 0970-938X www.biomedres.info Mahmood Qureshi *, Muhammad Kaleem, Hammad Omer Department of Electrical

More information

Multigrid algorithms on multi-gpu architectures

Multigrid algorithms on multi-gpu architectures Multigrid algorithms on multi-gpu architectures H. Köstler European Multi-Grid Conference EMG 2010 Isola d Ischia, Italy 20.9.2010 2 Contents Work @ LSS GPU Architectures and Programming Paradigms Applications

More information

TR An Overview of NVIDIA Tegra K1 Architecture. Ang Li, Radu Serban, Dan Negrut

TR An Overview of NVIDIA Tegra K1 Architecture. Ang Li, Radu Serban, Dan Negrut TR-2014-17 An Overview of NVIDIA Tegra K1 Architecture Ang Li, Radu Serban, Dan Negrut November 20, 2014 Abstract This paperwork gives an overview of NVIDIA s Jetson TK1 Development Kit and its Tegra K1

More information

Accelerating Leukocyte Tracking Using CUDA: A Case Study in Leveraging Manycore Coprocessors

Accelerating Leukocyte Tracking Using CUDA: A Case Study in Leveraging Manycore Coprocessors Accelerating Leukocyte Tracking Using CUDA: A Case Study in Leveraging Manycore Coprocessors Michael Boyer, David Tarjan, Scott T. Acton, and Kevin Skadron University of Virginia IPDPS 2009 Outline Leukocyte

More information

GPU ACCELERATED TOTAL FOCUSING METHOD IN CIVA

GPU ACCELERATED TOTAL FOCUSING METHOD IN CIVA OPARUS GPU ACCELERATED TOTAL FOCUSING METHOD IN CIVA Authors: Gilles ROUGERON, Jason LAMBERT, Ekaterina IAKOVLEVA, L. LACASSAGNE Presenter: Nicolas DOMINGUEZ QNDE 2013 Baltimore, Md, USA, 24/07/2013 CEA

More information

CUDA and OpenCL Implementations of 3D CT Reconstruction for Biomedical Imaging

CUDA and OpenCL Implementations of 3D CT Reconstruction for Biomedical Imaging CUDA and OpenCL Implementations of 3D CT Reconstruction for Biomedical Imaging Saoni Mukherjee, Nicholas Moore, James Brock and Miriam Leeser September 12, 2012 1 Outline Introduction to CT Scan, 3D reconstruction

More information

INTRODUCTION TO OPENACC. Analyzing and Parallelizing with OpenACC, Feb 22, 2017

INTRODUCTION TO OPENACC. Analyzing and Parallelizing with OpenACC, Feb 22, 2017 INTRODUCTION TO OPENACC Analyzing and Parallelizing with OpenACC, Feb 22, 2017 Objective: Enable you to to accelerate your applications with OpenACC. 2 Today s Objectives Understand what OpenACC is and

More information

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data Alexey Samsonov, Julia Velikina Departments of Radiology and Medical

More information

M R I Physics Course

M R I Physics Course M R I Physics Course Multichannel Technology & Parallel Imaging Nathan Yanasak, Ph.D. Jerry Allison Ph.D. Tom Lavin, B.S. Department of Radiology Medical College of Georgia References: 1) The Physics of

More information

EE290T: Advanced Reconstruction Methods for Magnetic Resonance Imaging. Martin Uecker

EE290T: Advanced Reconstruction Methods for Magnetic Resonance Imaging. Martin Uecker EE290T: Advanced Reconstruction Methods for Magnetic Resonance Imaging Martin Uecker Tentative Syllabus 01: Jan 27 Introduction 02: Feb 03 Parallel Imaging as Inverse Problem 03: Feb 10 Iterative Reconstruction

