Seismic refraction surveys

Size: px
Start display at page:

Download "Seismic refraction surveys"

Transcription

1 Seismic refraction surveys Seismic refraction surveys generate seismic waves that are refracted back to Earth s surface from velocity and density discontinuities at depth. Uses : Small-scale: geotechnical (building foundations), environmental (weathering layer, remediation), archaeological, sedimentary structures. Medium-scale: sedimentary basin architecture, depth to basement. Large-scale: structure of the crust and mantle, Moho. + depth conversion of seismic reflection data! Kearey & Brooks Chapter 5 Snell s law, critical angle i c and the conditions for reflection Snell's law Sin(θ 1 ) = Sin(θ ) 2 = const = p p is called the ray parameter, as it characterizes the entire ray path. Special case of the critical angle Sin(i c ) = Sin(90o ) Sin(i c ) = e.g. if = 2 km s 1, = 3 km s 1, i c = 42 o

2 Reflection versus refraction seismics: Reflection results. Line B - CDP Stack (Amazon margin, NE Brazil) Fan channel-levee system OBS 315 Late Miocene - Pleistocene Late Albian - Mid-Miocene Oceanic crust Seafloo SW r multi ple NE Moho?? Reflection versus refraction seismics: Refraction results. Line B - CDP Stack (Amazon margin, NE Brazil) Moho

3 Refraction: two horizontal layers z 1 T SA = T BD = Cosθ x = AB + 2 tanθz T SABD = T SA + T AB + T BD T SABD = 2z 1 + x 2 tanθz = x # 1 + 2z tanθ & Cosθ $ % Cosθ ' ( = x 2z # + 1 Sinθ & Cosθ $ % ' ( = x 2z + ( 1 Sin 2 θ) Cosθ T SABD = x + 2 zcosθ = x + 2z Sinθ =, Cosθ = 1 Sin 2 θ 2 2 ( ) 1/2 ( ) = $ 1 $ The refracted waves propagate in the deeper, faster medium, just below the material interface. Normally the first phases to arrive at a receiver, these are called head waves. " $ # " # 2 % % ' & ' & Two horizontal layers: Time-Distance Plot Critical distance x crit is where refracted phase is first observed. Cross-over distance x cros is where the travel times of the direct and refracted arrival are equal. traveltime T T distance x from source x cros Intercept time = 2z ( 2 1 ) 1/2 = 2 zcosθ = x cros + 2z ( 2 1 ) 1/2 " x cros = 2z + % $ ' # & x cros always > 2z The thickness z of the upper of the two layers can be determined from the cross-over distance and the velocities or from the intercept time and the velocities. z = 1 " % $ ' 2 # + & 1/2 x cros 1/2

4 Geophone number Wave propagation of direct, reflected and refracted waves Elapsed time after shot (s) Depth (m) Offset (m) Refracted arrivals from multiple layers e dw Hea ave wav Head ABCDEF is the refracted ray path through the bottom layer of a three-layer model. The traveltime curve for the direct and two head waves are shown above.

5 intercept time, two-layer case T SD = x + 2 zcosθ, = Sinθ By analogy: T ABCDEF = x V z 1Cosθ z 2Cosθ 2 3-layer case: two intercept times The velocities, and V 3 can be estimated from the slopes of the direct wave and the two head waves. z 1 and z 2 can be calculated from the two intercept times. where T n = x V n + n 1 i=1 $ θ i = sin 1 % & 2z i Cosθ i V i V i V n ' ( ) n-layer case: n-1 intercept times This gives the travel time, T n of a ray critically refracted along the top surface of the n th horizontal layer Typical field data from hammer-blow seismics practical =1.89 km/s V 3 =5.84 km/s

6 Common shot point gathers from 3 streamers (length 6, 15, & 6 km) Deviations from simple layering: Dipping layers Shoot down-dip Same type of T-x curve as for the horizontally layered case, but observation of two different apparent velocities v2d, v2u for the refracted wave that propagates at true velocity v2. Shoot up-dip

7 Down-dip traveltime: t 2 x ( ) = Up-dip: t 2 ' ( x) = xsin( θ +γ) + 2zcosθ v 2 v 1 xsin( θ γ) + 2z' cosθ v 2 v 1 θ = 1 2 (sin 1 ( / d ) + sin 1 ( / u )) γ = 1 2 (sin 1 ( / d ) sin 1 ( / u )) z = t i / 2cosθ, t i = 2z cosθ / h = z / cosγ, z ' = t i ' / 2cosθ h' = z'/ cosγ θ and γ can be estimated from the velocities, u and d and hence z and z and h and h can be calculated. See Kearey & Brooks (Chapter 5) Interpretation of irregular traveltime curve in terms of non-planar refractor geometries Reference (dashed lines) show the planar case M (e.g.) is nearer the surface than the reference interface, the actual travel time to M plots below the reference line. Conversely, that for N is above it. These observations can be quantified using the concept of delay time.

