Steen Moeller Center for Magnetic Resonance research University of Minnesota

Size: px
Start display at page:

Download "Steen Moeller Center for Magnetic Resonance research University of Minnesota"

Transcription

1 Steen Moeller Center for Magnetic Resonance research University of Minnesota Lot of material is from a talk by Douglas C. Noll Department of Biomedical Engineering Functional MRI Laboratory University of Michigan

2 Image reconstruction what is it that we are trying to do Image reconstruction Some ways that we are doing it Image reconstruction When we know more, we can get more with less

3 The MR Signal Equation and Fourier Reconstruction What is the objective for Reconstruction Steps in the Gridding Reconstruction Optimization of Gridding Other Fourier Inversion Methods Conclusions

4 MR spin= nuclear spin angular momentum of atoms We measure the free induction decay of the spin density through the induced electromotive force. 1. Main field B 0 Alignment of nuclear spin (steady state/reference state) 2. Radiofrequency field B 1 Systematic flip the rotation vector (also slice selector) 3. Linear gradient G. Spatial encoded frequencies

5

6 MR spin= nuclear spin angular momentum of atoms We measure the free induction decay of the spin density through the induced electromotive force. 1. Main field B 0 Alignment of nuclear spin (steady state/reference state) 2. Radiofrequency field B 1 Systematic flip the rotation vector (also slice selector) 3. Linear gradient G. Spatial encoded frequencies

7 A net magnetization (M)parallel to the magnetic field

8 MR spin= nuclear spin angular momentum of atoms We measure the free induction decay of the spin density through the induced electromotive force. 1. Main field B 0 Alignment of nuclear spin (steady state/reference state) 2. Radiofrequency field B 1 Systematic flip the rotation vector (also slice selector) 3. Linear gradient G. Spatial encoded frequencies

9 1. The resonance (the Lamor frequency) of the nuclear spins are linearly dependent on magnetic field strength 2. Apply a varying field Figure:

10 1. The resonance (the Lamor frequency) of the nuclear spins are linearly dependent on magnetic field strength 2. Apply a varying field 3. One-to-one correspondence of spatial location in the x direction with frequency of precession. 4. The spectrum of S(t) is the picture of the magnetization as a function of spatial location. 5. To get 2D repeat 1D with a second gradient

11 In 2D, the received signal in MRI is: is a Fourier integral, where k-space is defined as: FOV y k x k i y x dxdy e y x m k k s y x,,, ) 2 ( t y y t x x d G t k d G t k

12 A Fourier perspective (k-space) to repeat 1D exp. (Phase encoding) Time is proportional to k-space Sampling time of s(t) (Read out)

13 Gradient Waveforms k-space G x k y G y Time (ms) k x

14 RO PE Acq

15 A Fourier perspective (k-space) 2 challenges with EPI -spacing of samples is not equidistant -positive and negative gradients are not 100% balanced. Fix: - sinc interpolation to equidistant grid - re-align echoes with navigator information. Sampling time of s(t) (Read out spacing gradient area)

16 MR Signal Equation Fourier Transform m x, y s k x, k y

17 If the signal equation is a Fourier transform s k, k mx, y x y FOV i2 ( kx xkyy) dxdy Then the image reconstruction should simply be the inverse Fourier transform: mˆ x, y sk, k x kspace y e e Right? i2 ( kx xk yy) dk x dk y

18 There is the question of discretization K-space is sampled and of finite extent The image is also sampled One nice solution is the discretize the inverse FT: mˆ x, y sk, k x y e i2 ( kx xk yy) dk x dk y m n, m s, k j k l Fourier kernel k-space area of each sample

19 For Cartesian sampling, this is quite easy: The k-space area for each sample is a constant The Fourier kernel is uniformly sampled The image reconstruction is then: mˆ n, m C N 2 j l s k i, k l exp i2 nj N ml N which can be easily implemented using the inverse 2D fast Fourier transform (FFT):

20 Thus, the inverse 2D FFT is the standard image reconstruction for uniformly sampled MRI: Inverse Fourier Transform

21

22 Original Fourier Windowed Gibb s Ringing No, and sometimes it isn t even the best reconstruction. The Fourier reconstruction is best reconstruction in the least-squares sense.

23 4 different Sampling patterns FFT of signal with missing signals. Guess what the truth is? 75% missing 50% missing 25% missing

24 As we need to find an m that best matches the data, what happens in reality? In reality (s + noise) = Em, so which m to choose, how and what are the implications? What do we know about m?

25

26

27 The inverse FT: mˆ x, y sk, k no longer has uniform sample areas The discretized inverse using time-domain data must account for non-uniform sample density: x y mˆ x, y j s x j y e e i2 ( kx xk yy) i2 ( k ( j) xk dk x ( j) y) dk y area k-space area of each sample j

28 This is known as the density compensation function or DCF The corrects for nonuniform sampling, e.g. Many methods for calculating DCF: Jacobian of time/k-space transformation Local area density function Voronoi areas PSF optimization 4-shot spiral samples and sample area function (Voronoi diagram)

29 Single-shot spiral acquisition 4000 samples, 64x64 matrix

30 The most standard of the reconstruction methods for arbitrary sampled data? x y mˆ x, y Sometimes called: j s j Discrete FT or DFT reconstruction e i2 ( k ( j) xk ( j) y) Weighted correlation methods (Maeda) DCF Conjugate phase reconstruction (Macovski) j

31 The MR Signal Equation and Fourier Reconstruction Steps in the Gridding Reconstruction Optimization of Gridding Other Fourier Inversion Methods Conclusions

32 Problem: This DFT reconstruction is computationally inefficient: x y mˆ x, y j s j e i2 ( k ( j) xk ( j) y) DCF General Idea: Interpolate non-uniform samples onto a Cartesian grid so that the FFT can be used for image reconstruction j

33 Non-uniform Sampling

34 Cartesian Sampling

35 Non-uniform Sampling Cartesian Samples and Bi-Linear Interpolation Bi-linear interpolation works, but produces image artifacts.