More information

Speeding up MATLAB Applications Sean de Wolski Application Engineer

Speeding up MATLAB Applications Sean de Wolski Application Engineer Speeding up MATLAB Applications Sean de Wolski Application Engineer 2014 The MathWorks, Inc. 1 Non-rigid Displacement Vector Fields 2 Agenda Leveraging the power of vector and matrix operations Addressing

More information

Use of MRI in Radiotherapy: Technical Consideration

Use of MRI in Radiotherapy: Technical Consideration Use of MRI in Radiotherapy: Technical Consideration Yanle Hu, PhD Department of Radiation Oncology, Mayo Clinic Arizona 04/07/2018 2015 MFMER slide-1 Conflict of Interest: None 2015 MFMER slide-2 Objectives

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

More information

J. Blair Perot. Ali Khajeh-Saeed. Software Engineer CD-adapco. Mechanical Engineering UMASS, Amherst

J. Blair Perot. Ali Khajeh-Saeed. Software Engineer CD-adapco. Mechanical Engineering UMASS, Amherst Ali Khajeh-Saeed Software Engineer CD-adapco J. Blair Perot Mechanical Engineering UMASS, Amherst Supercomputers Optimization Stream Benchmark Stag++ (3D Incompressible Flow Code) Matrix Multiply Function

More information

Lecture 1: Introduction and Computational Thinking

Lecture 1: Introduction and Computational Thinking PASI Summer School Advanced Algorithmic Techniques for GPUs Lecture 1: Introduction and Computational Thinking 1 Course Objective To master the most commonly used algorithm techniques and computational

More information

Enhao Gong, PhD Candidate, Electrical Engineering, Stanford University Dr. John Pauly, Professor in Electrical Engineering, Stanford University Dr.

Enhao Gong, PhD Candidate, Electrical Engineering, Stanford University Dr. John Pauly, Professor in Electrical Engineering, Stanford University Dr. Enhao Gong, PhD Candidate, Electrical Engineering, Stanford University Dr. John Pauly, Professor in Electrical Engineering, Stanford University Dr. Greg Zaharchuk, Associate Professor in Radiology, Stanford

More information

CUDA Accelerated Linpack on Clusters. E. Phillips, NVIDIA Corporation

CUDA Accelerated Linpack on Clusters. E. Phillips, NVIDIA Corporation CUDA Accelerated Linpack on Clusters E. Phillips, NVIDIA Corporation Outline Linpack benchmark CUDA Acceleration Strategy Fermi DGEMM Optimization / Performance Linpack Results Conclusions LINPACK Benchmark

More information

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems.

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems. Slide 1 Technical Aspects of Quality Control in Magnetic Resonance Imaging Slide 2 Compliance Testing of MRI Systems, Ph.D. Department of Radiology Henry Ford Hospital, Detroit, MI Slide 3 Compliance Testing

More information

Applications Guide for Interleaved

Applications Guide for Interleaved Applications Guide for Interleaved rephase/dephase MRAV Authors: Yongquan Ye, Ph.D. Dongmei Wu, MS. Tested MAGNETOM Systems : 7TZ, TRIO a Tim System, Verio MR B15A (N4_VB15A_LATEST_20070519) MR B17A (N4_VB17A_LATEST_20090307_P8)

More information

Comparison of High-Speed Ray Casting on GPU

Comparison of High-Speed Ray Casting on GPU Comparison of High-Speed Ray Casting on GPU using CUDA and OpenGL November 8, 2008 NVIDIA 1,2, Andreas Weinlich 1, Holger Scherl 2, Markus Kowarschik 2 and Joachim Hornegger 1 1 Chair of Pattern Recognition

More information

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University CSE 591/392: GPU Programming Introduction Klaus Mueller Computer Science Department Stony Brook University First: A Big Word of Thanks! to the millions of computer game enthusiasts worldwide Who demand

