Convex Optimization Euclidean Distance Geometry 2ε

Size: px
Start display at page:

Download "Convex Optimization Euclidean Distance Geometry 2ε"

Transcription

1 Convex Optimization Euclidean Distance Geometry 2ε In my career, I found that the best people are the ones that really understand the content, and they re a pain in the butt to manage. But you put up with it because they re so great at the content. And that s what makes great products; it s not process, it s content. Steve Jobs, Overview 21 2 Convex geometry Convex set Vectorized-matrix inner product Hulls Halfspace, Hyperplane Subspace representations Extreme, Exposed Cones Cone boundary Positive semidefinite (PSD) cone Conic independence (c.i.) When extreme means exposed Convex polyhedra Dual cone & generalized inequality Geometry of convex functions Convex function Practical norm functions, absolute value Powers, roots, and inverted functions Affine function Epigraph, Sublevel set Gradient Convex matrix-valued function Quasiconvex Salient properties

2 10 CONVEX OPTIMIZATION EUCLIDEAN DISTANCE GEOMETRY 2ε 4 Semidefinite programming Conic problem Framework Rank reduction Rank-constrained semidefinite program Constraining cardinality Cardinality and rank constraint examples Constraining rank of indefinite matrices Convex Iteration rank Euclidean Distance Matrix EDM First metric properties fifth Euclidean metric property EDM definition Invariance Injectivity of D & unique reconstruction Embedding in affine hull Euclidean metric versus matrix criteria Bridge: Convex polyhedra to EDMs EDM-entry composition EDM indefiniteness List reconstruction Reconstruction examples Fifth property of Euclidean metric Cone of distance matrices Defining EDM cone Polyhedral bounds EDM cone is not convex EDM definition in 11 T Correspondence to PSD cone S+ N Vectorization & projection interpretation A geometry of completion Dual EDM cone Theorem of the alternative Postscript Proximity problems First prevalent problem: Second prevalent problem: Third prevalent problem: Conclusion

3 CONVEX OPTIMIZATION EUCLIDEAN DISTANCE GEOMETRY 2ε 11 A Linear algebra 513 A.1 Main-diagonal δ operator, λ, tr, vec A.2 Semidefiniteness: domain of test A.3 Proper statements of positive semidefiniteness A.4 Schur complement A.5 Eigenvalue decomposition A.6 Singular value decomposition, SVD A.7 Zeros B Simple matrices 547 B.1 Rank-one matrix (dyad) B.2 Doublet B.3 Elementary matrix B.4 Auxiliary V -matrices B.5 Orthomatrices C Some analytical optimal results 563 C.1 Properties of infima C.2 Trace, singular and eigen values C.3 Orthogonal Procrustes problem C.4 Two-sided orthogonal Procrustes C.5 Nonconvex quadratics D Matrix calculus 577 D.1 Directional derivative, Taylor series D.2 Tables of gradients and derivatives E Projection 603 E.1 Idempotent matrices E.2 I P, Projection on algebraic complement E.3 Symmetric idempotent matrices E.4 Algebra of projection on affine subsets E.5 Projection examples E.6 Vectorization interpretation, E.7 Projection on matrix subspaces E.8 Range/Rowspace interpretation E.9 Projection on convex set E.10 Alternating projection F Notation, Definitions, Glossary 663 Bibliography 679 Index 703

4 12 CONVEX OPTIMIZATION EUCLIDEAN DISTANCE GEOMETRY 2ε

5 List of Figures 1 Overview 21 1 Sigma delta quantizer Room geometry estimation by first acoustic reflections Orion nebula Application of trilateration is localization Molecular conformation Face recognition Swiss roll USA map reconstruction Honeycomb, Hexabenzocoronene molecule Robotic vehicles Reconstruction of David David by distance geometry Convex geometry Slab Open, closed, convex sets Intersection of line with boundary Tangentials Inverse image Inverse image under linear map Tesseract Linear injective mapping of Euclidean body Linear noninjective mapping of Euclidean body Convex hull of a random list of points Hulls Two Fantopes Nuclear Norm Ball Convex hull of rank-1 matrices A simplicial cone Hyperplane illustrated H is a partially bounding line Hyperplanes in R