36 Non-uniform Sampling One Cartesian Sample and Interpolation Region Gridding interpolates from a k-space region.

37 1. Density compensation of k-space data 2. Convolution with a blurring kernel S blur S C 3. Resampling blurred data at uniform locations 4. Inverse FFT mˆ 1 blur F S blur 5. Elimination of blurring effect ( deapodization ) mˆ mˆ blur / F 1 C F 1 1 S F 1 S F C

38 1D Example Original Object K-space Data

39 1D Example Highest density of samples DCF is small to compensate Density compensated data

40 1D Example Compensated Data Convolution The convolution result is a blurred version of the data it is applied to (still in k-space)

41 1D Example Uniform resampling of blurred data

42 Inv. FFT Observe the effect of the blurring function: Apodization or shading Ideal Image

43 After deapodization the final image is nearly perfect Ideal Image

44 The MR Signal Equation and Fourier Reconstruction Steps in the Gridding Reconstruction Optimization of Gridding Other Fourier Inversion Methods Conclusions

45 The devil in the details The DCF is a source of error and must be carefully chosen Sidelobe aliasing can be minimized by Oversampling of Cartesian grid (increase FOV) Optimizing the interpolation kernel

46 Density compensation must be performed before gridding Voronoi areas Jacobian of time/k-space transformation Need to find a continuous variable transformation The k r weighting in projection imaging is an example of this DCF is not obvious for cases where k-trajectories cross: Rosettes PROPELLOR

47 A suboptimal DCF will lead to a point spread function (PSF) that is not a d-function. Iterative refine weightings so that the PSF approaches a d-function (Pipe, MRM, 41: , 1999) Comparison of initial and optimized DCF for spiral trajectory

48 2x oversampling of blurred k-space data (it is a continues function) Original FOV 2x FOV of reconstructed object

49 Consider the gridding reconstruction with an oversampled Cartesian grid: This is aliased energy that can fold onto the object with standard sampling

50 Fourier summation Gridding Gridding with oversampling Oversampling reduces aliasing of sidelobes, and thus, reduces reconstruction error, Particularly at the edges of the image

51 Sidelobe aliasing can be minimized by oversampling of the Cartesian grid This keeps the most intense sidelobe energy from folding (aliasing) onto object The convolution kernel can be optimized by minimizing sidelobe energy The Kaiser-Bessel function is known to be nearly optimal (best ratio of mainlobe to sidelobe energy) Larger kernels are better Optimal K-B parameters (Beatty IEEE-TMI 24: , 2005). Both approaches require more computation

52 The main reason to do the gridding reconstruction is computation speed-up Method Operations* Operations - Example (M=16,384; N=128; W=3; V=2) mˆ x j DCF js j Gridding with Oversampling and FFT e i2 k j x MN x 10 8 MW 2 +(VN) 2 log 2 (VN) 7.6 x 10 5 Cartesian Sampling N 2 log 2 N 1.1 x 10 5 *M = total number of samples, NxN = image matrix size W = convolution kernel width, V = oversampling factor

53 The MR Signal Equation and Fourier Reconstruction Steps in the Gridding Reconstruction Optimization of Gridding Other Fourier Inversion Methods Examples of different approaches to solving the same problem. Conclusions

54 Uses highly oversampled grids (4x, 8x) Very simple interpolation (next neighbor) Density compensation is easy Projections onto Convex Sets (POCS) approach FOV Constraint from Moriguchi, MRM, 51: , Data Constraint

55 Idea: find optimal estimate of Cartesian sampled k-space data Uniform ReSampling (URS), Block URS (BURS) (Rosenfeld, Moriguchi) For space limited object, sinc interpolation is optimal Still have problem of density compensation Solution: structure the problem backwards

56 Expression interpolating from uniform samples (x) to non-uniform samples (b) Ax b ~ a sinc k k ij i j Find pseudo-inverse or regularized inverse # b A x Density compensation built in! Block version operates on smaller regions in k-space Non-uniform Samples k ~ j Uniform Samples ki

57 Idea: find the image that best fits the Fourier data by simulating the MR signal equation Different methods Harshbarger, Twieg. IEEE Trans Med Imaging 1999; 18(3): Sutton, Noll, Fessler. IEEE Trans Med Imaging 2003; 22(2): Others Density compensation can be used, but is not necessary Solution often found by a fast,iterative method, such as the conjugate gradient method

58 Expression interpolating from image samples (x) to nonuniform samples (y) Ax a ij y exp i 2 ( k Typically, we solve for the image, x, by finding the minimum of some cost function: i x j ) ( x) 2 1 y Ax R( x ) 2 Algorithm involves going back and forth between image and k-domain. Needs gridding and reverse gridding, e.g. NU-FFT and NU-IFFT

59 Gridding (Fourier) Reconstruction Acquired K-Space Data K-Space Trajectory Sample Density Estimated Image Gridding, IFFT Estimated K-Space Data ISE Reconstruction K-Space Trajectory Estimated Image Acquired K-Space Data MR Simulator NU-FFT Update Rule NU-IFFT