8 The concept of delay time Delay time: how much longer does it take to run the actual path (obliquely down! horizontal! obliquely up) compared to running the entire horizontal distance SR in the fast medium 2? We can think of the travel time of a refracted wave being made up of 3 parts: 1. the time it takes to travel between the source and receiver, S v R v, at velocity, 2. the time δ S to go from source point S to refraction point C at velocity, 3. an equivalent time δ R, to run from point D up to the receiver. t SR = δ S + SR + δ R δ S and δ R are called delay times Determining lateral variations in layer thickness from forward & reverse shooting The time t f to go from one end to a receiver (S f CDR), and then on to the other end, t r, (REFS r ), is longer than the total time, t total, to go from end to end (S f CDEFS r ), because of the extra times to travel from the interface to the receiver, along DR and ER. t f h R t r t f + t r = t total + 2δ R δ R = 1 2 (t f + t r t total ) h R = δ R ( 2 2 ) 1/2 t f, t r and t total can be read off from a traveltime versus distance plot, and the delay time δ R can be calculated. The depth h R to the interface beneath R can then be calculated from the delay time and the velocities,. Many receivers! many h R obtained.

9 Offsets in the travel time-distance plot for head waves from opposite sides of a fault Δt Thin layers and low-velocity layers are difficult to detect Default case, unproblematic. A low-velocity layer does not generate a refracted wave (head wave) at all. A thin faster layer generates a head wave, but it may not be the first arrival at any distance.

10 Marine refraction seismics using Ocean Bottom Seismometers (OBS) 4-channel: hydrophone + 3 component seismometer Data logger + batteries + GPS clock Ballast weights (for coupling with seabed) Hydro-acoustic release Titanium tubes for > 6000 m Operation: days OBS Data Reduced-time versus distance plots, plotting t x/(6 km/s) on the y-axis (a 6 km/s refractor will appear flat).

11 Generalized velocity structure of continental and oceanic crust Oceanic crust: Velocity profile for different crustal ages Moho White et al. (1992) Velocities increase gradually through the oceanic crust (difficult to fit straight lines on Time Vs. distance plots). Moho is usually marked by a velocity jump to > 8.0 km/s

12 The Continental/Ocean Transition (COT) at conjugate rifted margins. Example: Baja California Peninsula western Mexico Data from OBS refraction/reflection surveys Analysis and interpretation of shallow seismic field data ti1 ti2

13 0 164_processed Trace number Time (ms) May :04:27

GG450 4/5/2010. Today s material comes from p and in the text book. Please read and understand all of this material!

GG450 4/5/2010. Today s material comes from p and in the text book. Please read and understand all of this material! GG450 April 6, 2010 Seismic Reflection I Today s material comes from p. 32-33 and 81-116 in the text book. Please read and understand all of this material! Back to seismic waves Last week we talked about

More information

Refraction Seismology. Chapter :: 6

Refraction Seismology. Chapter :: 6 Refraction Seismology Chapter :: 6 Snell s Law & Critical Refraction Because seismic sources radiate waes in all directions Some ray must hit interface at exactly the critical angle, i c This critically

More information

Seismic Reflection Method

Seismic Reflection Method Seismic Reflection Method 1/GPH221L9 I. Introduction and General considerations Seismic reflection is the most widely used geophysical technique. It can be used to derive important details about the geometry

More information

4. Seismic Methods. 4.1 Introduction

4. Seismic Methods. 4.1 Introduction 4. Seismic Methods 4.1 Introduction In seismic surveying, seismic waves are created by controlled sources and propagate through the subsurface. These waves will return to the surface after reflection or

More information

The geometry of reflection and refraction Wave conversion and reflection coefficient

The geometry of reflection and refraction Wave conversion and reflection coefficient 7.2.2 Reflection and Refraction The geometry of reflection and refraction Wave conversion and reflection coefficient The geometry of reflection and refraction A wave incident on a boundary separating two

More information

Comparison of two P-S conversion-point mapping approaches for Vertical Transversely Isotropic (VTI) media

Comparison of two P-S conversion-point mapping approaches for Vertical Transversely Isotropic (VTI) media Comparison of two P-S conversion-point mapping approaches for Vertical Transversely Isotropic (VTI) media Jianli Yang* and Don C. Lawton CREWES, University of Calgary, 5 UniversityDR.NW, Calgary, AB, TN

More information

Comparison of two P-S conversion-point mapping approaches for Vertical Transversely Isotropic (VTI) media

Comparison of two P-S conversion-point mapping approaches for Vertical Transversely Isotropic (VTI) media Raytracing in VTI media Comparison of two P-S conversion-point mapping approaches for Vertical Transversely Isotropic (VTI) media Jianli Yang and Don C. Lawton ABSTRACT Determination of the conversion

More information

Is the optimum XY spacing of the Generalized Reciprocal Method (GRM) constant or variable?

Is the optimum XY spacing of the Generalized Reciprocal Method (GRM) constant or variable? Is the optimum XY spacing of the Generalized Reciprocal Method (GRM) constant or variable? Abstract The Generalized Reciprocal Method (GRM) is suggested to be used for mapping subsurface structures with

More information

The Effect of a Dipping Layer on a Reflected Seismic Signal.