6 14 LIST OF FIGURES 30 Affine independence {z C a T z = κ i } Hyperplane supporting closed set Minimizing hyperplane over affine set in nonnegative orthant Maximizing hyperplane over convex set Closed convex set illustrating exposed and extreme points Two-dimensional nonconvex cone Nonconvex cone made from lines Nonconvex cone is convex cone boundary Union of convex cones is nonconvex cone Truncated nonconvex cone X Cone exterior is convex cone Not a cone Minimum element, Minimal element K is a pointed polyhedral cone not full-dimensional Exposed and extreme directions Positive semidefinite cone Convex Schur-form set Projection of truncated PSD cone Circular cone showing axis of revolution Circular section Polyhedral inscription Conically (in)dependent vectors Pointed six-faceted polyhedral cone and its dual Minimal set of generators for halfspace about origin Venn diagram for cones and polyhedra Range form polyhedron Simplex Two views of a simplicial cone and its dual Two equivalent constructions of dual cone Dual polyhedral cone construction by right angle K is a halfspace about the origin Iconic primal and dual objective functions Orthogonal cones Blades K and K Membership w.r.t K and orthant Shrouded polyhedral cone Simplicial cone K in R 2 and its dual Monotone nonnegative cone K M+ and its dual Monotone cone K M and its dual Two views of monotone cone K M and its dual First-order optimality condition

7 LIST OF FIGURES 15 3 Geometry of convex functions Convex functions having unique minimizer Minimum/Minimal element, dual cone characterization norm ball B 1 from compressed sensing/compressive sampling Cardinality minimization, signed versus unsigned variable norm variants Affine function Supremum of affine functions Epigraph Quadratic bowl gradient in R 2 evaluated on grid Quadratic function convexity in terms of its gradient Contour plot of convex real function at selected levels Iconic quasiconvex function Quasiconcave monotonic function xu Arbitrary magnitude analog filter design Semidefinite programming Venn diagram of convex program classes Visualizing positive semidefinite cone in high dimension Primal/Dual transformations Projection versus convex iteration Trace heuristic Sensor-network localization lattice of sensors and anchors for localization example lattice of sensors and anchors for localization example lattice of sensors and anchors for localization example lattice of sensors and anchors for localization example Uncertainty ellipsoids orientation and eccentricity lattice localization solution lattice localization solution lattice localization solution lattice localization solution lattice localization solution randomized noiseless sensor localization randomized sensors localization Nonnegative spectral factorization Regularization curve for convex iteration norm heuristic Sparse sampling theorem Signal dropout Signal dropout reconstruction Simplex with intersecting line problem in compressed sensing Geometric interpretations of sparse-sampling constraints Permutation matrix column-norm and column-sum constraint max cut problem

8 16 LIST OF FIGURES 114 Shepp-Logan phantom MRI radial sampling pattern in Fourier domain Aliased phantom Neighboring-pixel stencil on Cartesian grid Differentiable almost everywhere Eternity II Eternity II game-board grid Eternity II demo-game piece illustrating edge-color ordering Eternity II vectorized demo-game-board piece descriptions Eternity II difference and boundary parameter construction Sparsity pattern for composite Eternity II variable matrix MIT logo One-pixel camera One-pixel camera - compression estimates Straight line through three direction vectors by midpoint fit Euclidean Distance Matrix Convex hull of three points Complete dimensionless EDM graph Fifth Euclidean metric property Fermat point Arbitrary hexagon in R Kissing number Trilateration This EDM graph provides unique isometric reconstruction Two sensors and three anchors Two discrete linear trajectories of sensors Coverage in cellular telephone network Contours of equal signal power Depiction of molecular conformation Square diamond Orthogonal complements in S N abstractly oriented Elliptope E Elliptope E 2 interior to S Smallest eigenvalue of V T N DV N Some entrywise EDM compositions Map of United States of America Largest ten eigenvalues of V T N OV N Relative-angle inequality tetrahedron Nonsimplicial pyramid in R

