Enhao Gong, PhD Candidate, Electrical Engineering, Stanford University Dr. John Pauly, Professor in Electrical Engineering, Stanford University Dr.

Size: px
Start display at page:

Download "Enhao Gong, PhD Candidate, Electrical Engineering, Stanford University Dr. John Pauly, Professor in Electrical Engineering, Stanford University Dr."

Transcription

1 Enhao Gong, PhD Candidate, Electrical Engineering, Stanford University Dr. John Pauly, Professor in Electrical Engineering, Stanford University Dr. Greg Zaharchuk, Associate Professor in Radiology, Stanford University

2 Prof. John Pauly Dr. Morteza Mardani Prof. Greg Zaharchuk Dr. Jia Guo

3

4 CS7415 Enhanced multi-contrast MRI reconstruction with Deep Learning & NVIDIA GPUs

5 Medical imaging medical intervention interior clinical analysis and visual representation PET fmri Structural Imaging Functional Imaging Image source: Wikipedia, NIVIDA

6 Image Reconstruction From anatomy to image Reconstruction and Restoration Denoising and Super-resolution Pathology Detection From image to labels Tumor Segmentation Pathology Detection Diagnosis Assistance From pathology to diagnosis Prescription and Treatment Prognostic Prediction Scanner Prognosis Analytics Diagnosis Images Enhancement & Augmentation Pathology Treatment Image source: blogs.nvidia.com

7 Magnetic Resonance Imaging ü Great tissue contrast for distinguish normal tissue vs pathology ü No exposure to ionizing radiation q Samples in Fourier domain (k-space) Need some magic transform to convert to image domain Scanner Signal Image

8 Reconstruction of sparse sampled complex signal in Fourier domain (k-space) of images Much harder image restoration tasks Under-sampled k-space Reconstruction Recovered k-space

9 Reconstruction of sparse sampled complex signal in Fourier domain (k-space) of images Harder image restoration tasks Under-sampled k-space Reconstruction Recovered k-space Image Super-resolution Image Restoration

10 Reconstruction of sparse sampled complex signal in Fourier domain (k-space) of images Solved with constrained optimization Under-sampled k-space Reconstruction Recovered k-space Reconstruction Model Image: X Acquisition Model: E Measured Signal: Y=EX Solve inverse problem with optimization Consistent with Signal Model Regularizations (Sparsity, Low-rank, Dictionary) Solving using Iterative Optimization

11 Case #1 Multi-contrast (structure) MRI reconstruction Original Proposed Post-Diamox

12 By Courtesy, Center for Advanced Functional Neuroimaging, Stanford

13 Initial Recon Ground-truth Recon Sequential Jointly+Local PatchàImage Intermediate reconstruction Sequential and independent Train Local deep network for patch-patch regression Jointly improve multicontrast local patch Image synthesis Generate Improved reconstruction

14 Initial Recon Ground-truth Recon Sequential Jointly+Local PatchàImage Intermediate reconstruction Sequential and independent Train Local deep network for patch-patch regression Jointly improve multicontrast local patch Image synthesis Generate Improved reconstruction

15 CNN Sequential Jointly+Local PatchàImage Intermediate reconstruction Sequential and independent Train Local deep network for patch-patch regression Jointly improve multicontrast local patch Image synthesis Generate Improved reconstruction

16 CNN Sequential Jointly+Local PatchàImage Intermediate reconstruction Sequential and independent Train Local deep network for patch-patch regression Jointly improve multicontrast local patch Image synthesis Generate Improved reconstruction

17 CNN Convention Methods Intermediate reconstruction Sequential and independent Using Deep Learning Train Local deep network for patch-patch regression Jointly improve multicontrast local patch Data Augmentation Image synthesis Generate Improved reconstruction

18 method details Convolutional Encoder-Decoder with bypasses O. Ronneberger, et al M. Uecker et al. MRM M. Uecker, et al. BART Convolutional Encoder-Decoder with downsample poolings H. Noh, et al. ICCV215

19 CS7415 Enhanced multi-contrast MRI reconstruction with Deep Learning & NVIDIA GPUs residual learning results Training Initial Residual Predicted Residual Testing Reduced Residual Initial Residual Predicted Residual Reduced Residual

20 CS7415 Enhanced multi-contrast MRI reconstruction with Deep Learning & NVIDIA GPUs residual learning results Train Test Residual Fitting RMSE Residual R2 Norm (Before) Residual R2 Norm (After) Artifact Reduction (%) % 17% Training Initial Residual Predicted Residual Testing Reduced Residual Initial Residual Predicted Residual Reduced Residual

21 clinical results in routine multi-contrast neuro-imaging protocol ü Faster scan with less artifacts ü Accelerate FLAIR/GRE with T1w/T2w scan ü Reconstruction with sharable information ü Acceleration with preserved pathology Improved GRE reconstruction on a hemorrhage subject

22 Case #2 Perfusion MRI reconstruction Original Proposed Post-Diamox

23 Background Arterial Spin Labeling(ASL) ( ) x 1= Blood flow map

24 Detail Methods and innovations Extend conventional spatial-frequency Denoising Non-Local-Mean (NLM) Filtering Extend with multi-contrast information NLM Denoising Train deep network models for image-to-image regression tasks Ground-truth with higher resolution and SNR End-to-end Denoising and super-resolution Use multi-contrast images/patches as inputs More robustness, accuracy and avoid overfitting A. Buades, et.al. CVPR 25