More information

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology

Exploiting GPU Caches in Sparse Matrix Vector Multiplication. Yusuke Nagasaka Tokyo Institute of Technology Exploiting GPU Caches in Sparse Matrix Vector Multiplication Yusuke Nagasaka Tokyo Institute of Technology Sparse Matrix Generated by FEM, being as the graph data Often require solving sparse linear equation

More information

On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters

On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters 1 On the Comparative Performance of Parallel Algorithms on Small GPU/CUDA Clusters N. P. Karunadasa & D. N. Ranasinghe University of Colombo School of Computing, Sri Lanka nishantha@opensource.lk, dnr@ucsc.cmb.ac.lk

More information

Stan Posey, CAE Industry Development NVIDIA, Santa Clara, CA, USA

Stan Posey, CAE Industry Development NVIDIA, Santa Clara, CA, USA Stan Posey, CAE Industry Development NVIDIA, Santa Clara, CA, USA NVIDIA and HPC Evolution of GPUs Public, based in Santa Clara, CA ~$4B revenue ~5,500 employees Founded in 1999 with primary business in

More information

Dynamic Autocalibrated Parallel Imaging Using Temporal GRAPPA (TGRAPPA)

Dynamic Autocalibrated Parallel Imaging Using Temporal GRAPPA (TGRAPPA) Magnetic Resonance in Medicine 53:981 985 (2005) Dynamic Autocalibrated Parallel Imaging Using Temporal GRAPPA (TGRAPPA) Felix A. Breuer, 1 * Peter Kellman, 2 Mark A. Griswold, 1 and Peter M. Jakob 1 Current

More information

Generation of Hulls Encompassing Neuronal Pathways Based on Tetrahedralization and 3D Alpha Shapes

Generation of Hulls Encompassing Neuronal Pathways Based on Tetrahedralization and 3D Alpha Shapes Generation of Hulls Encompassing Neuronal Pathways Based on Tetrahedralization and 3D Alpha Shapes Dorit Merhof 1,2, Martin Meister 1, Ezgi Bingöl 1, Peter Hastreiter 1,2, Christopher Nimsky 2,3, Günther

More information

COBRE Scan Information

COBRE Scan Information COBRE Scan Information Below is more information on the directory structure for the COBRE imaging data. Also below are the imaging parameters for each series. Directory structure: var/www/html/dropbox/1139_anonymized/human:

More information

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou Study and implementation of computational methods for Differential Equations in heterogeneous systems Asimina Vouronikoy - Eleni Zisiou Outline Introduction Review of related work Cyclic Reduction Algorithm

More information

HPC Enabling R&D at Philip Morris International

HPC Enabling R&D at Philip Morris International HPC Enabling R&D at Philip Morris International Jim Geuther*, Filipe Bonjour, Bruce O Neel, Didier Bouttefeux, Sylvain Gubian, Stephane Cano, and Brian Suomela * Philip Morris International IT Service

More information

Parallel Computing with MATLAB

Parallel Computing with MATLAB Parallel Computing with MATLAB CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University

More information

Fiber Selection from Diffusion Tensor Data based on Boolean Operators

Fiber Selection from Diffusion Tensor Data based on Boolean Operators Fiber Selection from Diffusion Tensor Data based on Boolean Operators D. Merhof 1, G. Greiner 2, M. Buchfelder 3, C. Nimsky 4 1 Visual Computing, University of Konstanz, Konstanz, Germany 2 Computer Graphics

More information

Speedup Altair RADIOSS Solvers Using NVIDIA GPU

Speedup Altair RADIOSS Solvers Using NVIDIA GPU Innovation Intelligence Speedup Altair RADIOSS Solvers Using NVIDIA GPU Eric LEQUINIOU, HPC Director Hongwei Zhou, Senior Software Developer May 16, 2012 Innovation Intelligence ALTAIR OVERVIEW Altair

More information

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs

Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Efficient Finite Element Geometric Multigrid Solvers for Unstructured Grids on GPUs Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

Large Data in MATLAB: A Seismic Data Processing Case Study U. M. Sundar Senior Application Engineer