9 LIST OF FIGURES 17 6 Cone of distance matrices Relative boundary of cone of Euclidean distance matrices Example of V X selection to make an EDM Vector V X spirals Three views of translated negated elliptope Halfline T on PSD cone boundary Vectorization and projection interpretation example Intersection of EDM cone with hyperplane Neighborhood graph Trefoil knot untied Trefoil ribbon Orthogonal complement of geometric center subspace EDM cone construction by flipping PSD cone Decomposing member of polar EDM cone Ordinary dual EDM cone projected on S 3 h Proximity problems Pseudo-Venn diagram for EDM Elbow placed in path of projection Convex envelope A Linear algebra Geometrical interpretation of full SVD B Simple matrices Four fundamental subspaces for any dyad Four fundamental subspaces for doublet Four fundamental subspaces for elementary matrix Gimbal D Matrix calculus Convex quadratic bowl in R 2 R E Projection Action of pseudoinverse Nonorthogonal projection of x R 3 on R(U)= R Biorthogonal expansion of point x aff K Linear regression versus principal component analysis Dual interpretation of projection on convex set Projection on orthogonal complement Projection on dual cone Projection product on convex set in subspace

10 18 LIST OF FIGURES 183 von Neumann-style projection of point b Alternating projection on two halfspaces Distance, feasibility, optimization Alternating projection on nonnegative orthant and hyperplane Geometric convergence of iterates in norm Distance between PSD cone and iterate in A Dykstra s alternating projection algorithm Polyhedral normal cones Normal cone to elliptope Normal-cone progression

11 List of Tables 2 Convex geometry Table , rank versus dimension of S 3 + faces 107 Table , maximum number of c.i. directions 122 Cone Table Cone Table S 167 Cone Table A 168 Cone Table 1* Semidefinite programming Faces of S 3 + corresponding to faces of S Euclidean Distance Matrix Précis 5.7.2: affine dimension in terms of rank 401 B Simple matrices Auxiliary V -matrix Table B D Matrix calculus Table D.2.1, algebraic gradients and derivatives 595 Table D.2.2, trace Kronecker gradients 596 Table D.2.3, trace gradients and derivatives 597 Table D.2.4, logarithmic determinant gradients, derivatives 599 Table D.2.5, determinant gradients and derivatives 600 Table D.2.6, logarithmic derivatives 600 Table D.2.7, exponential gradients and derivatives 601 Dattorro, Convex Optimization Euclidean Distance Geometry 2ε, Mεβoo, v

Convex Optimization Euclidean Distance Geometry 2ε

Convex Optimization Euclidean Distance Geometry 2ε Convex Optimization Euclidean Distance Geometry 2ε 1 Overview 19 2 Convex geometry 31 2.1 Convex set.................................... 31 2.2 Vectorized-matrix inner product........................ 42

More information

Convex Sets (cont.) Convex Functions

Convex Sets (cont.) Convex Functions Convex Sets (cont.) Convex Functions Optimization - 10725 Carlos Guestrin Carnegie Mellon University February 27 th, 2008 1 Definitions of convex sets Convex v. Non-convex sets Line segment definition:

More information

Tutorial on Convex Optimization for Engineers

Tutorial on Convex Optimization for Engineers Tutorial on Convex Optimization for Engineers M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set

2. Convex sets. x 1. x 2. affine set: contains the line through any two distinct points in the set 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24

Convex Optimization. Convex Sets. ENSAE: Optimisation 1/24 Convex Optimization Convex Sets ENSAE: Optimisation 1/24 Today affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes

More information

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 6 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 6 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory April 19, 2012 Andre Tkacenko

More information

Convexity I: Sets and Functions

Convexity I: Sets and Functions Convexity I: Sets and Functions Lecturer: Aarti Singh Co-instructor: Pradeep Ravikumar Convex Optimization 10-725/36-725 See supplements for reviews of basic real analysis basic multivariate calculus basic

More information

Lecture 2 Convex Sets

Lecture 2 Convex Sets Optimization Theory and Applications Lecture 2 Convex Sets Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2016 2016/9/29 Lecture 2: Convex Sets 1 Outline

More information

Lecture 2: August 31

Lecture 2: August 31 10-725/36-725: Convex Optimization Fall 2016 Lecture 2: August 31 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Lidan Mu, Simon Du, Binxuan Huang 2.1 Review A convex optimization problem is of