25 Step 1: Nonlinear ASL signal denoising using Non-Local (NLM) and MulC-contrast Guided Filter Nex=6 High SNR Ref ASL Nex=1 Low SNR ASL raw Training w ASL = w ASL = 1 w ASL = 5 w ASL = 2 w ASL = 1 w ASL = 5 original recon more regulariza.on using nonlinear denoising Step 2: Generate patches from High-SNR Ref. ASL, Low-SNR raw ASL, multi-level denoised ASL and anatomical MR images Nex=6 High SNR Ref ASL Nex=1 Low SNR ASL Denoised ASL with different w ASL T2wFSE PDw Step 3: Training deep network to learn the nonlinear image restoration from multi-contrast patches Input Input Patches Patches Deep Convolutonal-Deconvolu4onal Neural Network by-passes connec.ons Multi-contrast patches Step 4: Generate the restored image from stored patches Output Patches More Layers Cost function Output Compare vs. Ref Output: restored high-snr ref High SNR Ref ASL Restored from Low SNR Diff Original Low-SNR Original Diff

26 Step 1: Nonlinear ASL signal denoising using Non-Local (NLM) and MulC-contrast Guided Filter Nex=1 Low SNR ASL raw Applying w ASL = w ASL = 1 w ASL = 5 w ASL = 2 w ASL = 1 w ASL = 5 original recon more regulariza.on using nonlinear denoising Step 2: Generate patches from High-SNR Ref. ASL, Low-SNR raw ASL, multi-level denoised ASL and anatomical MR images Nex=1 Low SNR ASL Denoised ASL with different w ASL T2wFSE PDw Step 3: Training deep network to learn the nonlinear image restoration from multi-contrast patches Input Input Patches Patches Deep Convolutonal-Deconvolu4onal Neural Network by-passes connec.ons Multi-contrast patches Step 4: Generate the restored image from stored patches Output Patches More Layers Cost function Output Output: predicted high-snr patch High SNR Ref ASL Restored from Low SNR Diff Original Low-SNR Original Diff

27 Results

28 Note: RMSE=Root-Mean-Squared-Error (normalized) Results Deep Learning Model Multi-contrast information for regularized de-noising High SNR ASL Synthetic ASL T2 weighted Proton density Low SNR ASL RSME 1% RSME 29% Diff map vs High SNR + 4-fold time reduction 3-fold RSME improvement Diff map vs High SNR

29 Clinical results ü Improved SNR and resolution in perfusion image and transit-delay image ü Pathology is well preserved for pa4ents ü More pa4ents datasets and human ra4ngs are in progress Moyamoya, pre and post Diamox Original Proposed Original Proposed Pre Post-Diamox

30 Case Study: Enhanced MRI Recon with Deep Learning Summary: Improved Efficiency and Accuracy for clinical applications Case #1 Multi-contrast (structure) MRI reconstruction 4x~6x acceleration Preserved pathology in clinical scans More efficient reconstruction for clinical applications Case #2 Perfusion MRI reconstruction 4x~6x acceleration Preserved pathology in clinical scans Better SNR and resolution for clinical settings Original Proposed Post-Diamox

31 How to avoid overfitting? Augmentation with image transform: Cropping + Rotation + Shifting + Flipping Augmentation with image distortion: co-registration + distortion with motion field A. Krizhevsky, et al. NIPS 212 S. Hauberg, et al. Arxiv 215

32 Visualize network parameters How network works Example Kernels: For 3D Residual Space: Extract smoothness For 2D Structure Space: Extract structures Potential Improvements

33

34 4x Acceleration applying spatial-frequency filtering (NLM) Reconstruction Speed: 1~1minà1sec/slice; big advantage over iterative methods!

35 CS7415 Enhanced multi-contrast MRI reconstruction with Deep Learning & NVIDIA GPUs Discussion: Network Design in MRI Reconstruction Results on GAN based CS-MRI on MR Phantom (submitted to NIPS217) [1] K. Hammernik, et al. ISMRM 217 [2] I. Goodfellow, et al. NIPS 214 [3] D. Pathak, et al. CVPR 216 [4] A. Bola, et al. Arxiv 217 [5] M. Mardani, et al. Arxiv 217

36 Conclusion: Enhance multi-contrast MRI reconstruction with Deep Learning and NVIDIA GPUs Deep Learning approach to solve medical imaging reconstruction Deep Learning model learns to remove artifact and fusing multi-contrast information Better efficiency and accuracy for clinical applications and diagnosis NVIDIA GPUs are key for computational acceleration 4x acceleration for Non-Local-Mean Denoising using CUDA 1x acceleration for Model Inference using CUDA, CuDNN Benefit to medical diagnosis Multi-contrast scans: 4x faster acquisition, preserve pathology Single-delay Perfusion (ASL) MRI: 4x faster acquisition, 7.78dB SNR gain Multi-delay Perfusion (ASL) MRI: 6x faster acquisition, 5% better resolution Examples shown in clinical exams for hemorrhage and stroke diagnosis.