Large Data in MATLAB: A Seismic Data Processing Case Study U. M. Sundar Senior Application Engineer Large Data in MATLAB: A Seismic Data Processing Case Study U. M. Sundar Senior Application Engineer 2013 MathWorks, Inc. 1 Problem Statement: Scaling Up Seismic Analysis Challenge: Developing a seismic

More information

Georgia Institute of Technology, August 17, Justin W. L. Wan. Canada Research Chair in Scientific Computing

Georgia Institute of Technology, August 17, Justin W. L. Wan. Canada Research Chair in Scientific Computing Real-Time Rigid id 2D-3D Medical Image Registration ti Using RapidMind Multi-Core Platform Georgia Tech/AFRL Workshop on Computational Science Challenge Using Emerging & Massively Parallel Computer Architectures

More information

HPC with Multicore and GPUs

HPC with Multicore and GPUs HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville COSC 594 Lecture Notes March 22, 2017 1/20 Outline Introduction - Hardware

More information

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers

Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek Institut für Angewandte Mathematik TU Dortmund,

More information

Session S0069: GPU Computing Advances in 3D Electromagnetic Simulation

Session S0069: GPU Computing Advances in 3D Electromagnetic Simulation Session S0069: GPU Computing Advances in 3D Electromagnetic Simulation Andreas Buhr, Alexander Langwost, Fabrizio Zanella CST (Computer Simulation Technology) Abstract Computer Simulation Technology (CST)

More information

REDUCING BEAMFORMING CALCULATION TIME WITH GPU ACCELERATED ALGORITHMS

REDUCING BEAMFORMING CALCULATION TIME WITH GPU ACCELERATED ALGORITHMS BeBeC-2014-08 REDUCING BEAMFORMING CALCULATION TIME WITH GPU ACCELERATED ALGORITHMS Steffen Schmidt GFaI ev Volmerstraße 3, 12489, Berlin, Germany ABSTRACT Beamforming algorithms make high demands on the

More information

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G

G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Joined Advanced Student School (JASS) 2009 March 29 - April 7, 2009 St. Petersburg, Russia G P G P U : H I G H - P E R F O R M A N C E C O M P U T I N G Dmitry Puzyrev St. Petersburg State University Faculty

More information

Open file format for MR sequences

Open file format for MR sequences Open file format for MR sequences Version 1.1 Kelvin Layton Maxim Zaitsev University Medical Centre Freiburg kelvin.layton@uniklinik-freiburg.de maxim.zaitsev@uniklinik-freiburg.de This file specification

More information

MR-Encephalography (MREG)

MR-Encephalography (MREG) MR-Encephalography (MREG) C2P package Version 2.0 For SIEMENS Magnetom Verio/TRIO/Skyra/Prisma Installation and User s Guide NUMARIS/4 VB17, VD11, VD13 Jakob Assländer Pierre LeVan, Ph.D. 10.09.2014 Magnetic

More information

GPU implementation for rapid iterative image reconstruction algorithm

GPU implementation for rapid iterative image reconstruction algorithm GPU implementation for rapid iterative image reconstruction algorithm and its applications in nuclear medicine Jakub Pietrzak Krzysztof Kacperski Department of Medical Physics, Maria Skłodowska-Curie Memorial

More information

An Iterative Approach for Reconstruction of Arbitrary Sparsely Sampled Magnetic Resonance Images

An Iterative Approach for Reconstruction of Arbitrary Sparsely Sampled Magnetic Resonance Images An Iterative Approach for Reconstruction of Arbitrary Sparsely Sampled Magnetic Resonance Images Hamed Pirsiavash¹, Mohammad Soleymani², Gholam-Ali Hossein-Zadeh³ ¹Department of electrical engineering,

