Airborne IP for Kimberlite

Size: px
Start display at page:

Download "Airborne IP for Kimberlite"

Transcription

1 The University of British Columbia Geophysical Inversion Facility Airborne IP for Kimberlite Douglas W. Oldenburg and Seogi Kang IP workshop 2016 June 7 th 2016 gif.eos.ubc.ca slide 1

2 Acknowledgements Ken Witherly, Joel Jansen, Sean Walker Pereguine Diamonds S Devriese, K. Davis D. Fournier, M. McMillan Others in the UBC-Gif group slide 2

3 Motivation: negative transients Tli Kwi Cho (TKC) VTEM data Signature of chargeable rock (Weidelt, 1982) At 90 micro-s TKC kimberlite complex VTEM set-up Decay curve slide 3

4 Kimberlite exploration Kimberlite pipe structure ATEM data Devriese et al. (2016) Questions: How to deal with negatives in airborne time domain EM (ATEM) data Can we recover a 3D chargeability distribution? Does it have practical utility in diamond exploration? slide 4

5 Outline Complex conductivity for kimberlites IP for inductive sources 3D TEM-IP inversion workflow Airborne IP inversion for VTEM data at TKC A 3D rock model at TKC Summary slide 5

6 Complex conductivity Cole-Cole model (Pelton et al., 1978) Frequency domain Time domain Inverse Fourier transform slide 6

7 Complex impedances at TKC From GSC Lab Two kimberlite samples: XVK and VK Geological Survey of Canada (2016) Kimberlite pipe structure Estimated Cole-Cole parameters Devriese et al. (2016) slide 7

8 3D TEM inversion workflow: grounded source Workflow Invert TEM data, to recover Compute IP datum Remove EM responses Linearized equations Invert data, recover pseudo-chargeability Estimate intrinsic IP parameters slide 8

9 3D TEM inversion workflow: grounded source Workflow Invert TEM data, to recover Compute IP datum Remove EM responses Estimated A1 A3 A2 A4 Linearized equations Invert data, recover pseudo-chargeability Estimate intrinsic IP parameters A1 A3 A4 slide 9

10 3D TEM inversion workflow: grounded source Workflow Invert TEM data, to recover IP = Observation - Fundamental Compute IP datum Remove EM responses Linearized equations Invert data, recover pseudo-chargeability Estimate intrinsic IP parameters slide 10

11 3D TEM inversion workflow: grounded source Workflow Invert TEM data, to recover Compute IP datum Remove EM responses Linearized equations Invert data, recover pseudo-chargeability Estimate intrinsic IP parameters Seigel (1959) Oldenburg and Li (1994) slide 11

12 3D TEM inversion workflow: grounded source Workflow Invert TEM data, to recover Compute IP datum Remove EM responses Linearized equations Recovered pseudo-chargeability (80 ms) Invert data, recover pseudo-chargeability Estimate intrinsic IP parameters slide 12

13 3D TEM inversion workflow: grounded source Workflow Invert TEM data, to recover Compute IP datum Remove EM responses Linearized equations Invert data, recover pseudo-chargeability Recovered intrinsic IP parameters: Pseudo-chargeability at i-th pixel Estimate intrinsic IP parameters slide 13

14 Inductive source IP Workflow Invert TEM data, to recover Compute IP datum Remove EM responses Linearized equations Invert data, recover pseudo-chargeability Workflow is the same but Polarization currents generated by a transient electric field Airborne IP data have many Tx-Rx pairs Estimate intrinsic IP parameters slide 14

15 IP currents Ohm s law Superscripts: F: Fundamental IP: Induced polarization where I (t) slide 15

16 Linearization IP current density Pseudo-chargeability Approximating slide 16

17 Linearization By applying Biot-Savart s law (similar to MIP) We can have linear form: (Seigel, 1974; Chen et al., 2006) slide 17

18 Challenge: multiple Tx-Rx pairs Chargeable body Every transmitter has different excitation i-th cell (i=1,,nc) k-th transmitter (k=1,, ntx) Seek for Effective pseudochargeability slide 18

19 Field example: TKC slide 19

20 Backgrounds of TKC TKC kimberlite complex Dighem map Kimberlite deposit located 360 km north east Yellowknife, NWT Discovered by airborne geophysics Two pipes: - DO-18 (north) - DO-27 (south) slide 20

21 VTEM data at TKC VTEM data DO-18: even the earliest time is negative (A1) - No data for TEM inversion DO-27: late time has strong negatives (A4) Resistive background - Away from pipes data are noisy slide 21

22 Step 1: Conductivity inversion Cooperative inversion of VTEM and Dighem Dighem: no negatives Fournier et al. (2016) Estimated 3D conductivity Observed. vs. Estimated slide 22

23 Step 2: EM-decoupling IP = Observation - Fundamental 130 micro-s Observed Fundamental slide 23

24 Step 2: EM-decoupling IP = Observation - Fundamental 130 micro-s Observed Fundamental IP slide 24

25 Step 2: EM-decoupling IP = Observation - Fundamental 410 micro-s Observed Fundamental slide 25

26 Step 2: EM-decoupling IP = Observation - Fundamental 410 micro-s Observed Fundamental IP slide 26

27 Step 3: 3D IP inversion Recovered 3D pseudo chargeability 130 micro-s 410 micro-s slide 27

28 Step 4: Estimate η and τ Pseudo-chargeability at i-th pixel Time curves Recovered and A1 A4 slide 28

29 Step 4: Estimate η and τ Comparison with rock samples Estimated Cole-Cole parameters slide 29

30 What can we infer from IP? Anomalous pseudo-chargeability Pseudo-chargeability A1 A1 A2 A4 A3 A4 A3 A4 can be distinguished from A1- A3 (time constant) A3 can be distinguished from A1- A2 (chargeability) XVK DO-18 pipe: small time constant VK PK DO-27 pipe: two different chargeable bodies (small and large time constant) slide 30