37 Showcase of work in the direct big win in the content generation and augmentation Image Reconstruction From anatomy to image Reconstruction and Restoration Denoising and Super-resolution Pathology Detection From image to labels Tumor Segmentation Pathology Detection Diagnosis Assistance From pathology to diagnosis Prescription and Treatment Prognostic Prediction Scanner Prognosis Analytics Diagnosis Images Enhancement & Augmentation Pathology Treatment Image source: blogs.nvidia.com

38 Image reconstruction/restoration Great attention from radiology community

39 Prof. John Pauly Dr. Morteza Mardani Prof. Greg Zaharchuk Dr. Jia Guo

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging 1 CS 9 Final Project Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging Feiyu Chen Department of Electrical Engineering ABSTRACT Subject motion is a significant

More information

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data

A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data A Novel Iterative Thresholding Algorithm for Compressed Sensing Reconstruction of Quantitative MRI Parameters from Insufficient Data Alexey Samsonov, Julia Velikina Departments of Radiology and Medical

More information

Compressed Sensing for Rapid MR Imaging

Compressed Sensing for Rapid MR Imaging Compressed Sensing for Rapid Imaging Michael Lustig1, Juan Santos1, David Donoho2 and John Pauly1 1 Electrical Engineering Department, Stanford University 2 Statistics Department, Stanford University rapid

More information

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Sparse sampling in MRI: From basic theory to clinical application R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Objective Provide an intuitive overview of compressed sensing

More information

Deep convolutional neural networks for accelerated dynamic magnetic resonance imaging

Deep convolutional neural networks for accelerated dynamic magnetic resonance imaging Deep convolutional neural networks for accelerated dynamic magnetic resonance imaging Christopher M. Sandino 1 Neerav Dixit 1 Joseph Y. Cheng 2 Shreyas S. Vasanawala 2 1 Department of Electrical Engineering,

More information

Multi-Input Cardiac Image Super-Resolution using Convolutional Neural Networks

Multi-Input Cardiac Image Super-Resolution using Convolutional Neural Networks Multi-Input Cardiac Image Super-Resolution using Convolutional Neural Networks Ozan Oktay, Wenjia Bai, Matthew Lee, Ricardo Guerrero, Konstantinos Kamnitsas, Jose Caballero, Antonio de Marvao, Stuart Cook,

More information

Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing

Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing Accelerated MRI Techniques: Basics of Parallel Imaging and Compressed Sensing Peng Hu, Ph.D. Associate Professor Department of Radiological Sciences PengHu@mednet.ucla.edu 310-267-6838 MRI... MRI has low

More information

Functional MRI in Clinical Research and Practice Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing Functional MRI in Clinical Research and Practice Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization

More information

Compressed Sensing Reconstructions for Dynamic Contrast Enhanced MRI

Compressed Sensing Reconstructions for Dynamic Contrast Enhanced MRI 1 Compressed Sensing Reconstructions for Dynamic Contrast Enhanced MRI Kevin T. Looby klooby@stanford.edu ABSTRACT The temporal resolution necessary for dynamic contrast enhanced (DCE) magnetic resonance

More information

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing

G Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine. Compressed Sensing G16.4428 Practical Magnetic Resonance Imaging II Sackler Institute of Biomedical Sciences New York University School of Medicine Compressed Sensing Ricardo Otazo, PhD ricardo.otazo@nyumc.org Compressed

More information

Pre-processing of ASL data T CT

Pre-processing of ASL data T CT Wed October 2, 2013 Image Processing Pre-processing: motion correction, denoising, outlier detection Alessandra Bertoldo Pre-processing of ASL data T CT C T C Single TI ASL T T T T C CCC average Pre-processing

More information

Basic fmri Design and Analysis. Preprocessing

Basic fmri Design and Analysis. Preprocessing Basic fmri Design and Analysis Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial filtering

More information

SPM8 for Basic and Clinical Investigators. Preprocessing

SPM8 for Basic and Clinical Investigators. Preprocessing SPM8 for Basic and Clinical Investigators Preprocessing fmri Preprocessing Slice timing correction Geometric distortion correction Head motion correction Temporal filtering Intensity normalization Spatial

More information

High dynamic range magnetic resonance flow imaging in the abdomen

High dynamic range magnetic resonance flow imaging in the abdomen High dynamic range magnetic resonance flow imaging in the abdomen Christopher M. Sandino EE 367 Project Proposal 1 Motivation Time-resolved, volumetric phase-contrast magnetic resonance imaging (also known

More information

Use of MRI in Radiotherapy: Technical Consideration

Use of MRI in Radiotherapy: Technical Consideration Use of MRI in Radiotherapy: Technical Consideration Yanle Hu, PhD Department of Radiation Oncology, Mayo Clinic Arizona 04/07/2018 2015 MFMER slide-1 Conflict of Interest: None 2015 MFMER slide-2 Objectives

More information

Redundancy Encoding for Fast Dynamic MR Imaging using Structured Sparsity

Redundancy Encoding for Fast Dynamic MR Imaging using Structured Sparsity Redundancy Encoding for Fast Dynamic MR Imaging using Structured Sparsity Vimal Singh and Ahmed H. Tewfik Electrical and Computer Engineering Dept., The University of Texas at Austin, USA Abstract. For

More information

Deep Learning for Fast and Spatially- Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF)

Deep Learning for Fast and Spatially- Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF) Deep Learning for Fast and Spatially- Constrained Tissue Quantification from Highly-Undersampled Data in Magnetic Resonance Fingerprinting (MRF) Zhenghan Fang 1, Yong Chen 1, Mingxia Liu 1, Yiqiang Zhan

More information

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space White Pixel Artifact Caused by a noise spike during acquisition Spike in K-space sinusoid in image space Susceptibility Artifacts Off-resonance artifacts caused by adjacent regions with different