The Effect of a Dipping Layer on a Reflected Seismic Signal. The Effect of a Dipping Layer on a Reflected Seismic Signal. Edward O. Osagie, Ph.D. Lane College, Jackson, TN 38305 E-mail: eosagiee@yahoo.com ABSTRACT Modern seismic reflection prospecting is based on

More information

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation

Outline The Refraction of Light Forming Images with a Plane Mirror 26-3 Spherical Mirror 26-4 Ray Tracing and the Mirror Equation Chapter 6 Geometrical Optics Outline 6-1 The Reflection of Light 6- Forming Images with a Plane Mirror 6-3 Spherical Mirror 6-4 Ray Tracing and the Mirror Equation 6-5 The Refraction of Light 6-6 Ray Tracing

More information

Reflection seismic Method - 2D

Reflection seismic Method - 2D Reflection seismic Method - 2D Acoustic Impedance Seismic events Wavelets Convolutional model Resolution Stacking and Signal/Noise Data orders Reading: Sheriff and Geldart, Chapters 6, 8 Acoustic Impedance

More information

Angle Gathers for Gaussian Beam Depth Migration

Angle Gathers for Gaussian Beam Depth Migration Angle Gathers for Gaussian Beam Depth Migration Samuel Gray* Veritas DGC Inc, Calgary, Alberta, Canada Sam Gray@veritasdgc.com Abstract Summary Migrated common-image-gathers (CIG s) are of central importance

More information

Geogiga Seismic Pro 8.3 Release Notes

Geogiga Seismic Pro 8.3 Release Notes Geogiga Seismic Pro 8.3 Release Notes Copyright 2017, All rights reserved. Table of Contents Introduction...1 Part 1 Utility Modules...2 Part 2 Reflection Modules...4 Updates in SF Imager...5 Updates in

More information

Three critical concerns for marine seismics with portable systems. Source strength and tuning Streamer length 2D vs. 3D

Three critical concerns for marine seismics with portable systems. Source strength and tuning Streamer length 2D vs. 3D Three critical concerns for marine seismics with portable systems Source strength and tuning Streamer length 2D vs. 3D Airgun Source Single airgun Multiple airguns signal strength volume 1/3 1 x (200 in

More information

Geogiga Seismic Pro 8.0 Release Notes

Geogiga Seismic Pro 8.0 Release Notes Geogiga Seismic Pro 8.0 Release Notes Copyright 2015, All rights reserved. Table of Contents Introduction...1 Part 1 General Enhancements...3 Trace Display...4 Color Section Display...6 Curve Plotting...8

More information

3-D vertical cable processing using EOM

3-D vertical cable processing using EOM Carlos Rodriguez-Suarez, John C. Bancroft, Yong Xu and Robert R. Stewart ABSTRACT Three-dimensional seismic data using vertical cables was modeled and processed using equivalent offset migration (EOM),

More information

Coupled Wave Field Migration. Coupled Wave Field Migration

Coupled Wave Field Migration. Coupled Wave Field Migration Coupled Wave Field Migration Coupled Wave Field Migration Vp=1650 m/s T=750 ms Vp=4000 m/s Surface seismic exploration uses reflected and refracted waves for imaging purposes. In this case, special conditions

More information

Lab 2: Snell s Law Geology 202 Earth s Interior

Lab 2: Snell s Law Geology 202 Earth s Interior Introduction: Lab 2: Snell s Law Geology 202 Earth s Interior As we discussed in class, when waves travel from one material to another, they bend or refract according to Snell s Law: = constant (1) This

More information

G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries

G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries M. Cvetkovic* (ION Geophysical), Z. Zhou (ION Geophysical / GXT Imaging Solutions) &

More information

L 5 Seismic Method. Courtesy of ExxonMobil. Mitchum et al., 1977b

L 5 Seismic Method. Courtesy of ExxonMobil. Mitchum et al., 1977b Courtesy of ExxonMobil L 5 Seismic Method AAPG 1977 reprinted with permission of the AAPG whose permission is required for further use. Mitchum et al., 1977b Basic Exploration Workflow Identify Opportunities

More information

Pre Stack Migration Aperture An Overview

Pre Stack Migration Aperture An Overview Pre Stack Migration Aperture An Overview Dr. J.V.S.S Narayana Murty, T. Shankar Kaveri Basin, ONGC, Chennai Summary Primary reflections and diffractions are the main target of seismic migration. Migration

More information

Crosswell Imaging by 2-D Prestack Wavepath Migration

Crosswell Imaging by 2-D Prestack Wavepath Migration Crosswell Imaging by 2-D Prestack Wavepath Migration Hongchuan Sun ABSTRACT Prestack wavepath migration (WM) is applied to 2-D synthetic crosswell data, and the migrated images are compared to those from

More information

Chapter N/A: The Earthquake Cycle and Earthquake Size

Chapter N/A: The Earthquake Cycle and Earthquake Size This sheet provides a general outline of the topics covered on your upcoming exam. This is not an exhaustive list, but is simply a general list of key points. In other words, most exam questions will be

More information

Extension of delay time analysis for 3-D seismic refraction statics

Extension of delay time analysis for 3-D seismic refraction statics Extension of delay time analysis for 3-D Extension of delay time analysis for 3-D seismic refraction statics Jocelyn Dufour and Don C. Lawton ABSTRACT This current research is on the extension of delay