31 Conclusions We can invert airborne TEM data 3D TEM-IP inversion workflow slide 31

32 Conclusions We can invert airborne TEM data 3D TEM-IP inversion workflow Apply this to TKC field example slide 32

33 Conclusions We can invert airborne TEM data 3D TEM-IP inversion workflow Apply this to TKC field example Is our question answered? Can airborne IP helps kimberlite exploration? XVK VK PK slide 33

34 Thank you slide 34

35 What can we infer from IP and σ? Anomalous contour map Pseudo-chargeability Conductivity Most of IP bodies have high conductivity slide 35

36 Can airborne IP help? Kimberlite pipe structure Physical Properties Division Dens. Susc. Cond. Charg. XVK Low Med. High? VK Low Med. High? PK Low Med. High? HK Low High Med.? Till Med. Low Med.? Devriese et al. (2016) Host rock Med. Low Low? Various Rock units: Kimberlites: XVK/VK/PK/HK Till, Host rock Different physical prop. Various airborne geophysical surveys: Mag / Gravity AFEM / ATEM Everything inverted in 3D slide 36

37 A final petro physical model From Geophysics A1 slide 37

38 A final petro physical model From Geophysics A1 Division Dens. Susc. Cond. Early Charg. Late Charg. R0 Med. Low Low Low Low R1 Low Med. Low Low Low R2 Low High Low Low Low R3 Low Med. High Low Low R4 Low Med. High Low High R5 Low Med. High High Low slide 38

39 A final petro physical model From Geophysics From Drillings A1 Division Dens. Susc. Cond. Early Charg. Late Charg. Kimberl ites R0 Med. Low Low Low Low? R1 Low Med. Low Low Low? R2 Low High Low Low Low HK R3 Low Med. High Low Low? R4 Low Med. High Low High PK R5 Low Med. High High Low VK, XVK slide 39

Three-dimensional inversion of borehole, time-domain, electromagnetic data for highly conductive ore-bodies.

Three-dimensional inversion of borehole, time-domain, electromagnetic data for highly conductive ore-bodies. Three-dimensional inversion of borehole, time-domain, electromagnetic data for highly conductive ore-bodies. Nigel Phillips, Doug Oldenburg, Eldad Haber, Roman Shekhtman. UBC-Geophysical Inversion Facility

More information

Introduction to Geophysical Modelling and Inversion

Introduction to Geophysical Modelling and Inversion Introduction to Geophysical Modelling and Inversion James Reid GEOPHYSICAL INVERSION FOR MINERAL EXPLORERS ASEG-WA, SEPTEMBER 2014 @ 2014 Mira Geoscience Ltd. Forward modelling vs. inversion Forward Modelling:

More information

3D modeling of the Quest Projects Geophysical Datasets. Nigel Phillips

3D modeling of the Quest Projects Geophysical Datasets. Nigel Phillips 3D modeling of the Quest Projects Geophysical Datasets Nigel Phillips Advanced Geophysical Interpretation Centre Undercover Exploration workshop KEG-25 April 2012 Mineral Physical Properties: density sus.

More information

QUEST Project: 3D inversion modelling, integration, and visualization of airborne gravity, magnetic, and electromagnetic data, BC, Canada.

QUEST Project: 3D inversion modelling, integration, and visualization of airborne gravity, magnetic, and electromagnetic data, BC, Canada. Mira Geoscience Limited 409 Granville Street, Suite 512 B Vancouver, BC Canada V6C 1T2 Tel: (778) 329-0430 Fax: (778) 329-0668 info@mirageoscience.com www.mirageoscience.com QUEST Project: 3D inversion

More information

H3DTD MUMPS. A Program Library for Forward Modelling of Multi-Transmitter, Time-Domain Electromagnetic Data over 3D structures.

H3DTD MUMPS. A Program Library for Forward Modelling of Multi-Transmitter, Time-Domain Electromagnetic Data over 3D structures. H3DTD MUMPS A Program Library for Forward Modelling of Multi-Transmitter, Time-Domain Electromagnetic Data over 3D structures. Version 1.6 Developed under the MITEM consortium Research Project Multi-Source

More information

We 2MIN 02 Data Density and Resolution Power in 3D DC Resistivity Surveys

We 2MIN 02 Data Density and Resolution Power in 3D DC Resistivity Surveys We 2MIN 02 Data Density and Resolution Power in 3D DC Resistivity Surveys M. Gharibi 1 *, R. Sharpe 1 1 Quantec Geoscience Ltd Summary Resolution power of a field 3D DC dataset is examined by gradually

More information

Lab 6 EOSC 350. There are 15 questions labeled Q, some with multiple parts. Provide solutions for all of them.

Lab 6 EOSC 350. There are 15 questions labeled Q, some with multiple parts. Provide solutions for all of them. Lab 6: GPR Part I TA: Seogi Kang e-mail: sgkang09@gmail.com office: ESB 4021 DUE: October 27 & October 29, 2014 Overview Ground Penetrating Radar (GPR) uses electromagnetic energy to excite a response

More information

EOSC 454 Lab #3. 3D Magnetics. Date: Feb 3, Due: Feb 10, 2009.

EOSC 454 Lab #3. 3D Magnetics. Date: Feb 3, Due: Feb 10, 2009. EOSC 454 Lab #3 3D Magnetics Date: Feb 3, 2009. Due: Feb 10, 2009. 1 Introduction In this exercise you will perform both forward models and inversions of magnetic data. You will compare the response of

More information

Regional 3D inversion modelling of airborne gravity, magnetic, and electromagnetic data, Central BC, Canada.