More information

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing Functional Connectivity Preprocessing Geometric distortion Head motion Geometric distortion Head motion EPI Data Are Acquired Serially EPI Data Are Acquired Serially descending 1 EPI Data Are Acquired

More information

DeepASL: Kinetic Model Incorporated Loss for Denoising Arterial Spin Labeled MRI via Deep Residual Learning

DeepASL: Kinetic Model Incorporated Loss for Denoising Arterial Spin Labeled MRI via Deep Residual Learning DeepASL: Kinetic Model Incorporated Loss for Denoising Arterial Spin Labeled MRI via Deep Residual Learning Cagdas Ulas 1, Giles Tetteh 1, Stephan Kaczmarz 2, Christine Preibisch 2, and Bjoern H. Menze

More information

MEDICAL IMAGE ANALYSIS

MEDICAL IMAGE ANALYSIS SECOND EDITION MEDICAL IMAGE ANALYSIS ATAM P. DHAWAN g, A B IEEE Engineering in Medicine and Biology Society, Sponsor IEEE Press Series in Biomedical Engineering Metin Akay, Series Editor +IEEE IEEE PRESS

More information

DeepASL: Kinetic Model Incorporated Loss for Denoising Arterial Spin Labeled MRI via Deep Residual Learning

DeepASL: Kinetic Model Incorporated Loss for Denoising Arterial Spin Labeled MRI via Deep Residual Learning DeepASL: Kinetic Model Incorporated Loss for Denoising Arterial Spin Labeled MRI via Deep Residual Learning Cagdas Ulas 1, Giles Tetteh 1, Stephan Kaczmarz 2, Christine Preibisch 2, and Bjoern H. Menze

More information

6 credits. BMSC-GA Practical Magnetic Resonance Imaging II

6 credits. BMSC-GA Practical Magnetic Resonance Imaging II BMSC-GA 4428 - Practical Magnetic Resonance Imaging II 6 credits Course director: Ricardo Otazo, PhD Course description: This course is a practical introduction to image reconstruction, image analysis

More information

Motion Correction in fmri by Mapping Slice-to-Volume with Concurrent Field-Inhomogeneity Correction

Motion Correction in fmri by Mapping Slice-to-Volume with Concurrent Field-Inhomogeneity Correction Motion Correction in fmri by Mapping Slice-to-Volume with Concurrent Field-Inhomogeneity Correction Desmond T.B. Yeo 1,2, Jeffery A. Fessler 2, and Boklye Kim 1 1 Department of Radiology, University of

More information

Constrained Reconstruction of Sparse Cardiac MR DTI Data

Constrained Reconstruction of Sparse Cardiac MR DTI Data Constrained Reconstruction of Sparse Cardiac MR DTI Data Ganesh Adluru 1,3, Edward Hsu, and Edward V.R. DiBella,3 1 Electrical and Computer Engineering department, 50 S. Central Campus Dr., MEB, University

More information

A Spatio-temporal Denoising Approach based on Total Variation Regularization for Arterial Spin Labeling

A Spatio-temporal Denoising Approach based on Total Variation Regularization for Arterial Spin Labeling A Spatio-temporal Denoising Approach based on Total Variation Regularization for Arterial Spin Labeling Cagdas Ulas 1,2, Stephan Kaczmarz 3, Christine Preibisch 3, Jonathan I Sperl 2, Marion I Menzel 2,

More information

One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models

One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models One Network to Solve Them All Solving Linear Inverse Problems using Deep Projection Models [Supplemental Materials] 1. Network Architecture b ref b ref +1 We now describe the architecture of the networks

More information

An Iterative Approach for Reconstruction of Arbitrary Sparsely Sampled Magnetic Resonance Images

An Iterative Approach for Reconstruction of Arbitrary Sparsely Sampled Magnetic Resonance Images An Iterative Approach for Reconstruction of Arbitrary Sparsely Sampled Magnetic Resonance Images Hamed Pirsiavash¹, Mohammad Soleymani², Gholam-Ali Hossein-Zadeh³ ¹Department of electrical engineering,

More information

Deep Learning for Computer Vision II

Deep Learning for Computer Vision II IIIT Hyderabad Deep Learning for Computer Vision II C. V. Jawahar Paradigm Shift Feature Extraction (SIFT, HoG, ) Part Models / Encoding Classifier Sparrow Feature Learning Classifier Sparrow L 1 L 2 L

More information

MODEL-based recovery of images from noisy and sparse. MoDL: Model Based Deep Learning Architecture for Inverse Problems

MODEL-based recovery of images from noisy and sparse. MoDL: Model Based Deep Learning Architecture for Inverse Problems 1 MoDL: Model Based Deep Learning Architecture for Inverse Problems Hemant K. Aggarwal, Member, IEEE, Merry P. Mani, and Mathews Jacob, Senior Member, IEEE arxiv:1712.02862v3 [cs.cv] 10 Aug 2018 Abstract

More information

MRI Physics II: Gradients, Imaging

MRI Physics II: Gradients, Imaging MRI Physics II: Gradients, Imaging Douglas C., Ph.D. Dept. of Biomedical Engineering University of Michigan, Ann Arbor Magnetic Fields in MRI B 0 The main magnetic field. Always on (0.5-7 T) Magnetizes

More information

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia

Deep learning for dense per-pixel prediction. Chunhua Shen The University of Adelaide, Australia Deep learning for dense per-pixel prediction Chunhua Shen The University of Adelaide, Australia Image understanding Classification error Convolution Neural Networks 0.3 0.2 0.1 Image Classification [Krizhevsky