60 The gridding reconstruction Allows image reconstruction from non-uniformly spaced k-space samples Can be highly accurate Is computationally efficient Requires knowledge of k-space trajectory and and a density compensation function (DCF) Other approaches can: Eliminate the need for density compensation Correct for field inhomogeneity and other artifacts

61 ISMRM unbound NUFFT

FOV. ] are the gradient waveforms. The reconstruction of this signal proceeds by an inverse Fourier Transform as:. [2] ( ) ( )

FOV. ] are the gradient waveforms. The reconstruction of this signal proceeds by an inverse Fourier Transform as:. [2] ( ) ( ) Gridding Procedures for Non-Cartesian K-space Trajectories Douglas C. Noll and Bradley P. Sutton Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA 1. Introduction The data collected

More information

Role of Parallel Imaging in High Field Functional MRI

Role of Parallel Imaging in High Field Functional MRI Role of Parallel Imaging in High Field Functional MRI Douglas C. Noll & Bradley P. Sutton Department of Biomedical Engineering, University of Michigan Supported by NIH Grant DA15410 & The Whitaker Foundation

More information

MRI Physics II: Gradients, Imaging

MRI Physics II: Gradients, Imaging MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

Advanced Imaging Trajectories

Advanced Imaging Trajectories Advanced Imaging Trajectories Cartesian EPI Spiral Radial Projection 1 Radial and Projection Imaging Sample spokes Radial out : from k=0 to kmax Projection: from -kmax to kmax Trajectory design considerations

More information

K-Space Trajectories and Spiral Scan

K-Space Trajectories and Spiral Scan K-Space and Spiral Scan Presented by: Novena Rangwala nrangw2@uic.edu 1 Outline K-space Gridding Reconstruction Features of Spiral Sampling Pulse Sequences Mathematical Basis of Spiral Scanning Variations

More information

Sampling, Ordering, Interleaving

Sampling, Ordering, Interleaving Sampling, Ordering, Interleaving Sampling patterns and PSFs View ordering Modulation due to transients Temporal modulations Slice interleaving Sequential, Odd/even, bit-reversed Arbitrary Other considerations:

More information

Computational Aspects of MRI

Computational Aspects of MRI David Atkinson Philip Batchelor David Larkman Programme 09:30 11:00 Fourier, sampling, gridding, interpolation. Matrices and Linear Algebra 11:30 13:00 MRI Lunch (not provided) 14:00 15:30 SVD, eigenvalues.

More information

Nuts & Bolts of Advanced Imaging. Image Reconstruction Parallel Imaging

Nuts & Bolts of Advanced Imaging. Image Reconstruction Parallel Imaging Nuts & Bolts of Advanced Imaging Image Reconstruction Parallel Imaging Michael S. Hansen, PhD Magnetic Resonance Technology Program National Institutes of Health, NHLBI Declaration of Financial Interests

More information

IMAGE reconstruction in conventional magnetic resonance

IMAGE reconstruction in conventional magnetic resonance IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 3, MARCH 2005 325 Conjugate Phase MRI Reconstruction With Spatially Variant Sample Density Correction Douglas C. Noll*, Member, IEEE, Jeffrey A. Fessler,

More information

Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 2004

Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 2004 Evaluations of k-space Trajectories for Fast MR Imaging for project of the course EE591, Fall 24 1 Alec Chi-Wah Wong Department of Electrical Engineering University of Southern California 374 McClintock

More information

Image reconstruction using compressed sensing for individual and collective coil methods.

Image reconstruction using compressed sensing for individual and collective coil methods. Biomedical Research 2016; Special Issue: S287-S292 ISSN 0970-938X www.biomedres.info Image reconstruction using compressed sensing for individual and collective coil methods. Mahmood Qureshi *, Muhammad

More information

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing G16.4428 Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine Compressed Sensing Ricardo Otazo, PhD ricardo.otazo@nyumc.org Compressed

More information

Iterative reconstruction method for threedimensional non-cartesian parallel MRI

Iterative reconstruction method for threedimensional non-cartesian parallel MRI University of Iowa Iowa Research Online Theses and Dissertations Spring 2011 Iterative reconstruction method for threedimensional non-cartesian parallel MRI Xuguang Jiang University of Iowa Copyright 2011

More information

Topics. Projections. Review Filtered Backprojection Fan Beam Spiral CT Applications. Bioengineering 280A Principles of Biomedical Imaging

Topics. Projections. Review Filtered Backprojection Fan Beam Spiral CT Applications. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 24 X-Rays/CT Lecture 2 Topics Review Filtered Backprojection Fan Beam Spiral CT Applications s I θ (r) = I exp µ(x, y)ds Lr,θ = I exp µ(rcosθ

More information

Topics. Review Filtered Backprojection Fan Beam Spiral CT Applications. Bioengineering 280A Principles of Biomedical Imaging

Topics. Review Filtered Backprojection Fan Beam Spiral CT Applications. Bioengineering 280A Principles of Biomedical Imaging Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 24 X-Rays/CT Lecture 2 Topics Review Filtered Backprojection Fan Beam Spiral CT Applications Projections I θ (r) = I exp Lr,θ µ(x,y)ds =

More information

Fast Imaging Trajectories: Non-Cartesian Sampling (1)

Fast Imaging Trajectories: Non-Cartesian Sampling (1) Fast Imaging Trajectories: Non-Cartesian Sampling (1) M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.05.03 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business

More information

XI Signal-to-Noise (SNR)

XI Signal-to-Noise (SNR) XI Signal-to-Noise (SNR) Lecture notes by Assaf Tal n(t) t. Noise. Characterizing Noise Noise is a random signal that gets added to all of our measurements. In D it looks like this: while in D