Regional 3D inversion modelling of airborne gravity, magnetic, and electromagnetic data, Central BC, Canada. Mira Geoscience Limited 409 Granville Street, Suite 512 B Vancouver, BC Canada V6C 1T2 Tel: (778) 329-0430 Fax: (778) 329-0668 info@mirageoscience.com www.mirageoscience.com Regional 3D inversion modelling

More information

Electromagnetic migration of marine CSEM data in areas with rough bathymetry Michael S. Zhdanov and Martin Čuma*, University of Utah

Electromagnetic migration of marine CSEM data in areas with rough bathymetry Michael S. Zhdanov and Martin Čuma*, University of Utah Electromagnetic migration of marine CSEM data in areas with rough bathymetry Michael S. Zhdanov and Martin Čuma*, University of Utah Summary In this paper we present a new approach to the interpretation

More information

3D Inversion of Time-Domain Electromagnetic Data for Ground Water Aquifers

3D Inversion of Time-Domain Electromagnetic Data for Ground Water Aquifers 3D Inversion of Time-Domain Electromagnetic Data for Ground Water Aquifers Elliot M. Holtham 1, Mike McMillan 1 and Eldad Haber 2 (1) Computational Geosciences Inc. (2) University of British Columbia Summary

More information

Data Processing for Classification. Dean Keiswetter, Ph.D., M.B.A. Chief Scientist, Leidos Holdings Inc.

Data Processing for Classification. Dean Keiswetter, Ph.D., M.B.A. Chief Scientist, Leidos Holdings Inc. Data Processing for Classification Dean Keiswetter, Ph.D., M.B.A. Chief Scientist, Leidos Holdings Inc. Data Processing Objective Determine which anomalies, if any, result from buried munitions The result

More information

2D Inversions of 3D Marine CSEM Data Hung-Wen Tseng*, Lucy MacGregor, and Rolf V. Ackermann, Rock Solid Images, Inc.

2D Inversions of 3D Marine CSEM Data Hung-Wen Tseng*, Lucy MacGregor, and Rolf V. Ackermann, Rock Solid Images, Inc. 2D Inversions of 3D Marine CSEM Data Hung-Wen Tseng*, Lucy MacGregor, and Rolf V. Ackermann, Rock Solid Images, Inc. Summary A combination of 3D forward simulations and 2D and 3D inversions have been used

More information

RECONSTRUCTION AND ENHANCEMENT OF CURRENT DISTRIBUTION ON CURVED SURFACES FROM BIOMAGNETIC FIELDS USING POCS

RECONSTRUCTION AND ENHANCEMENT OF CURRENT DISTRIBUTION ON CURVED SURFACES FROM BIOMAGNETIC FIELDS USING POCS DRAFT: October, 4: File: ramon-et-al pp.4 Page 4 Sheet of 8 CANADIAN APPLIED MATHEMATICS QUARTERLY Volume, Number, Summer RECONSTRUCTION AND ENHANCEMENT OF CURRENT DISTRIBUTION ON CURVED SURFACES FROM

More information

Inversion concepts: Introducing geophysical inversion

Inversion concepts: Introducing geophysical inversion Inversion concepts: Introducing geophysical inversion This chapter deals with basic concepts underlying geophysical inversion. Four sections provide an overview of essential ideas without mentioning mathematical

More information

Application of wavelet theory to the analysis of gravity data. P. Hornby, F. Boschetti* and F. Horowitz, Division of Exploration and Mining, CSIRO,

Application of wavelet theory to the analysis of gravity data. P. Hornby, F. Boschetti* and F. Horowitz, Division of Exploration and Mining, CSIRO, Application of wavelet theory to the analysis of gravity data. P. Hornby, F. Boschetti* and F. Horowitz, Division of Exploration and Mining, CSIRO, Australia. Summary. The fundamental equations of potential

More information

UXO DISCRIMINATION USING TIME DOMAIN ELECTROMAGNETIC INDUCTION

UXO DISCRIMINATION USING TIME DOMAIN ELECTROMAGNETIC INDUCTION UXO DISCRIMINATION USING TIME DOMAIN ELECTROMAGNETIC INDUCTION Introduction Leonard R. Pasion, Stephen D. Billings, and Douglas W. Oldenburg UBC - Geophysical Inversion Facility Department of Earth and

More information

Computing Geologically Consistent Models from Geophysical Data

Computing Geologically Consistent Models from Geophysical Data Computing Geologically Consistent Models from Geophysical Data by Justin Granek B.Sc., Acadia Universiy, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

More information

Integral equation method for anisotropic inversion of towed streamer EM data: theory and application for the TWOP survey

Integral equation method for anisotropic inversion of towed streamer EM data: theory and application for the TWOP survey Integral equation method for anisotropic inversion of towed streamer EM data: theory and application for the TWOP survey Michael S. Zhdanov 1,2, Masashi Endo 1, Daeung Yoon 1,2, Johan Mattsson 3, and Jonathan

More information

RECONSTRUCTION AND ENHANCEMENT OF CURRENT DISTRIBUTION ON CURVED SURFACES FROM BIOMAGNETIC FIELDS USING POCS

RECONSTRUCTION AND ENHANCEMENT OF CURRENT DISTRIBUTION ON CURVED SURFACES FROM BIOMAGNETIC FIELDS USING POCS CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 10, Number 2, Summer 2002 RECONSTRUCTION AND ENHANCEMENT OF CURRENT DISTRIBUTION ON CURVED SURFACES FROM BIOMAGNETIC FIELDS USING POCS Based on a presentation

More information

A Framework for the Upscaling of the Electrical Conductivity in the Quasi-static Maxwell s Equations

A Framework for the Upscaling of the Electrical Conductivity in the Quasi-static Maxwell s Equations A Framework for the Upscaling of the Electrical Conductivity in the Quasi-static Maxwell s Equations arxiv:1610.02948v1 [math.na] 7 Oct 2016 L. A. Caudillo-Mata*, E. Haber, L. J. Heagy, and C. Schwarzbach

More information

Seismic Reflection Method

Seismic Reflection Method Seismic Reflection Method 1/GPH221L9 I. Introduction and General considerations Seismic reflection is the most widely used geophysical technique. It can be used to derive important details about the geometry

More information

Interpreting Data in IX1D v 3 A Tutorial

Interpreting Data in IX1D v 3 A Tutorial Interpreting Data in IX1D v 3 A Tutorial Version 1.0 2006 Interpex Limited All rights reserved Select a Sounding from the Map Display using the Mouse If you right-click on the sounding, there are more