More information

Collaborative Sparsity and Compressive MRI

Collaborative Sparsity and Compressive MRI Modeling and Computation Seminar February 14, 2013 Table of Contents 1 T2 Estimation 2 Undersampling in MRI 3 Compressed Sensing 4 Model-Based Approach 5 From L1 to L0 6 Spatially Adaptive Sparsity MRI

More information

Information about presenter

Information about presenter Information about presenter 2013-now Engineer R&D ithera Medical GmbH 2011-2013 M.Sc. in Biomedical Computing (TU München) Thesis title: A General Reconstruction Framework for Constrained Optimisation

More information

Single Image Depth Estimation via Deep Learning

Single Image Depth Estimation via Deep Learning Single Image Depth Estimation via Deep Learning Wei Song Stanford University Stanford, CA Abstract The goal of the project is to apply direct supervised deep learning to the problem of monocular depth

More information

Depth Estimation from a Single Image Using a Deep Neural Network Milestone Report

Depth Estimation from a Single Image Using a Deep Neural Network Milestone Report Figure 1: The architecture of the convolutional network. Input: a single view image; Output: a depth map. 3 Related Work In [4] they used depth maps of indoor scenes produced by a Microsoft Kinect to successfully

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

Optimal Sampling Geometries for TV-Norm Reconstruction of fmri Data

Optimal Sampling Geometries for TV-Norm Reconstruction of fmri Data Optimal Sampling Geometries for TV-Norm Reconstruction of fmri Data Oliver M. Jeromin, Student Member, IEEE, Vince D. Calhoun, Senior Member, IEEE, and Marios S. Pattichis, Senior Member, IEEE Abstract

More information

MODEL-BASED FREE-BREATHING CARDIAC MRI RECONSTRUCTION USING DEEP LEARNED & STORM PRIORS: MODL-STORM

MODEL-BASED FREE-BREATHING CARDIAC MRI RECONSTRUCTION USING DEEP LEARNED & STORM PRIORS: MODL-STORM MODEL-BASED FREE-BREATHING CARDIAC MRI RECONSTRUCTION USING DEEP LEARNED & STORM PRIORS: MODL-STORM Sampurna Biswas, Hemant K. Aggarwal, Sunrita Poddar, and Mathews Jacob Department of Electrical and Computer

More information

Structured Prediction using Convolutional Neural Networks

Structured Prediction using Convolutional Neural Networks Overview Structured Prediction using Convolutional Neural Networks Bohyung Han bhhan@postech.ac.kr Computer Vision Lab. Convolutional Neural Networks (CNNs) Structured predictions for low level computer

More information

A Model-Independent, Multi-Image Approach to MR Inhomogeneity Correction

A Model-Independent, Multi-Image Approach to MR Inhomogeneity Correction Tina Memo No. 2007-003 Published in Proc. MIUA 2007 A Model-Independent, Multi-Image Approach to MR Inhomogeneity Correction P. A. Bromiley and N.A. Thacker Last updated 13 / 4 / 2007 Imaging Science and

More information

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION

CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION CT NOISE POWER SPECTRUM FOR FILTERED BACKPROJECTION AND ITERATIVE RECONSTRUCTION Frank Dong, PhD, DABR Diagnostic Physicist, Imaging Institute Cleveland Clinic Foundation and Associate Professor of Radiology

More information

Recovery of Piecewise Smooth Images from Few Fourier Samples

Recovery of Piecewise Smooth Images from Few Fourier Samples Recovery of Piecewise Smooth Images from Few Fourier Samples Greg Ongie*, Mathews Jacob Computational Biomedical Imaging Group (CBIG) University of Iowa SampTA 2015 Washington, D.C. 1. Introduction 2.

More information

Super-resolution MRI through Deep Learning Qing Lyu 13, Chenyu You 23, Hongming Shan 1, Ge Wang 1 *

Super-resolution MRI through Deep Learning Qing Lyu 13, Chenyu You 23, Hongming Shan 1, Ge Wang 1 * Super-resolution MRI through Deep Learning Qing Lyu 13, Chenyu You 23, Hongg Shan 1, Ge Wang 1 * 1 Biomedical Imaging Center, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy,

More information

Lecture 7: Semantic Segmentation

Lecture 7: Semantic Segmentation Semantic Segmentation CSED703R: Deep Learning for Visual Recognition (207F) Segmenting images based on its semantic notion Lecture 7: Semantic Segmentation Bohyung Han Computer Vision Lab. bhhanpostech.ac.kr

More information

Learning Algorithms for Medical Image Analysis. Matteo Santoro slipguru

Learning Algorithms for Medical Image Analysis. Matteo Santoro slipguru Learning Algorithms for Medical Image Analysis Matteo Santoro slipguru santoro@disi.unige.it June 8, 2010 Outline 1. learning-based strategies for quantitative image analysis 2. automatic annotation of

More information

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy

Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform. Xintao Wang Ke Yu Chao Dong Chen Change Loy Recovering Realistic Texture in Image Super-resolution by Deep Spatial Feature Transform Xintao Wang Ke Yu Chao Dong Chen Change Loy Problem enlarge 4 times Low-resolution image High-resolution image Previous

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT Anand P Santhanam Assistant Professor, Department of Radiation Oncology OUTLINE Adaptive radiotherapy for head and