More information

Processing converted-wave data in the tau-p domain: rotation toward the source and moveout correction

Processing converted-wave data in the tau-p domain: rotation toward the source and moveout correction τ-p domain converted-wave processing Processing converted-wave data in the tau-p domain: rotation toward the source and moveout correction Raul Cova and Kris Innanen ABSTRACT The asymmetry of the converted-wave

More information

A Level. A Level Physics. WAVES: Wave Properties (Answers) AQA, Edexcel, OCR. Name: Total Marks: /30

A Level. A Level Physics. WAVES: Wave Properties (Answers) AQA, Edexcel, OCR. Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA, Edexcel, OCR A Level A Level Physics WAVES: Wave Properties (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd

More information

Pre-Critical incidence

Pre-Critical incidence Seismi methods: Refration I Refration reading: Sharma p58-86 Pre-Critial inidene Refletion and refration Snell s Law: sin i sin R sin r P P P P P P where p is the ray parameter and is onstant along eah

More information

Geogiga Seismic Pro 9.0 Release Notes

Geogiga Seismic Pro 9.0 Release Notes Geogiga Seismic Pro 9.0 Release Notes Copyright 2018, All rights reserved. Table of Contents Introduction...1 Part 1 New Modules...3 Modeling2D...3 Surface RT...4 Part 2 General Enhancements...5 Part 3

More information

IXRefraX Shootout Tutorial. Interpretation of SAGEEP 2011 Shootout refraction tomography data using IXRefraX 2011 Interpex Limited

IXRefraX Shootout Tutorial. Interpretation of SAGEEP 2011 Shootout refraction tomography data using IXRefraX 2011 Interpex Limited IXRefraX Shootout Tutorial Interpretation of SAGEEP 2011 Shootout refraction tomography data using IXRefraX 2011 Interpex Limited Description There was a special Blind Test refraction tomography on Monday

More information

Purpose: To determine the index of refraction of glass, plastic and water.

Purpose: To determine the index of refraction of glass, plastic and water. LAB 9 REFRACTION-THE BENDING OF LIGHT Purpose: To determine the index of refraction of glass, plastic and water. Materials: Common pins, glass block, plastic block, small semi-circular water container,

More information

Geology 228 Applied Geophysics Lecture 4. Seismic Refraction (Reynolds, Ch. 4-6)

Geology 228 Applied Geophysics Lecture 4. Seismic Refraction (Reynolds, Ch. 4-6) Geology 8 Applied Geophysics Lecture 4 Seismic Refraction (Reynolds, Ch. 4-6) Seismic Methods Some fundamentals of seismic waes One dimensional wae equation the solution of a plane wae in unbounded uniform

More information

On the Scattering Effect of Lateral Discontinuities on AVA Migration

On the Scattering Effect of Lateral Discontinuities on AVA Migration On the Scattering Effect of Lateral Discontinuities on AVA Migration Juefu Wang* and Mauricio D. Sacchi Department of Physics, University of Alberta, 4 Avadh Bhatia Physics Laboratory, Edmonton, AB, T6G

More information

Amplitude within the Fresnel zone for the zero-offset case

Amplitude within the Fresnel zone for the zero-offset case Amplitude within the Fresnel zone for the zero-offset case Shuang Sun and John C. Bancroft ABSTRACT Reflection energy from a linear reflector comes from an integrant over an aperture often described by

More information

FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1

FLAP P6.2 Rays and geometrical optics COPYRIGHT 1998 THE OPEN UNIVERSITY S570 V1.1 F1 The ray approximation in optics assumes that light travels from one point to another along a narrow path called a ray that may be represented by a directed line (i.e. a line with an arrow on it). In

More information

Geogiga Seismic Pro 8.1 Release Notes

Geogiga Seismic Pro 8.1 Release Notes Geogiga Seismic Pro 8.1 Release Notes Copyright 2016, All rights reserved. Table of Contents Introduction...1 Part 1 General Enhancements...3 Well Data...4 Data Format...6 Data Import...7 Trace Magnifier...8

More information

IXRefraX Tutorial. Version How to import and interpret seismic refraction data using IXRefraX 2005, 2006 Interpex Limited

IXRefraX Tutorial. Version How to import and interpret seismic refraction data using IXRefraX 2005, 2006 Interpex Limited IXRefraX Tutorial Version 1.02 How to import and interpret seismic refraction data using IXRefraX 2005, 2006 Interpex Limited Import & Interpretation Sequence Use File/Create Spread to import data. Use

More information

Geometrical Optics INTRODUCTION. Wave Fronts and Rays

Geometrical Optics INTRODUCTION. Wave Fronts and Rays Geometrical Optics INTRODUCTION In this experiment, the optical characteristics of mirrors, lenses, and prisms will be studied based on using the following physics definitions and relationships plus simple

More information

Lab #5 Ocean Acoustic Environment

Lab #5 Ocean Acoustic Environment Lab #5 Ocean Acoustic Environment 2.S998 Unmanned Marine Vehicle Autonomy, Sensing and Communications Contents 1 The ocean acoustic environment 3 1.1 Ocean Acoustic Waveguide................................