More information

Non-Cartesian Reconstruction

Non-Cartesian Reconstruction Non-Cartesian Reconstruction John Pauly October 17, 25 1 Introduction a) b) G G y k y There are many alternatives to spin-warp, or 2DFT, acquisition methods. These include spiral scans, radial scans, variations

More information

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space White Pixel Artifact Caused by a noise spike during acquisition Spike in K-space sinusoid in image space Susceptibility Artifacts Off-resonance artifacts caused by adjacent regions with different

More information

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE

Module 4. K-Space Symmetry. Review. K-Space Review. K-Space Symmetry. Partial or Fractional Echo. Half or Partial Fourier HASTE MRES 7005 - Fast Imaging Techniques Module 4 K-Space Symmetry Review K-Space Review K-Space Symmetry Partial or Fractional Echo Half or Partial Fourier HASTE Conditions for successful reconstruction Interpolation

More information

Sampling, Ordering, Interleaving

Sampling, Ordering, Interleaving Sampling, Ordering, Interleaving Sampling patterns and PSFs View ordering Modulation due to transients Temporal modulations Timing: cine, gating, triggering Slice interleaving Sequential, Odd/even, bit-reversed

More information

An Iterative Approach for Reconstruction of Arbitrary Sparsely Sampled Magnetic Resonance Images

An Iterative Approach for Reconstruction of Arbitrary Sparsely Sampled Magnetic Resonance Images An Iterative Approach for Reconstruction of Arbitrary Sparsely Sampled Magnetic Resonance Images Hamed Pirsiavash¹, Mohammad Soleymani², Gholam-Ali Hossein-Zadeh³ ¹Department of electrical engineering,

More information

Fast, Iterative Image Reconstruction for MRI in the Presence of Field Inhomogeneities

Fast, Iterative Image Reconstruction for MRI in the Presence of Field Inhomogeneities 178 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 2, FEBRUARY 2003 Fast, Iterative Image Reconstruction for MRI in the Presence of Field Inhomogeneities Bradley P. Sutton*, Student Member, IEEE, Douglas

More information

NUFFT for Medical and Subsurface Image Reconstruction

NUFFT for Medical and Subsurface Image Reconstruction NUFFT for Medical and Subsurface Image Reconstruction Qing H. Liu Department of Electrical and Computer Engineering Duke University Duke Frontiers 2006 May 16, 2006 Acknowledgment Jiayu Song main contributor

More information

Exam 8N080 - Introduction MRI

Exam 8N080 - Introduction MRI Exam 8N080 - Introduction MRI Friday January 23 rd 2015, 13.30-16.30h For this exam you may use an ordinary calculator (not a graphical one). In total there are 6 assignments and a total of 65 points can

More information

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Sparse sampling in MRI: From basic theory to clinical application R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Objective Provide an intuitive overview of compressed sensing

More information

Efficient Sample Density Estimation by Combining Gridding and an Optimized Kernel

Efficient Sample Density Estimation by Combining Gridding and an Optimized Kernel IMAGING METHODOLOGY - Notes Magnetic Resonance in Medicine 67:701 710 (2012) Efficient Sample Density Estimation by Combining Gridding and an Optimized Kernel Nicholas R. Zwart,* Kenneth O. Johnson, and

More information

Imaging Notes, Part IV

Imaging Notes, Part IV BME 483 MRI Notes 34 page 1 Imaging Notes, Part IV Slice Selective Excitation The most common approach for dealing with the 3 rd (z) dimension is to use slice selective excitation. This is done by applying

More information

Improving Non-Cartesian MRI Reconstruction through Discontinuity Subtraction

Improving Non-Cartesian MRI Reconstruction through Discontinuity Subtraction Biomedical Imaging Volume 26, Article ID 8792, Pages 1 9 DOI 1.1155/IJBI/26/8792 Improving Non-Cartesian MRI Reconstruction through Discontinuity Subtraction Jiayu Song 1, 2 and Qing Huo Liu 1 1 Department

More information

Advanced methods for image reconstruction in fmri

Advanced methods for image reconstruction in fmri Advanced methods for image reconstruction in fmri Jeffrey A. Fessler EECS Department The University of Michigan Regional Symposium on MRI Sep. 28, 27 Acknowledgements: Doug Noll, Brad Sutton, Outline MR

More information

(a Scrhon5 R2iwd b. P)jc%z 5. ivcr3. 1. I. ZOms Xn,s. 1E IDrAS boms. EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 8 Solutions

(a Scrhon5 R2iwd b. P)jc%z 5. ivcr3. 1. I. ZOms Xn,s. 1E IDrAS boms. EE225E/BIOE265 Spring 2013 Principles of MRI. Assignment 8 Solutions EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Assignment 8 Solutions 1. Nishimura 7.1 P)jc%z 5 ivcr3. 1. I Due Wednesday April 10th, 2013 (a Scrhon5 R2iwd b 0 ZOms Xn,s r cx > qs 4-4 8ni6 4

More information

Partial k-space Reconstruction

Partial k-space Reconstruction Chapter 2 Partial k-space Reconstruction 2.1 Motivation for Partial k- Space Reconstruction a) Magnitude b) Phase In theory, most MRI images depict the spin density as a function of position, and hence

More information

Partial k-space Recconstruction

Partial k-space Recconstruction Partial k-space Recconstruction John Pauly September 29, 2005 1 Motivation for Partial k-space Reconstruction a) Magnitude b) Phase In theory, most MRI images depict the spin density as a function of position,