More information

Steen Moeller Center for Magnetic Resonance research University of Minnesota

Steen Moeller Center for Magnetic Resonance research University of Minnesota Steen Moeller Center for Magnetic Resonance research University of Minnesota moeller@cmrr.umn.edu Lot of material is from a talk by Douglas C. Noll Department of Biomedical Engineering Functional MRI Laboratory

More information

University at Buffalo Center for Computational Research

University at Buffalo Center for Computational Research University at Buffalo Center for Computational Research The following is a short and long description of CCR Facilities for use in proposals, reports, and presentations. If desired, a letter of support

More information

Modeling a 4G LTE System in MATLAB

Modeling a 4G LTE System in MATLAB Modeling a 4G LTE System in MATLAB Part 2: Simulation acceleration Houman Zarrinkoub PhD. Signal Processing Product Manager MathWorks houmanz@mathworks.com 2011 The MathWorks, Inc. 1 Why simulation acceleration?

More information

Controlled Aliasing in Parallel Imaging Results in Higher Acceleration (CAIPIRINHA)

Controlled Aliasing in Parallel Imaging Results in Higher Acceleration (CAIPIRINHA) www.siemens.com/magnetom-world Controlled Aliasing in Parallel Imaging Results in Higher Acceleration (CAIPIRINHA) Felix Breuer; Martin Blaimer; Mark Griswold; Peter Jakob Answers for life. Controlled

More information

CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction. Francesco Rossi University of Bologna and INFN

CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction. Francesco Rossi University of Bologna and INFN CUDA and GPU Performance Tuning Fundamentals: A hands-on introduction Francesco Rossi University of Bologna and INFN * Using this terminology since you ve already heard of SIMD and SPMD at this school

More information

A Virtual MR Scanner for Education

A Virtual MR Scanner for Education A Virtual MR Scanner for Education Hackländer T, Schalla C, Trümper A, Mertens H, Hiltner J, Cramer BM Hospitals of the University Witten/Herdecke, Department of Radiology Wuppertal, Germany Purpose A

More information

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation

ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation ANSYS Improvements to Engineering Productivity with HPC and GPU-Accelerated Simulation Ray Browell nvidia Technology Theater SC12 1 2012 ANSYS, Inc. nvidia Technology Theater SC12 HPC Revolution Recent

More information

Mit MATLAB auf der Überholspur Methoden zur Beschleunigung von MATLAB Anwendungen

Mit MATLAB auf der Überholspur Methoden zur Beschleunigung von MATLAB Anwendungen Mit MATLAB auf der Überholspur Methoden zur Beschleunigung von MATLAB Anwendungen Michael Glaßer Application Engineering MathWorks Germany 2014 The MathWorks, Inc. 1 Key Takeaways 1. Speed up your serial

More information

Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street

Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street Lab Location: MRI, B2, Cardinal Carter Wing, St. Michael s Hospital, 30 Bond Street MRI is located in the sub basement of CC wing. From Queen or Victoria, follow the baby blue arrows and ride the CC south

More information

GPU-accelerated ray-tracing for real-time treatment planning

GPU-accelerated ray-tracing for real-time treatment planning Journal of Physics: Conference Series OPEN ACCESS GPU-accelerated ray-tracing for real-time treatment planning To cite this article: H Heinrich et al 2014 J. Phys.: Conf. Ser. 489 012050 View the article

More information

Software and Performance Engineering for numerical codes on GPU clusters

Software and Performance Engineering for numerical codes on GPU clusters Software and Performance Engineering for numerical codes on GPU clusters H. Köstler International Workshop of GPU Solutions to Multiscale Problems in Science and Engineering Harbin, China 28.7.2010 2 3

More information

Spread Spectrum Using Chirp Modulated RF Pulses for Incoherent Sampling Compressive Sensing MRI

Spread Spectrum Using Chirp Modulated RF Pulses for Incoherent Sampling Compressive Sensing MRI Spread Spectrum Using Chirp Modulated RF Pulses for Incoherent Sampling Compressive Sensing MRI Sulaiman A. AL Hasani Department of ECSE, Monash University, Melbourne, Australia Email: sulaiman.alhasani@monash.edu