More information

PH880 Topics in Physics

PH880 Topics in Physics PH880 Topics in Physics Modern Optical Imaging (Fall 2010) The minimum path principle n(x,y,z) Γ Γ has the minimum optical path length, compared to the alternative paths. nxyzdl (,, ) Γ Thelaw of reflection

More information

Physics 102: Lecture 17 Reflection and Refraction of Light

Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17 Reflection and Refraction of Light Physics 102: Lecture 17, Slide 1 Recall from last time. Today Last Time Reflection: θ i = θ r Flat Mirror: image equidistant behind Spherical

More information

Fermat s principle and ray tracing in anisotropic layered media

Fermat s principle and ray tracing in anisotropic layered media Ray tracing in anisotropic layers Fermat s principle and ray tracing in anisotropic layered media Joe Wong ABSTRACT I consider the path followed by a seismic signal travelling through velocity models consisting

More information

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation Phys. 281B Geometric Optics This Chapter 3 Physics Department Yarmouk University 21163 Irbid Jordan 1- Images Formed by Flat Mirrors 2- Images Formed by Spherical Mirrors 3- Images Formed by Refraction

More information

Light and the Properties of Reflection & Refraction

Light and the Properties of Reflection & Refraction Light and the Properties of Reflection & Refraction OBJECTIVE To study the imaging properties of a plane mirror. To prove the law of reflection from the previous imaging study. To study the refraction

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Progress Report on: Interferometric Interpolation of 3D SSP Data

Progress Report on: Interferometric Interpolation of 3D SSP Data Progress Report on: Interferometric Interpolation of 3D SSP Data Sherif M. Hanafy ABSTRACT We present the theory and numerical results for interferometrically interpolating and extrapolating 3D marine

More information

Wave-equation angle-domain common-image gathers for converted waves

Wave-equation angle-domain common-image gathers for converted waves GEOPHYSICS VOL. 73 NO. 1 JANUARY-FEBRUARY 8; P. S17 S6 17 FIGS. 1.119/1.81193 Wave-equation angle-domain common-image gathers for converted waves Daniel A. Rosales 1 Sergey Fomel Biondo L. Biondi 1 and

More information

Foolproof AvO. Abstract

Foolproof AvO. Abstract Foolproof AvO Dr. Ron Masters, Geoscience Advisor, Headwave, Inc Copyright 2013, The European Association of Geoscientists and Engineers This paper was prepared for presentation during the 75 th EAGE Conference

More information

IXRefraX Shootout Tutorial. Interpretation of Trimmed SAGEEP 2011 Shootout refraction tomography data using IXRefraX 2011 Interpex Limited

IXRefraX Shootout Tutorial. Interpretation of Trimmed SAGEEP 2011 Shootout refraction tomography data using IXRefraX 2011 Interpex Limited IXRefraX Shootout Tutorial Interpretation of Trimmed SAGEEP 2011 Shootout refraction tomography data using IXRefraX 2011 Interpex Limited Description There was a special Blind Test refraction tomography

More information

Lab 6 - Ocean Acoustic Environment

Lab 6 - Ocean Acoustic Environment Lab 6 - Ocean Acoustic Environment 2.680 Unmanned Marine Vehicle Autonomy, Sensing and Communications Feb 26th 2019 Henrik Schmidt, henrik@mit.edu Michael Benjamin, mikerb@mit.edu Department of Mechanical

More information

GeOlympus. GeoPACS GeoTR GeoStaR GeoWZ

GeOlympus. GeoPACS GeoTR GeoStaR GeoWZ GeOlympus GeoPACS GeoTR GeoStaR GeoWZ GeOlympus Workstation Work station Reflection time Refracted waves first arrivals Additional information Static and NMO corrections Layer by layer delay and statics

More information

ADVANTAGES AND DISADVANTAGES OF SURFACE AND DOWNHOLE SEISMIC ILLUSTRATED BY PROCESSING RESULTS OF 3D VSP AND 3D+VSP

ADVANTAGES AND DISADVANTAGES OF SURFACE AND DOWNHOLE SEISMIC ILLUSTRATED BY PROCESSING RESULTS OF 3D VSP AND 3D+VSP P3 ADVANTAGES AND DISADVANTAGES OF SURFACE AND DOWNHOLE SEISMIC ILLUSTRATED BY PROCESSING RESULTS OF 3D VSP AND 3D+VSP A.A. Tabakov* & K.V. Baranov** (* CGE JSC, Moscow, ** GEOVERS Ltd., Moscow) Abstract.

More information

Fiber Optic Communication Systems. Unit-03: Properties of Light. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif

Fiber Optic Communication Systems. Unit-03: Properties of Light. https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Unit-03: Properties of Light https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Department of Telecommunication, MUET UET Jamshoro 1 Refractive index Department of Telecommunication, MUET UET Jamshoro

More information

APPLICATION OF MATLAB IN SEISMIC INTERFEROMETRY FOR SEISMIC SOURCE LOCATION AND INTERPOLATION OF TWO DIMENSIONAL OCEAN BOTTOM SEISMIC DATA.