More information

Removing Atmospheric Turbulence

Removing Atmospheric Turbulence Removing Atmospheric Turbulence Xiang Zhu, Peyman Milanfar EE Department University of California, Santa Cruz SIAM Imaging Science, May 20 th, 2012 1 What is the Problem? time 2 Atmospheric Turbulence

More information

Machine Learning for Medical Image Analysis. A. Criminisi

Machine Learning for Medical Image Analysis. A. Criminisi Machine Learning for Medical Image Analysis A. Criminisi Overview Introduction to machine learning Decision forests Applications in medical image analysis Anatomy localization in CT Scans Spine Detection

More information

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis Basic principles of MR image analysis Basic principles of MR image analysis Julien Milles Leiden University Medical Center Terminology of fmri Brain extraction Registration Linear registration Non-linear

More information

TACKLING THE CHALLENGES OF NEXT GENERATION HEALTHCARE

TACKLING THE CHALLENGES OF NEXT GENERATION HEALTHCARE TACKLING THE CHALLENGES OF NEXT GENERATION HEALTHCARE Nicola Rieke, Senior Deep Learning Solution Architect Healthcare EMEA Fausto Milletari, Senior Deep Learning Solution Architect Healthcare NALA INTRODUCTION

More information

Institute of Cardiovascular Science, UCL Centre for Cardiovascular Imaging, London, United Kingdom, 2

Institute of Cardiovascular Science, UCL Centre for Cardiovascular Imaging, London, United Kingdom, 2 Grzegorz Tomasz Kowalik 1, Jennifer Anne Steeden 1, Bejal Pandya 1, David Atkinson 2, Andrew Taylor 1, and Vivek Muthurangu 1 1 Institute of Cardiovascular Science, UCL Centre for Cardiovascular Imaging,

More information

RADIOMICS: potential role in the clinics and challenges

RADIOMICS: potential role in the clinics and challenges 27 giugno 2018 Dipartimento di Fisica Università degli Studi di Milano RADIOMICS: potential role in the clinics and challenges Dr. Francesca Botta Medical Physicist Istituto Europeo di Oncologia (Milano)

More information

Medical Images Analysis and Processing

Medical Images Analysis and Processing Medical Images Analysis and Processing - 25642 Emad Course Introduction Course Information: Type: Graduated Credits: 3 Prerequisites: Digital Image Processing Course Introduction Reference(s): Insight

More information

Introduction to Neuroimaging Janaina Mourao-Miranda

Introduction to Neuroimaging Janaina Mourao-Miranda Introduction to Neuroimaging Janaina Mourao-Miranda Neuroimaging techniques have changed the way neuroscientists address questions about functional anatomy, especially in relation to behavior and clinical

More information

Adaptive Reconstruction Methods for Low-Dose Computed Tomography

Adaptive Reconstruction Methods for Low-Dose Computed Tomography Adaptive Reconstruction Methods for Low-Dose Computed Tomography Joseph Shtok Ph.D. supervisors: Prof. Michael Elad, Dr. Michael Zibulevsky. Technion IIT, Israel, 011 Ph.D. Talk, Apr. 01 Contents of this

More information

Politecnico di Torino. Porto Institutional Repository

Politecnico di Torino. Porto Institutional Repository Politecnico di Torino Porto Institutional Repository [Proceeding] Motion artifact correction in ASL images: automated procedure an improved Original Citation: Di Cataldo S., Ficarra E., Acquaviva A., Macii

More information

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 MIT OpenCourseWare http://ocw.mit.edu HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

FMRI Pre-Processing and Model- Based Statistics

FMRI Pre-Processing and Model- Based Statistics FMRI Pre-Processing and Model- Based Statistics Brief intro to FMRI experiments and analysis FMRI pre-stats image processing Simple Single-Subject Statistics Multi-Level FMRI Analysis Advanced FMRI Analysis

More information

Multi-Label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations

Multi-Label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations Multi-Label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations Christian Payer 1,, Darko Štern2, Horst Bischof 1, and Martin Urschler 2,3 1 Institute for Computer Graphics and Vision,

More information

CNN for Low Level Image Processing. Huanjing Yue

CNN for Low Level Image Processing. Huanjing Yue CNN for Low Level Image Processing Huanjing Yue 2017.11 1 Deep Learning for Image Restoration General formulation: min Θ L( x, x) s. t. x = F(y; Θ) Loss function Parameters to be learned Key issues The

More information

Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology

Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology Abbie M. Diak, PhD Loyola University Medical Center Dept. of Radiation Oncology Outline High Spectral and Spatial Resolution MR Imaging (HiSS) What it is How to do it Ways to use it HiSS for Radiation

More information

Functional MRI data preprocessing. Cyril Pernet, PhD

Functional MRI data preprocessing. Cyril Pernet, PhD Functional MRI data preprocessing Cyril Pernet, PhD Data have been acquired, what s s next? time No matter the design, multiple volumes (made from multiple slices) have been acquired in time. Before getting

More information

Single Breath-hold Abdominal T 1 Mapping using 3-D Cartesian Sampling and Spatiotemporally Constrained Reconstruction

Single Breath-hold Abdominal T 1 Mapping using 3-D Cartesian Sampling and Spatiotemporally Constrained Reconstruction Single Breath-hold Abdominal T 1 Mapping using 3-D Cartesian Sampling and Spatiotemporally Constrained Reconstruction Felix Lugauer 1,3, Jens Wetzl 1, Christoph Forman 2, Manuel Schneider 1, Berthold Kiefer