More information

Convex sets and convex functions

Convex sets and convex functions Convex sets and convex functions Convex optimization problems Convex sets and their examples Separating and supporting hyperplanes Projections on convex sets Convex functions, conjugate functions ECE 602,

More information

Convex sets and convex functions

Convex sets and convex functions Convex sets and convex functions Convex optimization problems Convex sets and their examples Separating and supporting hyperplanes Projections on convex sets Convex functions, conjugate functions ECE 602,

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015 Convex Optimization - Chapter 1-2 Xiangru Lian August 28, 2015 1 Mathematical optimization minimize f 0 (x) s.t. f j (x) 0, j=1,,m, (1) x S x. (x 1,,x n ). optimization variable. f 0. R n R. objective

More information

Convex Optimization. 2. Convex Sets. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University. SJTU Ying Cui 1 / 33

Convex Optimization. 2. Convex Sets. Prof. Ying Cui. Department of Electrical Engineering Shanghai Jiao Tong University. SJTU Ying Cui 1 / 33 Convex Optimization 2. Convex Sets Prof. Ying Cui Department of Electrical Engineering Shanghai Jiao Tong University 2018 SJTU Ying Cui 1 / 33 Outline Affine and convex sets Some important examples Operations

More information

of Convex Analysis Fundamentals Jean-Baptiste Hiriart-Urruty Claude Lemarechal Springer With 66 Figures

of Convex Analysis Fundamentals Jean-Baptiste Hiriart-Urruty Claude Lemarechal Springer With 66 Figures 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Jean-Baptiste Hiriart-Urruty Claude Lemarechal Fundamentals of Convex

More information

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity

Convex Sets. CSCI5254: Convex Optimization & Its Applications. subspaces, affine sets, and convex sets. operations that preserve convexity CSCI5254: Convex Optimization & Its Applications Convex Sets subspaces, affine sets, and convex sets operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

COM Optimization for Communications Summary: Convex Sets and Convex Functions

COM Optimization for Communications Summary: Convex Sets and Convex Functions 1 Convex Sets Affine Sets COM524500 Optimization for Communications Summary: Convex Sets and Convex Functions A set C R n is said to be affine if A point x 1, x 2 C = θx 1 + (1 θ)x 2 C, θ R (1) y = k θ

More information

Convexity: an introduction

Convexity: an introduction Convexity: an introduction Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo 1 / 74 1. Introduction 1. Introduction what is convexity where does it arise main concepts and

More information

60 2 Convex sets. {x a T x b} {x ã T x b}

60 2 Convex sets. {x a T x b} {x ã T x b} 60 2 Convex sets Exercises Definition of convexity 21 Let C R n be a convex set, with x 1,, x k C, and let θ 1,, θ k R satisfy θ i 0, θ 1 + + θ k = 1 Show that θ 1x 1 + + θ k x k C (The definition of convexity

More information

Lecture 2: August 29, 2018

Lecture 2: August 29, 2018 10-725/36-725: Convex Optimization Fall 2018 Lecturer: Ryan Tibshirani Lecture 2: August 29, 2018 Scribes: Adam Harley Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course?

This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course? Lec4 Page 1 Lec4p1, ORF363/COS323 This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course? Instructor: Amir Ali Ahmadi

More information

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 Convex Sets Instructor: Shaddin Dughmi Outline 1 Convex sets, Affine sets, and Cones 2 Examples of Convex Sets 3 Convexity-Preserving Operations

More information

People are so afraid of convex analysis. Claude Lemaréchal, 2003

People are so afraid of convex analysis. Claude Lemaréchal, 2003 Chapter 1 Overview Convex Optimization Euclidean Distance Geometry 2ε People are so afraid of convex analysis. Claude Lemaréchal, 2003 In layman s terms, the mathematical science of Optimization is a study

More information

Simplex Algorithm in 1 Slide

Simplex Algorithm in 1 Slide Administrivia 1 Canonical form: Simplex Algorithm in 1 Slide If we do pivot in A r,s >0, where c s

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Convex geometry. Chapter Convex set