More information

Unstructured grid modelling to create 3-D Earth models that unify geological and geophysical information

Unstructured grid modelling to create 3-D Earth models that unify geological and geophysical information Unstructured grid modelling to create 3-D Earth models that unify geological and geophysical information Peter Lelièvre, Angela Carter-McAuslan, Cassandra Tycholiz, Colin Farquharson and Charles Hurich

More information

IP Post-Process Software

IP Post-Process Software IP Post-Process Software Version 1.2.4 Instruction Manual 860 boul. de la Chaudière, suite 200 Québec (QC), Canada, G1X 4B7 Tel.: +1 (418) 877-4249 Fax: +1 (418) 877-4054 E-Mail: gdd@gdd.ca Web site: www.gdd.ca

More information

Schemes for improving efficiency of pixel-based inversion algorithms for electromagnetic loggingwhile-drilling

Schemes for improving efficiency of pixel-based inversion algorithms for electromagnetic loggingwhile-drilling Schemes for improving efficiency of pixel-based inversion algorithms for electromagnetic loggingwhile-drilling measurements Y. Lin, A. Abubakar, T. M. Habashy, G. Pan, M. Li and V. Druskin, Schlumberger-Doll

More information

IP RECEIVER. New features GDD Rx program. Models GRx8-32 or GRx8mini. Version

IP RECEIVER. New features GDD Rx program. Models GRx8-32 or GRx8mini. Version IP RECEIVER Models GRx8-32 or GRx8mini New features GDD Rx program Version 4.2.40 860 boul. de la Chaudière, suite 200 Québec (Qc), Canada, G1X 4B7 Tel.: +1 (41) 877-4249 Fax: +1 (418) 877-4054 E-Mail:

More information

EMIGMA Premium and Professional editions

EMIGMA Premium and Professional editions EMIGMA Premium and Professional editions EMIGMA Overview EMIGMA Database Version Database Design Objectives Reduce user s time required for modelling and data analyses Enhance data analyses capabilities

More information

Site map 1 of 1. Complete 3D mag/grav workflow outline. 1. Setting up for inversion. 1. Introduction

Site map 1 of 1. Complete 3D mag/grav workflow outline. 1. Setting up for inversion. 1. Introduction Site map 1 of 1 Complete 3D mag/grav workflow outline 0. Introduction Goals Using the workflow Best practice 4. Relevant assumptions 5. Codes needed 6. Examples Setting up for inversion Clarify the problem

More information

GRAV3D Version 3.0. A Program Library for Forward Modelling and Inversion of Gravity Data over 3D Structures.

GRAV3D Version 3.0. A Program Library for Forward Modelling and Inversion of Gravity Data over 3D Structures. GRAV3D Version 3.0 A Program Library for Forward Modelling and Inversion of Gravity Data over 3D Structures. UBC-Geophysical Inversion Facility Department of Earth and Ocean Sciences University of British

More information

The Polarization Cell Replacement (PCRH)

The Polarization Cell Replacement (PCRH) The Polarization Cell Replacement (PCRH) Installation Instructions Introduction The Polarization Cell Replacement for use in Hazardous Locations (PCRH) is a solid-state DC isolation/ac grounding (or coupling)

More information

Pre-Stack Seismic Data Analysis with 3D Visualization A Case Study*

Pre-Stack Seismic Data Analysis with 3D Visualization A Case Study* Pre-Stack Seismic Data Analysis with 3D Visualization A Case Study* Yongyi Li 1, Josh Feng 1, and Maggie Jiao 1 Search and Discovery Article #41546 (2015)** Posted February 16, 2015 *Adapted from extended

More information

Tu A4 09 3D CSEM Inversion Of Data Affected by Infrastructure

Tu A4 09 3D CSEM Inversion Of Data Affected by Infrastructure Tu A4 09 3D CSEM Inversion Of Data Affected by Infrastructure J.P. Morten (EMGS), L. Berre* (EMGS), S. de la Kethulle de Ryhove (EMGS), V. Markhus (EMGS) Summary We consider the effect of metal infrastructure

More information

Processing your Induced Polarization Data

Processing your Induced Polarization Data Processing your Induced Polarization Data This Processing your IP Data How-To Guide will introduce you to a variety of IP processing tools including how to: 1. Set up a database for IP processing 2. Adding

More information

Generating 50cm elevation contours from space PhotoSat s s new stereo satellite elevation processing system

Generating 50cm elevation contours from space PhotoSat s s new stereo satellite elevation processing system Generating 50cm elevation contours from space PhotoSat s s new stereo satellite elevation processing system Gerry Mitchell PhotoSat November 2009 PhotoSat stereo satellite processing history PhotoSat has

More information

ttem mapping Elev - HydroGeophysics Group - Aarhus University

ttem mapping Elev - HydroGeophysics Group - Aarhus University ttem mapping Elev - HydroGeophysics Group - Aarhus University ttem Mapping Elev Report number 05-03-2018, March 2018 TABLE OF CONTENTS 1. Introduction... 2 2. Data Collection... 4 2.1 The Survey Area...

More information

DCIP3D. A Program Library for Forward Modelling and Inversion of DC/IP Data over 3D Structures. Version 5.0

DCIP3D. A Program Library for Forward Modelling and Inversion of DC/IP Data over 3D Structures. Version 5.0 DCIP3D A Program Library for Forward Modelling and Inversion of DC/IP Data over 3D Structures Version 50 Developed under the consortium research project: INVERSION OF 3D DC RESISTIVITY AND INDUCED POLARIZATION

More information

Downloaded 18 Jul 2011 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 18 Jul 2011 to Redistribution subject to SEG license or copyright; see Terms of Use at Rapid gravity and gravity gradiometry terrain correction via adaptive quadtree mesh discretization Kristofer Davis, M. Andy Kass, and Yaoguo Li, Center for Gravity, Electrical and Magnetic Studies, Colorado

More information

Stage terrain 3A Heissenstein. Electrical surveying

Stage terrain 3A Heissenstein. Electrical surveying Stage terrain 3A Heissenstein Electrical surveying Introduction The principle method for measuring the surface resistivity is always the same. An electric current is sent into the subsurface through two

More information

EMIGMA V9.x Premium Series

EMIGMA V9.x Premium Series EMIGMA V9.x Premium Series EMIGMA BASIC January 2014 Firstly, EMIGMA Basic describes the tools that are available in every EMIGMA license. Secondly, EMIGMA Basic is the name we use for our free viewing

More information

JOINTEM. Joint interpretation of electromagnetic and geoelectrical soundings using 1-D layered earth model. User's guide to version 1.