More information

Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing

Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing Peng Hu, Ph.D. Associate Professor Department of Radiological Sciences PengHu@mednet.ucla.edu 310-267-6838 MRI... MRI has low

More information

6 credits. BMSC-GA Practical Magnetic Resonance Imaging II

6 credits. BMSC-GA Practical Magnetic Resonance Imaging II BMSC-GA 4428 - Practical Magnetic Resonance Imaging II 6 credits Course director: Ricardo Otazo, PhD Course description: This course is a practical introduction to image reconstruction, image analysis

More information

ADVANCED RECONSTRUCTION TECHNIQUES IN MRI - 2

ADVANCED RECONSTRUCTION TECHNIQUES IN MRI - 2 ADVANCED RECONSTRUCTION TECHNIQUES IN MRI - 2 Presented by Rahil Kothari PARTIAL FOURIER RECONSTRUCTION WHAT IS PARTIAL FOURIER RECONSTRUCTION? In Partial Fourier Reconstruction data is not collected symmetrically

More information

Central Slice Theorem

Central Slice Theorem Central Slice Theorem Incident X-rays y f(x,y) R x r x Detected p(, x ) The thick line is described by xcos +ysin =R Properties of Fourier Transform F [ f ( x a)] F [ f ( x)] e j 2 a Spatial Domain Spatial

More information

Dynamic Image and Fieldmap Joint Estimation Methods for MRI Using Single-Shot Trajectories

Dynamic Image and Fieldmap Joint Estimation Methods for MRI Using Single-Shot Trajectories Dynamic Image and Fieldmap Joint Estimation Methods for MRI Using Single-Shot Trajectories by Antonis Matakos A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

More information

Basic fmri Design and Analysis. Preprocessing

Basic fmri Design and Analysis. Preprocessing Basic fmri Design and Analysis Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial filtering

More information

Functional MRI in Clinical Research and Practice Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing Functional MRI in Clinical Research and Practice Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization

More information

Biomedical Image Analysis. Spatial Filtering

Biomedical Image Analysis. Spatial Filtering Biomedical Image Analysis Contents: Spatial Filtering The mechanics of Spatial Filtering Smoothing and sharpening filters BMIA 15 V. Roth & P. Cattin 1 The Mechanics of Spatial Filtering Spatial filter:

More information

Spiral keyhole imaging for MR fingerprinting

Spiral keyhole imaging for MR fingerprinting Spiral keyhole imaging for MR fingerprinting Guido Buonincontri 1, Laura Biagi 1,2, Pedro A Gómez 3,4, Rolf F Schulte 4, Michela Tosetti 1,2 1 IMAGO7 Research Center, Pisa, Italy 2 IRCCS Stella Maris,

More information

High Fidelity Brain Connectivity Imaging

High Fidelity Brain Connectivity Imaging CNI Inauguration Workshop Stanford, March 22 nd, 2012 High Fidelity Brain Connectivity Imaging -Recent Progress on Diffusion Weighted MRI for High Resolution and Low Distortion Allen W. Song, PhD Brain

More information

SPM8 for Basic and Clinical Investigators. Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

Introduction to Image Super-resolution. Presenter: Kevin Su

Introduction to Image Super-resolution. Presenter: Kevin Su Introduction to Image Super-resolution Presenter: Kevin Su References 1. S.C. Park, M.K. Park, and M.G. KANG, Super-Resolution Image Reconstruction: A Technical Overview, IEEE Signal Processing Magazine,

More information

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

PHASE-ENCODED, RAPID, MULTIPLE-ECHO (PERME) NUCLEAR MAGNETIC RESONANCE IMAGING

PHASE-ENCODED, RAPID, MULTIPLE-ECHO (PERME) NUCLEAR MAGNETIC RESONANCE IMAGING PHASE-ENCODED, RAPID, MULTIPLE-ECHO (PERME) NUCLEAR MAGNETIC RESONANCE IMAGING Mark Steven Lawton Master of Engineering Thesis Lawrence Berkeley Laboratory University of California Berkeley, California

More information

surface Image reconstruction: 2D Fourier Transform

surface Image reconstruction: 2D Fourier Transform 2/1/217 Chapter 2-3 K-space Intro to k-space sampling (chap 3) Frequenc encoding and Discrete sampling (chap 2) Point Spread Function K-space properties K-space sampling principles (chap 3) Basic Contrast

More information

Collaborative Sparsity and Compressive MRI

Collaborative Sparsity and Compressive MRI Modeling and Computation Seminar February 14, 2013 Table of Contents 1 T2 Estimation 2 Undersampling in MRI 3 Compressed Sensing 4 Model-Based Approach 5 From L1 to L0 6 Spatially Adaptive Sparsity MRI

More information

Head motion in diffusion MRI

Head motion in diffusion MRI Head motion in diffusion MRI Anastasia Yendiki HMS/MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging 11/06/13 Head motion in diffusion MRI 0/33 Diffusion contrast Basic principle of diffusion

More information

Spiral Imaging: A Critical Appraisal

Spiral Imaging: A Critical Appraisal JOURNAL OF MAGNETIC RESONANCE IMAGING 21:657 668 (2005) Review Article Spiral Imaging: A Critical Appraisal Kai Tobias Block, MSc and Jens Frahm, PhD* In view of recent applications in cardiovascular and

More information

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing Functional Connectivity Preprocessing Geometric distortion Head motion Geometric distortion Head motion EPI Data Are Acquired Serially EPI Data Are Acquired Serially descending 1 EPI Data Are Acquired