More information

GPU on OpenStack for Science

GPU on OpenStack for Science GPU on OpenStack for Science Deployment and Performance Considerations Luca Cervigni Jeremy Phillips luca.cervigni@pawsey.org.au jeremy.phillips@pawsey.org.au Pawsey Supercomputing Centre Based in Perth,

More information

Simplify System Complexity

Simplify System Complexity 1 2 Simplify System Complexity With the new high-performance CompactRIO controller Arun Veeramani Senior Program Manager National Instruments NI CompactRIO The Worlds Only Software Designed Controller

More information

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space White Pixel Artifact Caused by a noise spike during acquisition Spike in K-space sinusoid in image space Susceptibility Artifacts Off-resonance artifacts caused by adjacent regions with different

More information

Partially Parallel Imaging With Localized Sensitivities (PILS)

Partially Parallel Imaging With Localized Sensitivities (PILS) Partially Parallel Imaging With Localized Sensitivities (PILS) Magnetic Resonance in Medicine 44:602 609 (2000) Mark A. Griswold, 1 * Peter M. Jakob, 1 Mathias Nittka, 1 James W. Goldfarb, 2 and Axel Haase

More information

SIFT Descriptor Extraction on the GPU for Large-Scale Video Analysis. Hannes Fassold, Jakub Rosner

SIFT Descriptor Extraction on the GPU for Large-Scale Video Analysis. Hannes Fassold, Jakub Rosner SIFT Descriptor Extraction on the GPU for Large-Scale Video Analysis Hannes Fassold, Jakub Rosner 2014-03-26 2 Overview GPU-activities @ AVM research group SIFT descriptor extraction Algorithm GPU implementation

More information

Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition

Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition Large-scale Ultrasound Simulations Using the Hybrid OpenMP/MPI Decomposition Jiri Jaros*, Vojtech Nikl*, Bradley E. Treeby *Department of Compute Systems, Brno University of Technology Department of Medical

More information

Gradient-Based Differential Approach for Patient Motion Compensation in 2D/3D Overlay

Gradient-Based Differential Approach for Patient Motion Compensation in 2D/3D Overlay Gradient-Based Differential Approach for Patient Motion Compensation in 2D/3D Overlay Jian Wang, Anja Borsdorf, Benno Heigl, Thomas Köhler, Joachim Hornegger Pattern Recognition Lab, Friedrich-Alexander-University

More information

High performance MRI simulations of motion on multi-gpu systems

High performance MRI simulations of motion on multi-gpu systems Xanthis et al. Journal of Cardiovascular Magnetic Resonance 2014, 16:48 RESEARCH Open Access High performance MRI simulations of motion on multi-gpu systems Christos G Xanthis 1,2, Ioannis E Venetis 3

More information

MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures

MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures MAGMA a New Generation of Linear Algebra Libraries for GPU and Multicore Architectures Stan Tomov Innovative Computing Laboratory University of Tennessee, Knoxville OLCF Seminar Series, ORNL June 16, 2010

More information

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE MRES 7005 - Fast Imaging Techniques Module 4 K-Space Symmetry Review K-Space Review K-Space Symmetry Partial or Fractional Echo Half or Partial Fourier HASTE Conditions for successful reconstruction Interpolation

More information

Evaluation of Local Filter Approaches for Diffusion Tensor based Fiber Tracking

Evaluation of Local Filter Approaches for Diffusion Tensor based Fiber Tracking Evaluation of Local Filter Approaches for Diffusion Tensor based Fiber Tracking D. Merhof 1, M. Buchfelder 2, C. Nimsky 3 1 Visual Computing, University of Konstanz, Konstanz 2 Department of Neurosurgery,