APPLICATION OF MATLAB IN SEISMIC INTERFEROMETRY FOR SEISMIC SOURCE LOCATION AND INTERPOLATION OF TWO DIMENSIONAL OCEAN BOTTOM SEISMIC DATA. APPLICATION OF MATLAB IN SEISMIC INTERFEROMETRY FOR SEISMIC SOURCE LOCATION AND INTERPOLATION OF TWO DIMENSIONAL OCEAN BOTTOM SEISMIC DATA. BY: ISAAC KUMA YEBOAH. Department of Engineering, Regent University

More information

Refraction of Light Finding the Index of Refraction and the Critical Angle

Refraction of Light Finding the Index of Refraction and the Critical Angle Finding the Index of Refraction and the Critical Angle OBJECTIVE Students will verify the law of refraction for light passing from water into air. Measurements of the angle of incidence and the angle of

More information

Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic

Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic A.S. Long* (PGS), S. Lu (PGS), D. Whitmore (PGS), H. LeGleut (PGS), R. Jones (Lundin

More information

P312 Advantages and Disadvantages of Surface and Downhole Seismic Illustrated by Processing Results of 3D VSP and 3D+VSP

P312 Advantages and Disadvantages of Surface and Downhole Seismic Illustrated by Processing Results of 3D VSP and 3D+VSP P312 Advantages and Disadvantages of Surface and Downhole Seismic Illustrated by Processing Results of 3D VSP and 3D+VSP A.A. Tabakov* (Central Geophysical Expedition (CGE) JSC) & K.V. Baranov (Geovers

More information

Multicomponent wide-azimuth seismic data for defining fractured reservoirs

Multicomponent wide-azimuth seismic data for defining fractured reservoirs Multicomponent wide-azimuth seismic data for defining fractured reservoirs Evaluating and exploiting azimuthal anisotropy Data Processing Figure 1 A typical surface outcrop showing aligned fractures Figure

More information

We The Effects of Marine Data Acquisition Practices on Imaging in Complex Geological Setting - Modeling Study

We The Effects of Marine Data Acquisition Practices on Imaging in Complex Geological Setting - Modeling Study We-04-11 The Effects of Marine Data Acquisition Practices on Imaging in Complex Geological Setting - Modeling Study M. Cvetkovic* (ION Geophysical), P.A. Farmer (ION Geophysical) & R.I. Bloor (ION Geophysical)

More information

GEOPHYS 242: Near Surface Geophysical Imaging. Class 5: Refraction Migration Methods Wed, April 13, 2011

GEOPHYS 242: Near Surface Geophysical Imaging. Class 5: Refraction Migration Methods Wed, April 13, 2011 GEOPHYS 242: Near Surface Geophysical Imaging Class 5: Refraction Migration Methods Wed, April 13, 2011 Migration versus tomography Refraction traveltime and wavefield migration The theory of interferometry

More information

Summary. Introduction

Summary. Introduction Dmitry Alexandrov, Saint Petersburg State University; Andrey Bakulin, EXPEC Advanced Research Center, Saudi Aramco; Pierre Leger, Saudi Aramco; Boris Kashtan, Saint Petersburg State University Summary

More information

Home Lab 7 Refraction, Ray Tracing, and Snell s Law

Home Lab 7 Refraction, Ray Tracing, and Snell s Law Home Lab Week 7 Refraction, Ray Tracing, and Snell s Law Home Lab 7 Refraction, Ray Tracing, and Snell s Law Activity 7-1: Snell s Law Objective: Verify Snell s law Materials Included: Laser pointer Cylindrical

More information

Lecture Ray Model of Light. Physics Help Q&A: tutor.leiacademy.org

Lecture Ray Model of Light. Physics Help Q&A: tutor.leiacademy.org Lecture 1201 Ray Model of Light Physics Help Q&A: tutor.leiacademy.org Reflection of Light A ray of light, the incident ray, travels in a medium. When it encounters a boundary with a second medium, part

More information

4.5 Images Formed by the Refraction of Light

4.5 Images Formed by the Refraction of Light Figure 89: Practical structure of an optical fibre. Absorption in the glass tube leads to a gradual decrease in light intensity. For optical fibres, the glass used for the core has minimum absorption at

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Ray optics! Postulates Optical components GRIN optics Matrix optics

Ray optics! Postulates Optical components GRIN optics Matrix optics Ray optics! Postulates Optical components GRIN optics Matrix optics Ray optics! 1. Postulates of ray optics! 2. Simple optical components! 3. Graded index optics! 4. Matrix optics!! From ray optics to

More information

SENIOR PROJECT. Integration of Surface Seismic with Geo-electric Data

SENIOR PROJECT. Integration of Surface Seismic with Geo-electric Data SENIOR PROJECT Integration of Surface Seismic with Geo-electric Data By: Abdulrahman Al-Shuhail Ali Al Halal Ahmed Al Zawwad Hasan Ramadhan Omar Bawazir Course Instructor and Project Coordinator Dr. Ali

More information

Chapter 3. Physical phenomena: plane parallel plate. This chapter provides an explanation about how rays of light physically behave when

Chapter 3. Physical phenomena: plane parallel plate. This chapter provides an explanation about how rays of light physically behave when Chapter 3 Physical phenomena: plane parallel plate This chapter provides an explanation about how rays of light physically behave when propagating through different medium (different index of refraction).