More information

Higher Degree Total Variation for 3-D Image Recovery

Higher Degree Total Variation for 3-D Image Recovery Higher Degree Total Variation for 3-D Image Recovery Greg Ongie*, Yue Hu, Mathews Jacob Computational Biomedical Imaging Group (CBIG) University of Iowa ISBI 2014 Beijing, China Motivation: Compressed

More information

Detecting Anatomical Landmarks from Limited Medical Imaging Data using Two-Stage Task-Oriented Deep Neural Networks

Detecting Anatomical Landmarks from Limited Medical Imaging Data using Two-Stage Task-Oriented Deep Neural Networks IEEE TRANSACTIONS ON IMAGE PROCESSING Detecting Anatomical Landmarks from Limited Medical Imaging Data using Two-Stage Task-Oriented Deep Neural Networks Jun Zhang, Member, IEEE, Mingxia Liu, Member, IEEE,

More information

Single Image Super Resolution of Textures via CNNs. Andrew Palmer

Single Image Super Resolution of Textures via CNNs. Andrew Palmer Single Image Super Resolution of Textures via CNNs Andrew Palmer What is Super Resolution (SR)? Simple: Obtain one or more high-resolution images from one or more low-resolution ones Many, many applications

More information

Role of Parallel Imaging in High Field Functional MRI

Role of Parallel Imaging in High Field Functional MRI Role of Parallel Imaging in High Field Functional MRI Douglas C. Noll & Bradley P. Sutton Department of Biomedical Engineering, University of Michigan Supported by NIH Grant DA15410 & The Whitaker Foundation

More information

Deep Learning for Visual Manipulation and Synthesis

Deep Learning for Visual Manipulation and Synthesis Deep Learning for Visual Manipulation and Synthesis Jun-Yan Zhu 朱俊彦 UC Berkeley 2017/01/11 @ VALSE What is visual manipulation? Image Editing Program input photo User Input result Desired output: stay

More information

Introduction to fmri. Pre-processing

Introduction to fmri. Pre-processing Introduction to fmri Pre-processing Tibor Auer Department of Psychology Research Fellow in MRI Data Types Anatomical data: T 1 -weighted, 3D, 1/subject or session - (ME)MPRAGE/FLASH sequence, undistorted

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

Sairam Geethanath, Ph.D. Medical Imaging Research Centre Dayananda Sagar Institutions, Bangalore

Sairam Geethanath, Ph.D. Medical Imaging Research Centre Dayananda Sagar Institutions, Bangalore Sairam Geethanath, Ph.D. Medical Imaging Research Centre Dayananda Sagar Institutions, Bangalore Contrast SNR MRI Speed Data provided by Baek Number of non-zero coefficients in a data vector Importance

More information

Bidirectional Recurrent Convolutional Networks for Video Super-Resolution

Bidirectional Recurrent Convolutional Networks for Video Super-Resolution Bidirectional Recurrent Convolutional Networks for Video Super-Resolution Qi Zhang & Yan Huang Center for Research on Intelligent Perception and Computing (CRIPAC) National Laboratory of Pattern Recognition

More information

Deconvolution Networks

Deconvolution Networks Deconvolution Networks Johan Brynolfsson Mathematical Statistics Centre for Mathematical Sciences Lund University December 6th 2016 1 / 27 Deconvolution Neural Networks 2 / 27 Image Deconvolution True

More information

A Study of Nonlinear Approaches to Parallel Magnetic Resonance Imaging

A Study of Nonlinear Approaches to Parallel Magnetic Resonance Imaging University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations December 2012 A Study of Nonlinear Approaches to Parallel Magnetic Resonance Imaging Yuchou Chang University of Wisconsin-Milwaukee

More information

Deep Learning of Compressed Sensing Operators with Structural Similarity Loss

Deep Learning of Compressed Sensing Operators with Structural Similarity Loss Deep Learning of Compressed Sensing Operators with Structural Similarity Loss Y. Zur and A. Adler Abstract Compressed sensing CS is a signal processing framework for efficiently reconstructing a signal

More information

SIIM 2017 Scientific Session Analytics & Deep Learning Part 2 Friday, June 2 8:00 am 9:30 am

SIIM 2017 Scientific Session Analytics & Deep Learning Part 2 Friday, June 2 8:00 am 9:30 am SIIM 2017 Scientific Session Analytics & Deep Learning Part 2 Friday, June 2 8:00 am 9:30 am Performance of Deep Convolutional Neural Networks for Classification of Acute Territorial Infarct on Brain MRI:

More information

Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies

Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies g Deviceless respiratory motion correction in PET imaging exploring the potential of novel data driven strategies Presented by Adam Kesner, Ph.D., DABR Assistant Professor, Division of Radiological Sciences,

More information

arxiv: v1 [cs.cv] 17 May 2017

arxiv: v1 [cs.cv] 17 May 2017 Automatic Vertebra Labeling in Large-Scale 3D CT using Deep Image-to-Image Network with Message Passing and Sparsity Regularization arxiv:1705.05998v1 [cs.cv] 17 May 2017 Dong Yang 1, Tao Xiong 2, Daguang

More information

Off-the-Grid Compressive Imaging: Recovery of Piecewise Constant Images from Few Fourier Samples

Off-the-Grid Compressive Imaging: Recovery of Piecewise Constant Images from Few Fourier Samples Off-the-Grid Compressive Imaging: Recovery of Piecewise Constant Images from Few Fourier Samples Greg Ongie PhD Candidate Department of Applied Math and Computational Sciences University of Iowa April