More information

Compressed Sensing for Rapid MR Imaging

Compressed Sensing for Rapid MR Imaging Compressed Sensing for Rapid Imaging Michael Lustig1, Juan Santos1, David Donoho2 and John Pauly1 1 Electrical Engineering Department, Stanford University 2 Statistics Department, Stanford University rapid

More information

IT has been known for a long time that direct Fourier. Iterative Tomographic Image Reconstruction Using Fourier-Based Forward and Back-Projectors

IT has been known for a long time that direct Fourier. Iterative Tomographic Image Reconstruction Using Fourier-Based Forward and Back-Projectors Iterative Tomographic Image Reconstruction Using Fourier-Based Forward and Back-Projectors Samuel Matej, Senior Member, IEEE, Jeffrey A. Fessler, Senior Member, IEEE, and Ivan G. Kazantsev, Member, IEEE

More information

MOST MRI methods generate their images in two steps.

MOST MRI methods generate their images in two steps. IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 18, NO. 6, JUNE 1999 481 Off-Resonance Correction of MR Images Hermann Schomberg, Member, IEEE Abstract In magnetic resonance imaging (MRI), the spatial inhomogeneity

More information

Field Maps. 1 Field Map Acquisition. John Pauly. October 5, 2005

Field Maps. 1 Field Map Acquisition. John Pauly. October 5, 2005 Field Maps John Pauly October 5, 25 The acquisition and reconstruction of frequency, or field, maps is important for both the acquisition of MRI data, and for its reconstruction. Many of the imaging methods

More information

Fmri Spatial Processing

Fmri Spatial Processing Educational Course: Fmri Spatial Processing Ray Razlighi Jun. 8, 2014 Spatial Processing Spatial Re-alignment Geometric distortion correction Spatial Normalization Smoothing Why, When, How, Which Why is

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Dynamic Range and Weber s Law HVS is capable of operating over an enormous dynamic range, However, sensitivity is far from uniform over this range Example:

More information

Clinical Importance. Aortic Stenosis. Aortic Regurgitation. Ultrasound vs. MRI. Carotid Artery Stenosis

Clinical Importance. Aortic Stenosis. Aortic Regurgitation. Ultrasound vs. MRI. Carotid Artery Stenosis Clinical Importance Rapid cardiovascular flow quantitation using sliceselective Fourier velocity encoding with spiral readouts Valve disease affects 10% of patients with heart disease in the U.S. Most

More information

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data Alexey Samsonov, Julia Velikina Departments of Radiology and Medical

More information

MEDICAL IMAGE ANALYSIS

MEDICAL IMAGE ANALYSIS SECOND EDITION MEDICAL IMAGE ANALYSIS ATAM P. DHAWAN g, A B IEEE Engineering in Medicine and Biology Society, Sponsor IEEE Press Series in Biomedical Engineering Metin Akay, Series Editor +IEEE IEEE PRESS

More information

Theoretically Perfect Sensor

Theoretically Perfect Sensor Sampling 1/60 Sampling The ray tracer samples the geometry, only gathering information from the parts of the world that interact with a finite number of rays In contrast, a scanline renderer can push all

More information

A more accurate account of the effect of k-space sampling and signal decay on the effective spatial resolution in functional MRI

A more accurate account of the effect of k-space sampling and signal decay on the effective spatial resolution in functional MRI A more accurate account of the effect of k-space sampling and signal decay on the effective spatial resolution in functional MRI Denis Chaimow 1 and Amir Shmuel 1,2 1 Centre for Magnetic Resonance Research

More information

Compressed Sensing And Joint Acquisition Techniques In Mri

Compressed Sensing And Joint Acquisition Techniques In Mri Wayne State University Wayne State University Theses 1-1-2013 Compressed Sensing And Joint Acquisition Techniques In Mri Rouhollah Hamtaei Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses

More information

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford

Diffusion MRI Acquisition. Karla Miller FMRIB Centre, University of Oxford Diffusion MRI Acquisition Karla Miller FMRIB Centre, University of Oxford karla@fmrib.ox.ac.uk Diffusion Imaging How is diffusion weighting achieved? How is the image acquired? What are the limitations,

More information

Non-Cartesian Parallel Magnetic Resonance Imaging

Non-Cartesian Parallel Magnetic Resonance Imaging Non-Cartesian Parallel Magnetic Resonance Imaging Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Robin Heidemann

More information

Combination of Parallel Imaging and Compressed Sensing for high acceleration factor at 7T

Combination of Parallel Imaging and Compressed Sensing for high acceleration factor at 7T Combination of Parallel Imaging and Compressed Sensing for high acceleration factor at 7T DEDALE Workshop Nice Loubna EL GUEDDARI (NeuroSPin) Joint work with: Carole LAZARUS, Alexandre VIGNAUD and Philippe

More information

Assignment 2. Due Feb 3, 2012

Assignment 2. Due Feb 3, 2012 EE225E/BIOE265 Spring 2012 Principles of MRI Miki Lustig Assignment 2 Due Feb 3, 2012 1. Read Nishimura Ch. 3 2. Non-Uniform Sampling. A student has an assignment to monitor the level of Hetch-Hetchi reservoir

More information

Module 5: Dynamic Imaging and Phase Sharing. (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review. Improving Temporal Resolution.