Convex geometry. Chapter Convex set Chapter 2 Convex geometry Convexity has an immensely rich structure and numerous applications. On the other hand, almost every convex idea can be explained by a two-dimensional picture. Alexander Barvinok

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

A Course in Convexity

A Course in Convexity A Course in Convexity Alexander Barvinok Graduate Studies in Mathematics Volume 54 American Mathematical Society Providence, Rhode Island Preface vii Chapter I. Convex Sets at Large 1 1. Convex Sets. Main

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 4: Convex Sets Instructor: Shaddin Dughmi Announcements New room: KAP 158 Today: Convex Sets Mostly from Boyd and Vandenberghe. Read all of

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 1 A. d Aspremont. Convex Optimization M2. 1/49 Today Convex optimization: introduction Course organization and other gory details... Convex sets, basic definitions. A. d

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Affine function. suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex

Affine function. suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex Affine function suppose f : R n R m is affine (f(x) =Ax + b with A R m n, b R m ) the image of a convex set under f is convex S R n convex = f(s) ={f(x) x S} convex the inverse image f 1 (C) of a convex

More information

Lec13p1, ORF363/COS323

Lec13p1, ORF363/COS323 Lec13 Page 1 Lec13p1, ORF363/COS323 This lecture: Semidefinite programming (SDP) Definition and basic properties Review of positive semidefinite matrices SDP duality SDP relaxations for nonconvex optimization

More information

Conic Duality. yyye

Conic Duality.  yyye Conic Linear Optimization and Appl. MS&E314 Lecture Note #02 1 Conic Duality Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

Lecture 2: August 29, 2018

Lecture 2: August 29, 2018 10-725/36-725: Convex Optimization Fall 2018 Lecturer: Ryan Tibshirani Lecture 2: August 29, 2018 Scribes: Yingjing Lu, Adam Harley, Ruosong Wang Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 263 Index 3D reconstruction, 125 5+1-point algorithm, 284 5-point algorithm, 270 7-point algorithm, 265 8-point algorithm, 263 affine point, 45 affine transformation, 57 affine transformation group, 57 affine

More information

Introduction to Convex Optimization. Prof. Daniel P. Palomar

Introduction to Convex Optimization. Prof. Daniel P. Palomar Introduction to Convex Optimization Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19,

More information

Lecture: Convex Sets

Lecture: Convex Sets /24 Lecture: Convex Sets http://bicmr.pku.edu.cn/~wenzw/opt-27-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/24 affine and convex sets some

More information

Lecture 4: Convexity

Lecture 4: Convexity 10-725: Convex Optimization Fall 2013 Lecture 4: Convexity Lecturer: Barnabás Póczos Scribes: Jessica Chemali, David Fouhey, Yuxiong Wang Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

Convex Geometry arising in Optimization

Convex Geometry arising in Optimization Convex Geometry arising in Optimization Jesús A. De Loera University of California, Davis Berlin Mathematical School Summer 2015 WHAT IS THIS COURSE ABOUT? Combinatorial Convexity and Optimization PLAN

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

ACTUALLY DOING IT : an Introduction to Polyhedral Computation

ACTUALLY DOING IT : an Introduction to Polyhedral Computation ACTUALLY DOING IT : an Introduction to Polyhedral Computation Jesús A. De Loera Department of Mathematics Univ. of California, Davis http://www.math.ucdavis.edu/ deloera/ 1 What is a Convex Polytope? 2

More information

13. Cones and semidefinite constraints

13. Cones and semidefinite constraints CS/ECE/ISyE 524 Introduction to Optimization Spring 2017 18 13. Cones and semidefinite constraints ˆ Geometry of cones ˆ Second order cone programs ˆ Example: robust linear program ˆ Semidefinite constraints

More information

Linear Optimization and Extensions: Theory and Algorithms

Linear Optimization and Extensions: Theory and Algorithms AT&T Linear Optimization and Extensions: Theory and Algorithms Shu-Cherng Fang North Carolina State University Sarai Puthenpura AT&T Bell Labs Prentice Hall, Englewood Cliffs, New Jersey 07632 Contents