More information

Spring Term. Lecturer: Assoc. Prof. Dr. M. Zeki COŞKUN. Department of Geomatics Engineering

Spring Term. Lecturer: Assoc. Prof. Dr. M. Zeki COŞKUN. Department of Geomatics Engineering 2009 2010 Spring Term Lecturer: Assoc. Prof. Dr. M. Zeki COŞKUN Department of Geomatics Engineering e-mail : coskun@itu.edu.tr LEVELLING What is Levelling? Use of Levelling Levelling Terminology Types

More information

Applications of the tau-p Inversion Method. Shoba Maraj

Applications of the tau-p Inversion Method. Shoba Maraj Applications of the tau-p Inversion Method Shoba Maraj Final Report Theoretical Seismology Geop 523 Due 6th May 2011 Introduction Generally, velocity increases with depth in the Earth. They are related

More information

Tom Boyd (project leader) tel: fax: Copyright (c) Thomas M. Boyd, All rights reserved.

Tom Boyd (project leader) tel: fax: Copyright (c) Thomas M. Boyd, All rights reserved. This home page introduces a prototype of a new educational program being developed with the support of the Society of Exploration Geophysicists. It is currently under development and will be changing almost

More information

Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer

Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer data James Rickett*, Schlumberger Gould Research Summary Combining deghosting with crossline interpolation

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

Determination of 2D shallow S wave velocity profile using waveform inversion of P-SV refraction data

Determination of 2D shallow S wave velocity profile using waveform inversion of P-SV refraction data Determination of 2D shallow S wave velocity profile using waveform inversion of P-SV refraction data Mohamed Amrouche and Hiroaki Yamanaka Dept. of Environmental Science and Technology, Tokyo Institute

More information

CFP migration; practical aspects

CFP migration; practical aspects 13 CFP migration; practical aspects Jan Thorbecke 1 13.1 Introduction In the past year the Common Focus Point (CFP) technology has become an important paradigm in the DELPHI research program. The interpretation

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

Deconvolution in the radial trace domain

Deconvolution in the radial trace domain R-T domain deconvolution Deconvolution in the radial trace domain David C. Henley ABSTRACT The radial trace (R-T) domain has been shown to be useful for coherent noise attenuation and other seismic wavefield

More information

Subsalt steep dip imaging study with 3D acoustic modeling Lei Zhuo* and Chu-Ong Ting, CGGVeritas

Subsalt steep dip imaging study with 3D acoustic modeling Lei Zhuo* and Chu-Ong Ting, CGGVeritas Lei Zhuo* and Chu-Ong Ting, CGGVeritas Summary We present a 3D acoustic wave equation modeling study with the objective of understanding imaging challenges for steep dips (faults and three-way closure)

More information

Refractor 8.1 User Guide

Refractor 8.1 User Guide Refractor 8.1 User Guide Copyright 2016, All rights reserved. Table of Contents Preface...1 Conventions Used in This Guide...1 Where to Find Information...1 Technical Support...2 Feedback...2 Chapter 1

More information

cv R z design. In this paper, we discuss three of these new methods developed in the last five years.

cv R z design. In this paper, we discuss three of these new methods developed in the last five years. Nick Moldoveanu, Robin Fletcher, Anthony Lichnewsky, Darrell Coles, WesternGeco Hugues Djikpesse, Schlumberger Doll Research Summary In recent years new methods and tools were developed in seismic survey

More information

PHY385 Module 2 Student Guide. Concepts of this Module. Activity 1 The Law of Reflection. The Law of Reflection Snell s Law Total Internal Reflection

PHY385 Module 2 Student Guide. Concepts of this Module. Activity 1 The Law of Reflection. The Law of Reflection Snell s Law Total Internal Reflection PHY385 Module 2 Student Guide Concepts of this Module The Law of Reflection Snell s Law Total Internal Reflection Activity 1 The Law of Reflection The PASCO OS-8500 optics bench is shown in the figure.

More information

Refraction Ch. 29 in your text book

Refraction Ch. 29 in your text book Refraction Ch. 29 in your text book Objectives Students will be able to: 1) Identify incident and refracted angles 2) Explain what the index of refraction tells about a material 3) Calculate the index

More information

CHAPTER 4 RAY COMPUTATION. 4.1 Normal Computation

CHAPTER 4 RAY COMPUTATION. 4.1 Normal Computation CHAPTER 4 RAY COMPUTATION Ray computation is the second stage of the ray tracing procedure and is composed of two steps. First, the normal to the current wavefront is computed. Then the intersection of

More information

Chapter 5. 3D data examples REALISTICALLY COMPLEX SYNTHETIC INVERSION. Modeling generation and survey design

Chapter 5. 3D data examples REALISTICALLY COMPLEX SYNTHETIC INVERSION. Modeling generation and survey design Chapter 5 3D data examples In this chapter I will demonstrate the e ectiveness of the methodologies developed in the previous chapters using 3D data examples. I will first show inversion results of a realistically

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

REFRACTION OF LIGHT INDEX NUMBER. Explain this observation (3 marks) 1 Pyramid Assignments / All subjects, All topics available