JOINTEM. Joint interpretation of electromagnetic and geoelectrical soundings using 1-D layered earth model. User's guide to version 1. JOINTEM Joint interpretation of electromagnetic and geoelectrical soundings using 1-D layered earth model User's guide to version 1.4 Markku Pirttijärvi 2010 University of Oulu Department of Physics Contents

More information

Stage terrain 3A Heissenstein. Electrical surveying

Stage terrain 3A Heissenstein. Electrical surveying Stage terrain 3A Heissenstein Electrical surveying Introduction The principle method for measuring the surface resistivity is always the same. An electric current is sent into the subsurface through two

More information

A MATLAB-Based Numerical and GUI Implementation of Cross-Gradients Joint Inversion of Gravity and Magnetic Data

A MATLAB-Based Numerical and GUI Implementation of Cross-Gradients Joint Inversion of Gravity and Magnetic Data Journal of Software Engineering and Applications, 2015, 8, 93-101 Published Online February 2015 in SciRes. http://www.scirp.org/journal/jsea http://dx.doi.org/10.4236/jsea.2015.82010 A MATLAB-Based Numerical

More information

Summary. GEMTIP model of a three-phase medium with ellipsoidal inclusions

Summary. GEMTIP model of a three-phase medium with ellipsoidal inclusions GEMTIP inversion of complex resistivity data using a hybrid method based on a genetic algorithm with simulated annealing and regularized conjugate gradient method Wei Lin *, Michael S. Zhdanov, Vladimir

More information

Data Acquisition. Chapter 2

Data Acquisition. Chapter 2 Data Acquisition Chapter 2 1 st step: get data Data Acquisition Usually data gathered by some geophysical device Most surveys are comprised of linear traverses or transects Typically constant data spacing

More information

Theory: modeling, localization and imaging

Theory: modeling, localization and imaging Electromagnetic Brain Mapping with MEG/EEG Theory: modeling, localization and imaging Sylvain Baillet Imaging Group Cognitive Neuroscience & Brain Imaging Lab. Hôpital de la Salpêtrière CNRS UPR640 - LENA

More information

Engineering and Environmental Geophysics with terratem

Engineering and Environmental Geophysics with terratem Engineering and Environmental Geophysics with terratem (1) Geophysical Consultant Alpha Geosciences Pty. Ltd. Sydney NSW 2210 Australia Email: rhenderson@terratem.com Roger Henderson (1) ABSTRACT terratem

More information

3D inversion of total magnetic intensity data for time-domain EM at the Lalor massive sulphide deposit

3D inversion of total magnetic intensity data for time-domain EM at the Lalor massive sulphide deposit CSIRO PUBLISHING Exploration Geophysics http://dx.doi.org/.7/eg57 3D inversion of total magnetic intensity data for time-domain EM at the Lalor massive sulphide deposit Dikun Yang, Douglas W. Oldenburg

More information

We are committed to providing accessible customer service. If you need accessible formats or communications supports, please contact us.

We are committed to providing accessible customer service. If you need accessible formats or communications supports, please contact us. We are committed to providing accessible customer service. If you need accessible formats or communications supports, please contact us. Nous tenons à améliorer l accessibilité des services à la clientèle.

More information

Deconvolution with curvelet-domain sparsity Vishal Kumar, EOS-UBC and Felix J. Herrmann, EOS-UBC

Deconvolution with curvelet-domain sparsity Vishal Kumar, EOS-UBC and Felix J. Herrmann, EOS-UBC Deconvolution with curvelet-domain sparsity Vishal Kumar, EOS-UBC and Felix J. Herrmann, EOS-UBC SUMMARY We use the recently introduced multiscale and multidirectional curvelet transform to exploit the

More information

Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board Layout

Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board Layout Practical Shielding, EMC/EMI, Noise Reduction, Earthing and Circuit Board Layout Contents 1 Introduction 1 1.1 Introduction 1 1.2 EMI vs EMC 3 1.3 Interference sources 3 1.4 Need for standards 5 1.5 EMC

More information

SYMPATHETIC INRUSH PHENOMENA IN PARALLEL AND SERIES CONNECTED TRANSFORMERS USING PSCAD

SYMPATHETIC INRUSH PHENOMENA IN PARALLEL AND SERIES CONNECTED TRANSFORMERS USING PSCAD SYMPATHETIC INRUSH PHENOMENA IN PARALLEL AND SERIES CONNECTED TRANSFORMERS USING PSCAD Tejpal P. Purohit 1, Prashant K. Bhavsar 2 Department of Electrical Engineering, Government Polytechnic Palanpur,

More information

SUMMARY INTRODUCTION 3D MT INVERSION METHOD

SUMMARY INTRODUCTION 3D MT INVERSION METHOD Efficient 3D inversion of MT data using integral equations method and the receiver footprint approach: application to the large-scale inversion of the EarthScope MT data Alexander Gribenko, A. Marie Green,

More information

WinGLink. Geophysical interpretation software VERSION

WinGLink. Geophysical interpretation software VERSION WinGLink Geophysical interpretation software VERSION 2.21.08 WinGLink geophysical interpretation software WinGLink Geophysical interpretation software Essential tools for data QC, processing, and modeling

More information

Combined Electrical and Magnetic Resistivity Tomography (ERT/MMR)