More information

Convex Optimization / Homework 2, due Oct 3

Convex Optimization / Homework 2, due Oct 3 Convex Optimization 0-725/36-725 Homework 2, due Oct 3 Instructions: You must complete Problems 3 and either Problem 4 or Problem 5 (your choice between the two) When you submit the homework, upload a

More information

Alternating Projections

Alternating Projections Alternating Projections Stephen Boyd and Jon Dattorro EE392o, Stanford University Autumn, 2003 1 Alternating projection algorithm Alternating projections is a very simple algorithm for computing a point

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

LECTURE 6: INTERIOR POINT METHOD. 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm

LECTURE 6: INTERIOR POINT METHOD. 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm LECTURE 6: INTERIOR POINT METHOD 1. Motivation 2. Basic concepts 3. Primal affine scaling algorithm 4. Dual affine scaling algorithm Motivation Simplex method works well in general, but suffers from exponential-time

More information

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities

2. Convex sets. affine and convex sets. some important examples. operations that preserve convexity. generalized inequalities 2. Convex sets Convex Optimization Boyd & Vandenberghe affine and convex sets some important examples operations that preserve convexity generalized inequalities separating and supporting hyperplanes dual

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. Author: Martin Jaggi Presenter: Zhongxing Peng Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization Author: Martin Jaggi Presenter: Zhongxing Peng Outline 1. Theoretical Results 2. Applications Outline 1. Theoretical Results 2. Applications

More information

Open problems in convex geometry

Open problems in convex geometry Open problems in convex geometry 10 March 2017, Monash University Seminar talk Vera Roshchina, RMIT University Based on joint work with Tian Sang (RMIT University), Levent Tunçel (University of Waterloo)

More information

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization?

Linear and Integer Programming :Algorithms in the Real World. Related Optimization Problems. How important is optimization? Linear and Integer Programming 15-853:Algorithms in the Real World Linear and Integer Programming I Introduction Geometric Interpretation Simplex Method Linear or Integer programming maximize z = c T x

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming SECOND EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book Information and Orders http://world.std.com/~athenasc/index.html Athena Scientific, Belmont,

More information

Algebraic Iterative Methods for Computed Tomography

Algebraic Iterative Methods for Computed Tomography Algebraic Iterative Methods for Computed Tomography Per Christian Hansen DTU Compute Department of Applied Mathematics and Computer Science Technical University of Denmark Per Christian Hansen Algebraic

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253

Index. 3D reconstruction, point algorithm, point algorithm, point algorithm, point algorithm, 253 Index 3D reconstruction, 123 5+1-point algorithm, 274 5-point algorithm, 260 7-point algorithm, 255 8-point algorithm, 253 affine point, 43 affine transformation, 55 affine transformation group, 55 affine

More information

Week 5. Convex Optimization

Week 5. Convex Optimization Week 5. Convex Optimization Lecturer: Prof. Santosh Vempala Scribe: Xin Wang, Zihao Li Feb. 9 and, 206 Week 5. Convex Optimization. The convex optimization formulation A general optimization problem is

More information

Polytopes Course Notes

Polytopes Course Notes Polytopes Course Notes Carl W. Lee Department of Mathematics University of Kentucky Lexington, KY 40506 lee@ms.uky.edu Fall 2013 i Contents 1 Polytopes 1 1.1 Convex Combinations and V-Polytopes.....................

More information

Modern Multidimensional Scaling

Modern Multidimensional Scaling Ingwer Borg Patrick Groenen Modern Multidimensional Scaling Theory and Applications With 116 Figures Springer Contents Preface vii I Fundamentals of MDS 1 1 The Four Purposes of Multidimensional Scaling

More information

CS675: Convex and Combinatorial Optimization Fall 2014 Convex Functions. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2014 Convex Functions. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2014 Convex Functions Instructor: Shaddin Dughmi Outline 1 Convex Functions 2 Examples of Convex and Concave Functions 3 Convexity-Preserving Operations

More information

Applied Integer Programming

Applied Integer Programming Applied Integer Programming D.S. Chen; R.G. Batson; Y. Dang Fahimeh 8.2 8.7 April 21, 2015 Context 8.2. Convex sets 8.3. Describing a bounded polyhedron 8.4. Describing unbounded polyhedron 8.5. Faces,