REFRACTION OF LIGHT INDEX NUMBER. Explain this observation (3 marks) 1 Pyramid Assignments / All subjects, All topics available NAME SCHOOL INDEX NUMBER DATE REFRACTION OF LIGHT 1. 1995 Q18 P1 Light travels through glass of refractive index 1.5 with a speed v. Calculate the value of v (speed of light in air = 3.0 x 10 8 m/s) (3

More information

Optics: Laser Light Show Student Advanced Version

Optics: Laser Light Show Student Advanced Version Optics: Laser Light Show Student Advanced Version In this lab, you will explore the behavior of light. You will observe reflection and refraction of a laser beam in jello, and use a diffraction pattern

More information

Downward propagation: using true near-surface velocity model, one-way wave- equation extrapolator:

Downward propagation: using true near-surface velocity model, one-way wave- equation extrapolator: Class 9: Beyond Seismic Statics Corrections Wed, Oct 7, 2009 Dynamic corrections: wave-equation and wavefield datuming methods Skipping the near-surface by interferometry (no model needed) Common-Focus

More information

Application of 3D source deghosting and designature to deep-water ocean bottom node data Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG)

Application of 3D source deghosting and designature to deep-water ocean bottom node data Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG) Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG) Summary Compared to towed-streamer data, deep-water ocean bottom node (OBN) data by nature have a broader bandwidth; however, the presence of

More information

Main Menu. Summary. Survey Design

Main Menu. Summary. Survey Design 3D VSP acquisition and 3C processing on a deep subsalt prospect in the Gulf of Mexico John Graves, Steve Checkles, Jacques Leveille, Hess Corporation, Houston; Allan Campbell*, Scott Leaney, C. Peter Deri,

More information

Anisotropic 3D Amplitude Variation with Azimuth (AVAZ) Methods to Detect Fracture-Prone Zones in Tight Gas Resource Plays*

Anisotropic 3D Amplitude Variation with Azimuth (AVAZ) Methods to Detect Fracture-Prone Zones in Tight Gas Resource Plays* Anisotropic 3D Amplitude Variation with Azimuth (AVAZ) Methods to Detect Fracture-Prone Zones in Tight Gas Resource Plays* Bill Goodway 1, John Varsek 1, and Christian Abaco 1 Search and Discovery Article

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

Tutorial 9 - Fast Marching Methods

Tutorial 9 - Fast Marching Methods 236861 Numerical Geometry of Images Tutorial 9 Fast Marching Methods c 2012 Why measure distances? Shape analysis Image analysis Registration Morphology Navigation And many other uses.. There are many

More information

Headwave Stacking in Terms of Partial Derivative Wavefield

Headwave Stacking in Terms of Partial Derivative Wavefield Geosystem Engineering, 7(1), 21-26 (March 2004) Headwave Stacking in Terms of Partial Derivative Wavefield Changsoo Shin School of Civil, Urban and Geosystem Engineering, Seoul National University, San

More information

DW Tomo 8.1 User Guide

DW Tomo 8.1 User Guide DW Tomo 8.1 User Guide Copyright 2016, All rights reserved. Table of Contents Preface...1 Conventions Used in This Guide...1 Where to Find Information...1 Technical Support...2 Feedback...2 Chapter 1 Introducing

More information

Experiment 6. Snell s Law. Use Snell s Law to determine the index of refraction of Lucite.

Experiment 6. Snell s Law. Use Snell s Law to determine the index of refraction of Lucite. Experiment 6 Snell s Law 6.1 Objectives Use Snell s Law to determine the index of refraction of Lucite. Observe total internal reflection and calculate the critical angle. Explain the basis of how optical

More information

Design of Surface Seismic Programs for CO2 Storage Monitoring. WesternGeco North America Geophysics Manager Houston

Design of Surface Seismic Programs for CO2 Storage Monitoring. WesternGeco North America Geophysics Manager Houston Design of Surface Seismic Programs for CO2 Storage Monitoring Mark S. Egan WesternGeco North America Geophysics Manager Houston Objectives Baseline seismic program Structure & stratigraphy of the storage

More information

Historical. Chapter 3. Panorama Technologies

Historical. Chapter 3. Panorama Technologies Chapter 3 Historical This chapter examines the history and evolution of modern seismic migration methods. Modern migration methods evolved from simple geometric concepts to complex wave-equation techniques.

More information

Chapter 33 cont. The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian

Chapter 33 cont. The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian Chapter 33 cont The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian Polarization of Light Waves The direction of polarization of each individual wave is defined to be the direction

More information

first name (print) last name (print) brock id (ab17cd) (lab date)

first name (print) last name (print) brock id (ab17cd) (lab date) (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 3 Refraction of light In this Experiment you will learn that the bending of light crossing the boundary of two

More information

Ray optics! 1. Postulates of ray optics! 2. Simple optical components! 3. Graded index optics! 4. Matrix optics!!

Ray optics! 1. Postulates of ray optics! 2. Simple optical components! 3. Graded index optics! 4. Matrix optics!! Ray optics! 1. Postulates of ray optics! 2. Simple optical components! 3. Graded index optics! 4. Matrix optics!! From ray optics to quantum optics! Ray optics! Wave optics! Electromagnetic optics! Quantum

More information