Combined Electrical and Magnetic Resistivity Tomography (ERT/MMR) Combined Electrical and Magnetic Resistivity Tomography (ERT/MMR) Gail Heath 1, John M. Svoboda 1, Birsen Canan 2, Shannon Ansley 1, David Alumbaugh 3, Douglas LaBrecque 4, Roger Sharpe 4,Roelof Versteeg

More information

Controlled Source Data Processing User Guide. TIP Pro TEM Pro

Controlled Source Data Processing User Guide. TIP Pro TEM Pro Controlled Source Data Processing User Guide TIP Pro TEM Pro Version 2.0 July 2010 PHOENIX GEOPHYSICS Controlled Source Data Processing User Guide TIP Pro TEM Pro Version 2.0 July 2010 Printed in Canada

More information

Geophysics 224 B2. Gravity anomalies of some simple shapes. B2.1 Buried sphere

Geophysics 224 B2. Gravity anomalies of some simple shapes. B2.1 Buried sphere Geophysics 4 B. Gravity anomalies of some simple shapes B.1 Buried sphere Gravity measurements are made on a surface profile across a buried sphere. The sphere has an excess mass M S and the centre is

More information

Volumetric Curvature-Attribute Applications for Detection of Fracture Lineaments and their Calibration

Volumetric Curvature-Attribute Applications for Detection of Fracture Lineaments and their Calibration Volumetric Curvature-ttribute pplications for Detection of Fracture Lineaments and their Calibration By Satinder Chopra, Kurt J. Marfurt rcis Corporation, Calgary; University of Houston, Houston Introduction

More information

REPORT ON A 3D INDUCED POLARISATION SURVEY OVER THE HOMEEP AND SHIRLEY TRENDS, CONCORDIA DISTRICT, NORTHERN CAPE

REPORT ON A 3D INDUCED POLARISATION SURVEY OVER THE HOMEEP AND SHIRLEY TRENDS, CONCORDIA DISTRICT, NORTHERN CAPE GEOSPEC INSTRUMENTS (PTY) LTD REPORT ON A 3D INDUCED POLARISATION SURVEY OVER THE HOMEEP AND SHIRLEY TRENDS, CONCORDIA DISTRICT, NORTHERN CAPE PREPARED FOR MINXCOM (Pty) Ltd and Galileo Resources PLC BY

More information

FINITE ELEMENT MODELING OF IP ANOMALOUS EFFECT FROM BODIES OF ANY GEOMETRICAL SHAPE LOCATED IN RUGED RELIEF AREA

FINITE ELEMENT MODELING OF IP ANOMALOUS EFFECT FROM BODIES OF ANY GEOMETRICAL SHAPE LOCATED IN RUGED RELIEF AREA FINITE ELEMENT MODELING OF IP ANOMALOUS EFFECT FROM BODIES OF ANY GEOMETRICAL SHAPE LOCATED IN RUGED RELIEF AREA Alfred FRASHËRI, Neki FRASHËRI Geophysical Technologist Training Program Quantec Geophysics

More information

SUMMARY. method to synthetic datasets is discussed in the present paper.

SUMMARY. method to synthetic datasets is discussed in the present paper. Geophysical modeling through simultaneous Joint Inversion of Seismic, Gravity and Magnetotelluric data Michele De Stefano (1), Daniele Colombo (1) WesternGeco EM - Geosystem, via Clericetti 42/A, 20133

More information

ARES II AUTOMATIC RESISTIVITY & IP SYSTEM

ARES II AUTOMATIC RESISTIVITY & IP SYSTEM ARES II AUTOMATIC RESISTIVITY & IP SYSTEM 850 W - 2000 V p-p - 5 A Transmitter for all Multi-Electrode and Manual Modes 10-channel Receiver with up to 20 Adjustable IP Windows 2D/3D Resistivity & IP Tomography

More information

H3DTDinv MUMPS. A Program Library for Forward Modelling of Multi-Transmitter, Time-Domain Electromagnetic Data over 3D structures.

H3DTDinv MUMPS. A Program Library for Forward Modelling of Multi-Transmitter, Time-Domain Electromagnetic Data over 3D structures. H3DTDinv MUMPS A Program Library for Forward Modelling of Multi-Transmitter, Time-Domain Electromagnetic Data over 3D structures. Version 1.0 Developed under the MITEM consortium Research Project Multi-Source

More information

DCIP3D OCTREE. Version 1.0

DCIP3D OCTREE. Version 1.0 DCIP3D OCTREE A Program Library for Forward Modelling and Inversion of DC/IP data over 3D Structures using Octree meshes Version 10 Developed under the consortium research project: COOPERATIVE INVERSION

More information

Summary. Introduction

Summary. Introduction Leif H. Cox*, Montana Tech and TechnoImaging, Glenn A. Wilson, TechnoImaging, and Michael S. Zhdanov, The University of Utah and TechnoImaging Summary We show that it is practical to invert entire airborne

More information

prismatic discretization of the digital elevation model, and their associated volume integration problems. Summary

prismatic discretization of the digital elevation model, and their associated volume integration problems. Summary A new method of terrain correcting airborne gravity gradiometry data using 3D Cauchy-type integrals Michael S. Zhdanov*, University of Utah and TechnoImaging, Glenn A. Wilson, TechnoImaging, and Xiaojun

More information

Qualitative Depth Estimation by Differencing Upward Continuations

Qualitative Depth Estimation by Differencing Upward Continuations Qualitative Depth Estimation by Differencing Upward Continuations Jacobsen (1987) made a strong case for using upward continuation filtering as a method for separating causative sources from various depths.

More information

Lithological and surface geometry joint inversions using multi-objective global optimization methods

Lithological and surface geometry joint inversions using multi-objective global optimization methods Lithological and surface geometry joint inversions using multi-objective global optimization methods Peter G. Lelièvre 1, Rodrigo Bijani and Colin G. Farquharson 1 plelievre@mun.ca http://www.esd.mun.ca/~peter/home.html

More information

CBC performance with switched capacitor DC-DC converter. Mark Raymond, Tracker Upgrade Power Working Group, February 2012.