Module 5: Dynamic Imaging and Phase Sharing. (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review. Improving Temporal Resolution. MRES 7005 - Fast Imaging Techniques Module 5: Dynamic Imaging and Phase Sharing (true-fisp, TRICKS, CAPR, DISTAL, DISCO, HYPR) Review Improving Temporal Resolution True-FISP (I) True-FISP (II) Keyhole

More information

Iterative SPECT reconstruction with 3D detector response

Iterative SPECT reconstruction with 3D detector response Iterative SPECT reconstruction with 3D detector response Jeffrey A. Fessler and Anastasia Yendiki COMMUNICATIONS & SIGNAL PROCESSING LABORATORY Department of Electrical Engineering and Computer Science

More information

Image Sampling & Quantisation

Image Sampling & Quantisation Image Sampling & Quantisation Biomedical Image Analysis Prof. Dr. Philippe Cattin MIAC, University of Basel Contents 1 Motivation 2 Sampling Introduction and Motivation Sampling Example Quantisation Example

More information

Biomedical Image Processing

Biomedical Image Processing Biomedical Image Processing Jason Thong Gabriel Grant 1 2 Motivation from the Medical Perspective MRI, CT and other biomedical imaging devices were designed to assist doctors in their diagnosis and treatment

More information

Imaging and Deconvolution

Imaging and Deconvolution Imaging and Deconvolution Urvashi Rau National Radio Astronomy Observatory, Socorro, NM, USA The van-cittert Zernike theorem Ei E V ij u, v = I l, m e sky j 2 i ul vm dldm 2D Fourier transform : Image

More information

Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm

Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm Improved Spatial Localization in 3D MRSI with a Sequence Combining PSF-Choice, EPSI and a Resolution Enhancement Algorithm L.P. Panych 1,3, B. Madore 1,3, W.S. Hoge 1,3, R.V. Mulkern 2,3 1 Brigham and

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Sampling, Aliasing, & Mipmaps Last Time? Monte-Carlo Integration Importance Sampling Ray Tracing vs. Path Tracing source hemisphere Sampling sensitive to choice of samples less sensitive to choice of samples

More information

Regularized Estimation of Main and RF Field Inhomogeneity and Longitudinal Relaxation Rate in Magnetic Resonance Imaging

Regularized Estimation of Main and RF Field Inhomogeneity and Longitudinal Relaxation Rate in Magnetic Resonance Imaging Regularized Estimation of Main and RF Field Inhomogeneity and Longitudinal Relaxation Rate in Magnetic Resonance Imaging by Amanda K. Funai A dissertation submitted in partial fulfillment of the requirements

More information

Theoretically Perfect Sensor

Theoretically Perfect Sensor Sampling 1/67 Sampling The ray tracer samples the geometry, only gathering information from the parts of the world that interact with a finite number of rays In contrast, a scanline renderer can push all

More information

Motion compensated reconstruction

Motion compensated reconstruction Motion compensated reconstruction Educational course: Image acquisition and Reconstruction 25th Annual meeting of the ISMRM, Honolulu, 2017 Sajan Goud Lingala Siemens Healthineers, Princeton, USA Declaration

More information

Zigzag Sampling for Improved Parallel Imaging

Zigzag Sampling for Improved Parallel Imaging Magnetic Resonance in Medicine 60:474 478 (2008) Zigzag Sampling for Improved Parallel Imaging Felix A. Breuer, 1 * Hisamoto Moriguchi, 2 Nicole Seiberlich, 3 Martin Blaimer, 1 Peter M. Jakob, 1,3 Jeffrey

More information

ANALYSIS OF GEOPHYSICAL POTENTIAL FIELDS A Digital Signal Processing Approach

ANALYSIS OF GEOPHYSICAL POTENTIAL FIELDS A Digital Signal Processing Approach ADVANCES IN EXPLORATION GEOPHYSICS 5 ANALYSIS OF GEOPHYSICAL POTENTIAL FIELDS A Digital Signal Processing Approach PRABHAKAR S. NAIDU Indian Institute of Science, Bangalore 560012, India AND M.P. MATHEW

More information

CHAPTER 9: Magnetic Susceptibility Effects in High Field MRI

CHAPTER 9: Magnetic Susceptibility Effects in High Field MRI Figure 1. In the brain, the gray matter has substantially more blood vessels and capillaries than white matter. The magnified image on the right displays the rich vasculature in gray matter forming porous,

More information

EE290T: Advanced Reconstruction Methods for Magnetic Resonance Imaging. Martin Uecker

EE290T: Advanced Reconstruction Methods for Magnetic Resonance Imaging. Martin Uecker EE290T: Advanced Reconstruction Methods for Magnetic Resonance Imaging Martin Uecker Tentative Syllabus 01: Jan 27 Introduction 02: Feb 03 Parallel Imaging as Inverse Problem 03: Feb 10 Iterative Reconstruction

More information

Image Sampling and Quantisation

Image Sampling and Quantisation Image Sampling and Quantisation Introduction to Signal and Image Processing Prof. Dr. Philippe Cattin MIAC, University of Basel 1 of 46 22.02.2016 09:17 Contents Contents 1 Motivation 2 Sampling Introduction

More information

Accelerated parameter mapping with compressed sensing: an alternative to MR fingerprinting

Accelerated parameter mapping with compressed sensing: an alternative to MR fingerprinting Accelerated parameter mapping with compressed sensing: an alternative to MR fingerprinting Pedro A Gómez 1,2, Guido Bounincontri 3, Miguel Molina-Romero 1,2, Jonathan I Sperl 2, Marion I Menzel 2, Bjoern

More information

The Non-uniform Fast Fourier Transform. in Computed Tomography (No ) Supervisor: Prof. Mike Davies

The Non-uniform Fast Fourier Transform. in Computed Tomography (No ) Supervisor: Prof. Mike Davies The Non-uniform Fast Fourier Transform in Computed Tomography (No. 2.4.4) Masters Report Supervisor: Prof. Mike Davies Billy Junqi Tang s1408760 AUGEST 12, 2015 UNIVERSITY F EDINBURGH Abstract This project