More information

ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL

ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL ASAP was developed as part of the COST Action "Arterial Spin Labelling Initiative in Dementia (AID)" by: Department of Neuroimaging, Institute

More information

Denoising the Spectral Information of Non Stationary Image using DWT

Denoising the Spectral Information of Non Stationary Image using DWT Denoising the Spectral Information of Non Stationary Image using DWT Dr.DolaSanjayS 1, P. Geetha Lavanya 2, P.Jagapathi Raju 3, M.Sai Kishore 4, T.N.V.Krishna Priya 5 1 Principal, Ramachandra College of

More information

Kaggle Data Science Bowl 2017 Technical Report

Kaggle Data Science Bowl 2017 Technical Report Kaggle Data Science Bowl 2017 Technical Report qfpxfd Team May 11, 2017 1 Team Members Table 1: Team members Name E-Mail University Jia Ding dingjia@pku.edu.cn Peking University, Beijing, China Aoxue Li

More information

Deep Learning for Computer Vision with MATLAB By Jon Cherrie

Deep Learning for Computer Vision with MATLAB By Jon Cherrie Deep Learning for Computer Vision with MATLAB By Jon Cherrie 2015 The MathWorks, Inc. 1 Deep learning is getting a lot of attention "Dahl and his colleagues won $22,000 with a deeplearning system. 'We

More information

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 10, OCTOBER

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 10, OCTOBER IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 10, OCTOBER 2017 4753 Detecting Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage Task-Oriented Deep Neural Networks Jun Zhang,

More information

Methods for data preprocessing

Methods for data preprocessing Methods for data preprocessing John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Overview Voxel-Based Morphometry Morphometry in general Volumetrics VBM preprocessing

More information

List of Accepted Papers for ICVGIP 2018

List of Accepted Papers for ICVGIP 2018 List of Accepted Papers for ICVGIP 2018 Paper ID ACM Article Title 3 1 PredGAN - A deep multi-scale video prediction framework for anomaly detection in videos 7 2 Handwritten Essay Grading on Mobiles using

More information

STAR: Spatio-Temporal Architecture for super-resolution in Low-Dose CT Perfusion

STAR: Spatio-Temporal Architecture for super-resolution in Low-Dose CT Perfusion STAR: Spatio-Temporal Architecture for super-resolution in Low-Dose CT Perfusion Yao Xiao 1, Ajay Gupta 2, Pina C. Sanelli 3, Ruogu Fang 1 1 University of Florida, Gainesville, FL 2 Weill Cornell Medical

More information

Combination of Parallel Imaging and Compressed Sensing for high acceleration factor at 7T

Combination of Parallel Imaging and Compressed Sensing for high acceleration factor at 7T Combination of Parallel Imaging and Compressed Sensing for high acceleration factor at 7T DEDALE Workshop Nice Loubna EL GUEDDARI (NeuroSPin) Joint work with: Carole LAZARUS, Alexandre VIGNAUD and Philippe

More information

Randomized sampling strategies

Randomized sampling strategies Randomized sampling strategies Felix J. Herrmann SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia SLIM Drivers & Acquisition costs impediments Full-waveform inversion

More information

Fast Imaging Trajectories: Non-Cartesian Sampling (1)

Fast Imaging Trajectories: Non-Cartesian Sampling (1) Fast Imaging Trajectories: Non-Cartesian Sampling (1) M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.05.03 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business

More information

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group Deep Learning Vladimir Golkov Technical University of Munich Computer Vision Group 1D Input, 1D Output target input 2 2D Input, 1D Output: Data Distribution Complexity Imagine many dimensions (data occupies

More information

Compressed Sensing Algorithm for Real-Time Doppler Ultrasound Image Reconstruction

Compressed Sensing Algorithm for Real-Time Doppler Ultrasound Image Reconstruction Mathematical Modelling and Applications 2017; 2(6): 75-80 http://www.sciencepublishinggroup.com/j/mma doi: 10.11648/j.mma.20170206.14 ISSN: 2575-1786 (Print); ISSN: 2575-1794 (Online) Compressed Sensing

More information

Compressive Sensing Based Image Reconstruction using Wavelet Transform

Compressive Sensing Based Image Reconstruction using Wavelet Transform Compressive Sensing Based Image Reconstruction using Wavelet Transform Sherin C Abraham #1, Ketki Pathak *2, Jigna J Patel #3 # Electronics & Communication department, Gujarat Technological University

More information

The Near Future in Cardiac CT Image Reconstruction

The Near Future in Cardiac CT Image Reconstruction SCCT 2010 The Near Future in Cardiac CT Image Reconstruction Marc Kachelrieß Institute of Medical Physics (IMP) Friedrich-Alexander Alexander-University Erlangen-Nürnberg rnberg www.imp.uni-erlangen.de

More information

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis

ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis ECE 8201: Low-dimensional Signal Models for High-dimensional Data Analysis Yuejie Chi Departments of ECE and BMI The Ohio State University September 24, 2015 Time, location, and office hours Time: Tue/Thu

More information

Learning based face hallucination techniques: A survey

Learning based face hallucination techniques: A survey Vol. 3 (2014-15) pp. 37-45. : A survey Premitha Premnath K Department of Computer Science & Engineering Vidya Academy of Science & Technology Thrissur - 680501, Kerala, India (email: premithakpnath@gmail.com)

More information