CBC performance with switched capacitor DC-DC converter. Mark Raymond, Tracker Upgrade Power Working Group, February 2012. CBC performance with switched capacitor DC-DC converter Mark Raymond, Tracker Upgrade Power Working Group, February 212. 1 CBC power features 2 powering features included on CBC prototype pads for test

More information

Test Georeferencing Transformations

Test Georeferencing Transformations Test Georeferencing s By Mike Price, Entrada/San Juan, Inc. What you will need ArcGIS Pro 2.1 license ArcGIS Online for organizations account Sample dataset downloaded from ArcUser website An unzipping

More information

Camera Geometry II. COS 429 Princeton University

Camera Geometry II. COS 429 Princeton University Camera Geometry II COS 429 Princeton University Outline Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence

More information

CSE 505: Concepts of Programming Languages

CSE 505: Concepts of Programming Languages CSE 505: Concepts of Programming Languages Dan Grossman Fall 2009 Lecture 4 Proofs about Operational Semantics; Pseudo-Denotational Semantics Dan Grossman CSE505 Fall 2009, Lecture 4 1 This lecture Continue

More information

Data Rules. rules.ppdm.org. Dave Fisher & Madelyn Bell BUSINESS RULES WORKSHOP. March Business rules workshop Nov 2013

Data Rules. rules.ppdm.org. Dave Fisher & Madelyn Bell BUSINESS RULES WORKSHOP. March Business rules workshop Nov 2013 BUSINESS RULES WORKSHOP Data Rules Dave Fisher & Madelyn Bell rules.ppdm.org 1 March 2014 AGENDA Workshop objectives Definitions what is a data rule? It only grows with your help It takes longer then anyone

More information

ifp Universität Stuttgart Performance of IGI AEROcontrol-IId GPS/Inertial System Final Report

ifp Universität Stuttgart Performance of IGI AEROcontrol-IId GPS/Inertial System Final Report Universität Stuttgart Performance of IGI AEROcontrol-IId GPS/Inertial System Final Report Institute for Photogrammetry (ifp) University of Stuttgart ifp Geschwister-Scholl-Str. 24 D M. Cramer: Final report

More information

Introduction to Geophysical Inversion

Introduction to Geophysical Inversion Introduction to Geophysical Inversion Goals Understand the non-uniqueness in geophysical interpretations Understand the concepts of inversion. Basic workflow for solving inversion problems. Some important

More information

Importing Data into IX1D v 3 A Tutorial

Importing Data into IX1D v 3 A Tutorial Importing Data into IX1D v 3 A Tutorial Version 1.0 2006 Interpex Limited All rights reserved If a database is already loaded, Clear Data to start with a blank database Use File/New/Clear Data to clear

More information

SUMMARY. solve the matrix system using iterative solvers. We use the MUMPS codes and distribute the computation over many different

SUMMARY. solve the matrix system using iterative solvers. We use the MUMPS codes and distribute the computation over many different Forward Modelling and Inversion of Multi-Source TEM Data D. W. Oldenburg 1, E. Haber 2, and R. Shekhtman 1 1 University of British Columbia, Department of Earth & Ocean Sciences 2 Emory University, Atlanta,

More information

Oasis montaj How-To Guide. VOXI Earth Modelling - Running an AGG Unconstrained Inversion

Oasis montaj How-To Guide. VOXI Earth Modelling - Running an AGG Unconstrained Inversion Oasis montaj How-To Guide VOXI Earth Modelling - Running an AGG Unconstrained Inversion The software described in this manual is furnished under license and may only be used or copied in accordance with

More information

PS wave AVO aspects on processing, inversion, and interpretation

PS wave AVO aspects on processing, inversion, and interpretation PS wave AVO aspects on processing, inversion, and interpretation Yong Xu, Paradigm Geophysical Canada Summary Using PS wave AVO inversion, density contrasts can be obtained from converted wave data. The

More information

3D inversion of marine CSEM data: A feasibility study from the Shtokman gas field in the Barents Sea

3D inversion of marine CSEM data: A feasibility study from the Shtokman gas field in the Barents Sea 3D inversion of marine CSEM data: A feasibility study from the Shtokman gas field in the Barents Sea M. S. Zhdanov 1,2, M. Čuma 1,2, A. Gribenko 1,2, G. Wilson 2 and N. Black 2 1 The University of Utah,

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

4D Seismic Inversion on Continuous Land Seismic Reservoir Monitoring of Thermal EOR

4D Seismic Inversion on Continuous Land Seismic Reservoir Monitoring of Thermal EOR 4D Seismic Inversion on Continuous Land Seismic Reservoir Monitoring of Thermal EOR Laurene Michou, CGGVeritas, Massy, France, laurene.michou@cggveritas.com Thierry Coleou, CGGVeritas, Massy, France, thierry.coleou@cggveritas.com

More information

Summary. Introduction

Summary. Introduction Application of Surface-wave modeling and inversion in Cordova Embayment of northeastern British Columbia Antoun Salama*, Schlumberger-WesternGeco, Houston, Texas, USA ASalama@slb.com and Niranjan Banik,

More information

Application of MPS Simulation with Multiple Training Image (MultiTI-MPS) to the Red Dog Deposit

Application of MPS Simulation with Multiple Training Image (MultiTI-MPS) to the Red Dog Deposit Application of MPS Simulation with Multiple Training Image (MultiTI-MPS) to the Red Dog Deposit Daniel A. Silva and Clayton V. Deutsch A Multiple Point Statistics simulation based on the mixing of two

More information

EMIGMA V9.x Premium Series April 8, 2015

EMIGMA V9.x Premium Series April 8, 2015 EMIGMA V9.x Premium Series April 8, 2015 EMIGMA for Gravity EMIGMA for Gravity license is a comprehensive package that offers a wide array of processing, visualization and interpretation tools. The package

More information

The Solid-State Decoupler (SSD)