More information

Optimized Least-Square Nonuniform Fast Fourier Transform Mathews Jacob, Member, IEEE

Optimized Least-Square Nonuniform Fast Fourier Transform Mathews Jacob, Member, IEEE IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 6, JUNE 2009 2165 Optimized Least-Square Nonuniform Fast Fourier Transform Mathews Jacob, Member, IEEE Abstract The main focus of this paper is to derive

More information

Information about presenter

Information about presenter Information about presenter 2013-now Engineer R&D ithera Medical GmbH 2011-2013 M.Sc. in Biomedical Computing (TU München) Thesis title: A General Reconstruction Framework for Constrained Optimisation

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 11 Point Spread Function, Inverse Filtering, Wiener Filtering, Sharpening,... Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/

More information

Constrained Reconstruction of Sparse Cardiac MR DTI Data

Constrained Reconstruction of Sparse Cardiac MR DTI Data Constrained Reconstruction of Sparse Cardiac MR DTI Data Ganesh Adluru 1,3, Edward Hsu, and Edward V.R. DiBella,3 1 Electrical and Computer Engineering department, 50 S. Central Campus Dr., MEB, University

More information

Midterm Review

Midterm Review Midterm Review - 2017 EE369B Concepts Noise Simulations with Bloch Matrices, EPG Gradient Echo Imaging 1 About the Midterm Monday Oct 30, 2017. CCSR 4107 Up to end of C2 1. Write your name legibly on this

More information

Motion Correction in fmri by Mapping Slice-to-Volume with Concurrent Field-Inhomogeneity Correction

Motion Correction in fmri by Mapping Slice-to-Volume with Concurrent Field-Inhomogeneity Correction Motion Correction in fmri by Mapping Slice-to-Volume with Concurrent Field-Inhomogeneity Correction Desmond T.B. Yeo 1,2, Jeffery A. Fessler 2, and Boklye Kim 1 1 Department of Radiology, University of

More information

Picture quality requirements and NUT proposals for JPEG AIC

Picture quality requirements and NUT proposals for JPEG AIC Mar. 2006, Cupertino Picture quality requirements and NUT proposals for JPEG AIC Jae-Jeong Hwang, Young Huh, Dai-Gyoung Kim Kunsan National Univ., KERI, Hanyang Univ. hwang@kunsan.ac.kr Contents 1. Picture

More information

Joint estimation and correction of geometric distortions for EPI functional MRI using harmonic retrieval

Joint estimation and correction of geometric distortions for EPI functional MRI using harmonic retrieval Joint estimation and correction of geometric distortions for EPI functional MRI using harmonic retrieval The MIT Faculty has made this article openly available. Please share how this access benefits you.

More information

3D MAGNETIC RESONANCE IMAGING OF THE HUMAN BRAIN NOVEL RADIAL SAMPLING, FILTERING AND RECONSTRUCTION

3D MAGNETIC RESONANCE IMAGING OF THE HUMAN BRAIN NOVEL RADIAL SAMPLING, FILTERING AND RECONSTRUCTION 3D MAGNETIC RESONANCE IMAGING OF THE HUMAN BRAIN NOVEL RADIAL SAMPLING, FILTERING AND RECONSTRUCTION Maria Magnusson 1,2,4, Olof Dahlqvist Leinhard 2,4, Patrik Brynolfsson 2,4, Per Thyr 2,4 and Peter Lundberg

More information

Sources of Distortion in Functional MRI Data

Sources of Distortion in Functional MRI Data Human Brain Mapping 8:80 85(1999) Sources of Distortion in Functional MRI Data Peter Jezzard* and Stuart Clare FMRIB Centre, Department of Clinical Neurology, University of Oxford, Oxford, UK Abstract:

More information

Index. aliasing artifacts and noise in CT images, 200 measurement of projection data, nondiffracting

Index. aliasing artifacts and noise in CT images, 200 measurement of projection data, nondiffracting Index Algebraic equations solution by Kaczmarz method, 278 Algebraic reconstruction techniques, 283-84 sequential, 289, 293 simultaneous, 285-92 Algebraic techniques reconstruction algorithms, 275-96 Algorithms

More information

Statistical Analysis of Image Reconstructed Fully-Sampled and Sub-Sampled fmri Data

Statistical Analysis of Image Reconstructed Fully-Sampled and Sub-Sampled fmri Data Statistical Analysis of Image Reconstructed Fully-Sampled and Sub-Sampled fmri Data Daniel B. Rowe Program in Computational Sciences Department of Mathematics, Statistics, and Computer Science Marquette

More information

The SIMRI project A versatile and interactive MRI simulator *

The SIMRI project A versatile and interactive MRI simulator * COST B21 Meeting, Lodz, 6-9 Oct. 2005 The SIMRI project A versatile and interactive MRI simulator * H. Benoit-Cattin 1, G. Collewet 2, B. Belaroussi 1, H. Saint-Jalmes 3, C. Odet 1 1 CREATIS, UMR CNRS

More information

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems.

Slide 1. Technical Aspects of Quality Control in Magnetic Resonance Imaging. Slide 2. Annual Compliance Testing. of MRI Systems. Slide 1 Technical Aspects of Quality Control in Magnetic Resonance Imaging Slide 2 Compliance Testing of MRI Systems, Ph.D. Department of Radiology Henry Ford Hospital, Detroit, MI Slide 3 Compliance Testing

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information