More information

Towards Breast Anatomy Simulation Using GPUs

Towards Breast Anatomy Simulation Using GPUs Towards Breast Anatomy Simulation Using GPUs Joseph H. Chui 1, David D. Pokrajac 2, Andrew D.A. Maidment 3, and Predrag R. Bakic 4 1 Department of Radiology, University of Pennsylvania, Philadelphia PA

More information

WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS

WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS WEINER FILTER AND SUB-BLOCK DECOMPOSITION BASED IMAGE RESTORATION FOR MEDICAL APPLICATIONS ARIFA SULTANA 1 & KANDARPA KUMAR SARMA 2 1,2 Department of Electronics and Communication Engineering, Gauhati

More information

Pulseq: A Rapid and Hardware-Independent Pulse Sequence Prototyping Framework

Pulseq: A Rapid and Hardware-Independent Pulse Sequence Prototyping Framework FULL PAPER Magnetic Resonance in Medicine 77:1544 1552 (2017) Pulseq: A Rapid and Hardware-Independent Pulse Sequence Prototyping Framework Kelvin J. Layton, 1 Stefan Kroboth, 1 Feng Jia, 1 Sebastian Littin,

More information

How GPUs can find your next hit: Accelerating virtual screening with OpenCL. Simon Krige

How GPUs can find your next hit: Accelerating virtual screening with OpenCL. Simon Krige How GPUs can find your next hit: Accelerating virtual screening with OpenCL Simon Krige ACS 2013 Agenda > Background > About blazev10 > What is a GPU? > Heterogeneous computing > OpenCL: a framework for

More information

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators

On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators On Level Scheduling for Incomplete LU Factorization Preconditioners on Accelerators Karl Rupp, Barry Smith rupp@mcs.anl.gov Mathematics and Computer Science Division Argonne National Laboratory FEMTEC

More information

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford Diffusion MRI Acquisition Karla Miller FMRIB Centre, University of Oxford karla@fmrib.ox.ac.uk Diffusion Imaging How is diffusion weighting achieved? How is the image acquired? What are the limitations,

More information

Higher Degree Total Variation for 3-D Image Recovery

Higher Degree Total Variation for 3-D Image Recovery Higher Degree Total Variation for 3-D Image Recovery Greg Ongie*, Yue Hu, Mathews Jacob Computational Biomedical Imaging Group (CBIG) University of Iowa ISBI 2014 Beijing, China Motivation: Compressed

More information

MITK-DI. A new Diffusion Imaging Component for MITK. Klaus Fritzsche, Hans-Peter Meinzer

MITK-DI. A new Diffusion Imaging Component for MITK. Klaus Fritzsche, Hans-Peter Meinzer MITK-DI A new Diffusion Imaging Component for MITK Klaus Fritzsche, Hans-Peter Meinzer Division of Medical and Biological Informatics, DKFZ Heidelberg k.fritzsche@dkfz-heidelberg.de Abstract. Diffusion-MRI

More information

Gradient-Echo. Spin-Echo. Echo planar. Assessment of Regional Function Assessment of Global. Parallel Imaging. Function. Steady State Imaging

Gradient-Echo. Spin-Echo. Echo planar. Assessment of Regional Function Assessment of Global. Parallel Imaging. Function. Steady State Imaging Gradient-Echo Spin-Echo James W. Goldfarb Ph.D. Department of Research and Education St. Francis Hospital Program in Biomedical Engineering SUNY Stony Brook Echo planar Assessment of Regional Function

More information

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION Frank Dong, PhD, DABR Diagnostic Physicist, Imaging Institute Cleveland Clinic Foundation and Associate Professor of Radiology

More information

High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs

High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs High-Order Finite-Element Earthquake Modeling on very Large Clusters of CPUs or GPUs Gordon Erlebacher Department of Scientific Computing Sept. 28, 2012 with Dimitri Komatitsch (Pau,France) David Michea

More information