The Solid-State Decoupler (SSD) The Solid-State Decoupler (SSD) Installation Instructions Introduction The Solid-State Decoupler (SSD) is a solid-state DC isolation/ac grounding (i.e., coupling) device design ed for use in conjunction

More information

A Avenue, Bus: (604) Delta BC V4C 3W2 CANADA Memorandum

A Avenue, Bus: (604) Delta BC V4C 3W2 CANADA     Memorandum 11966 95A Avenue, Bus: (604) 582-1100 Delta BC V4C 3W2 CANADA E-mail: trent@sjgeophysics.com www.sjgeophysics.com To: Triple Nine Resources Ltd. Four Corners Mining Corp. Memorandum Attn: Victor French

More information

Forward and Inverse Modeling of Gravity Data: Locating buried glacial channels and evaluating the results of published analysis

Forward and Inverse Modeling of Gravity Data: Locating buried glacial channels and evaluating the results of published analysis GRAVITY COMPUTER LAB Forward and Inverse Modeling of Gravity Data: Locating buried glacial channels and evaluating the results of published analysis During this lab your task will be to evaluate the accuracy

More information

Effects of aircraft motion on data a) What are the effects? b) Traditional approaches c) Why Study Compensation? methodology, direction

Effects of aircraft motion on data a) What are the effects? b) Traditional approaches c) Why Study Compensation? methodology, direction Magnetic Compensation of Magnetic Noises Related to Aircraft s Maneuvers in Airborne Survey R. W. Groom, PetRos EiKon, Concord, Ontario, Canada Ruizhong Jia, PetRos EiKon, Concord, Ontario, Canada Bob

More information

Test Methods for DC/DC Power Modules

Test Methods for DC/DC Power Modules Test Methods for DC/DC Power Modules Design Note 027 Flex Power Modules Precautions Abstract A user may have the desire to verify or characterize the performance of DC/DC power modules outside the system

More information

Using Blast Data to infer Training Images for MPS Simulation of Continuous Variables

Using Blast Data to infer Training Images for MPS Simulation of Continuous Variables Paper 34, CCG Annual Report 14, 212 ( 212) Using Blast Data to infer Training Images for MPS Simulation of Continuous Variables Hai T. Nguyen and Jeff B. Boisvert Multiple-point simulation (MPS) methods

More information

Oasis montaj How-To Guide. VOXI Earth Modelling - Running an Inversion

Oasis montaj How-To Guide. VOXI Earth Modelling - Running an Inversion Oasis montaj How-To Guide VOXI Earth Modelling - Running an Inversion The software described in this manual is furnished under license and may only be used or copied in accordance with the terms of the

More information

RELEASED. Student Booklet. Precalculus. Fall 2015 NC Final Exam. Released Items

RELEASED. Student Booklet. Precalculus. Fall 2015 NC Final Exam. Released Items Released Items Public Schools of North arolina State oard of Education epartment of Public Instruction Raleigh, North arolina 27699-6314 Fall 2015 N Final Exam Precalculus Student ooklet opyright 2015

More information

Joint seismic traveltime and TEM inversion for near surface imaging Jide Nosakare Ogunbo*, Jie Zhang, GeoTomo LLC

Joint seismic traveltime and TEM inversion for near surface imaging Jide Nosakare Ogunbo*, Jie Zhang, GeoTomo LLC Jide Nosaare Ogunbo*, Jie Zhang, GeoTomo LLC Summary For a reliable interpretation of the subsurface structure, the joint geophysical inversion approach is becoming a viable tool. Seismic and EM methods

More information

Large-scale workflows for wave-equation based inversion in Julia

Large-scale workflows for wave-equation based inversion in Julia Large-scale workflows for wave-equation based inversion in Julia Philipp A. Witte, Mathias Louboutin and Felix J. Herrmann SLIM University of British Columbia Motivation Use Geophysics to understand the

More information

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia

MERGING POINT CLOUDS FROM MULTIPLE KINECTS. Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia MERGING POINT CLOUDS FROM MULTIPLE KINECTS Nishant Rai 13th July, 2016 CARIS Lab University of British Columbia Introduction What do we want to do? : Use information (point clouds) from multiple (2+) Kinects

More information

FRACTURE CHARACTERIZATION USING SINGLE-HOLE EM DATA

FRACTURE CHARACTERIZATION USING SINGLE-HOLE EM DATA FRACTURE CHARACTERIZATION USING SINGLE-HOLE EM DATA Soon Jee Seol 1, Yoonho Song 1, and Ki Ha Lee 2 1 Korea Institute of Geology, Mining and Materials, 30 Kajung-Dong, Yusung-Gu, Taejon 305-350, Korea

More information

(x, y, z) m 2. (x, y, z) ...] T. m 2. m = [m 1. m 3. Φ = r T V 1 r + λ 1. m T Wm. m T L T Lm + λ 2. m T Hm + λ 3. t(x, y, z) = m 1

(x, y, z) m 2. (x, y, z) ...] T. m 2. m = [m 1. m 3. Φ = r T V 1 r + λ 1. m T Wm. m T L T Lm + λ 2. m T Hm + λ 3. t(x, y, z) = m 1 Class 1: Joint Geophysical Inversions Wed, December 1, 29 Invert multiple types of data residuals simultaneously Apply soft mutual constraints: empirical, physical, statistical Deal with data in the same

More information

Variational Methods for Discrete-Data Latent Gaussian Models

Variational Methods for Discrete-Data Latent Gaussian Models Variational Methods for Discrete-Data Latent Gaussian Models University of British Columbia Vancouver, Canada March 6, 2012 The Big Picture Joint density models for data with mixed data types Bayesian

More information

cv R z design. In this paper, we discuss three of these new methods developed in the last five years.

cv R z design. In this paper, we discuss three of these new methods developed in the last five years. Nick Moldoveanu, Robin Fletcher, Anthony Lichnewsky, Darrell Coles, WesternGeco Hugues Djikpesse, Schlumberger Doll Research Summary In recent years new methods and tools were developed in seismic survey

More information