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

Some Advanced Topics in Linear Programming

Some Advanced Topics in Linear Programming Some Advanced Topics in Linear Programming Matthew J. Saltzman July 2, 995 Connections with Algebra and Geometry In this section, we will explore how some of the ideas in linear programming, duality theory,

More information

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2) COMP331/557 Chapter 2: The Geometry of Linear Programming (Bertsimas & Tsitsiklis, Chapter 2) 49 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron

More information

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1 Section 5 Convex Optimisation 1 W. Dai (IC) EE4.66 Data Proc. Convex Optimisation 1 2018 page 5-1 Convex Combination Denition 5.1 A convex combination is a linear combination of points where all coecients

More information

As we come to each Math Notes box, you need to copy it onto paper in your Math Notes Section of your binder. As we come to each Learning Log Entry,

As we come to each Math Notes box, you need to copy it onto paper in your Math Notes Section of your binder. As we come to each Learning Log Entry, Chapter 1: Math Notes Page/Problem # Lesson 1.1.1 Lines of Symmetry 6 Lesson 1.1.2 The Investigative Process 11 Lesson 1.1.3 The Perimeter and Area of a Figure 16 Lesson 1.1.4 Solving Linear Equations

More information

Index. affine dependency, 133 minimal, 133 affine hull, 392 affinely independent, 393 α-bb, 230, 258, 297 approximate solutions, 9 approximation, 86

Index. affine dependency, 133 minimal, 133 affine hull, 392 affinely independent, 393 α-bb, 230, 258, 297 approximate solutions, 9 approximation, 86 Index affine dependency, 133 minimal, 133 affine hull, 392 affinely independent, 393 α-bb, 230, 258, 297 approximate solutions, 9 approximation, 86 AP X, 10 aspiration level, 86, 110 atomic clusters, 372

More information

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING DAVID G. LUENBERGER Stanford University TT ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California London Don Mills, Ontario CONTENTS

More information

Lower bounds on the barrier parameter of convex cones

Lower bounds on the barrier parameter of convex cones of convex cones Université Grenoble 1 / CNRS June 20, 2012 / High Performance Optimization 2012, Delft Outline Logarithmically homogeneous barriers 1 Logarithmically homogeneous barriers Conic optimization

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

MATHEMATICS Curriculum Grades 10 to 12

MATHEMATICS Curriculum Grades 10 to 12 MATHEMATICS Curriculum Grades 10 to 12 Grade 10 Number systems Algebraic Expressions expressions Products (Ch. 1) Factorisation Term 1 Exponents (Ch. 2) Number patterns (Ch. 3) (CH.4) Notation, rules,

More information

THEORY OF LINEAR AND INTEGER PROGRAMMING

THEORY OF LINEAR AND INTEGER PROGRAMMING THEORY OF LINEAR AND INTEGER PROGRAMMING ALEXANDER SCHRIJVER Centrum voor Wiskunde en Informatica, Amsterdam A Wiley-Inter science Publication JOHN WILEY & SONS^ Chichester New York Weinheim Brisbane Singapore

More information

ON THE MAXIMAL VOLUME OF THREE-DIMENSIONAL HYPERBOLIC COMPLETE ORTHOSCHEMES

ON THE MAXIMAL VOLUME OF THREE-DIMENSIONAL HYPERBOLIC COMPLETE ORTHOSCHEMES Proceedings of the Institute of Natural Sciences, Nihon University No.49 04 pp.63 77 ON THE MAXIMAL VOLUME OF THREE-DIMENSIONAL HYPERBOLIC COMPLETE ORTHOSCHEMES Kazuhiro ICHIHARA and Akira USHIJIMA Accepted

More information

Ec 181: Convex Analysis and Economic Theory

Ec 181: Convex Analysis and Economic Theory Division of the Humanities and Social Sciences Ec 181: Convex Analysis and Economic Theory KC Border Winter 2018 v. 2018.03.08::13.11 src: front KC Border: for Ec 181, Winter 2018 Woe to the author who

More information

Convex Analysis and Minimization Algorithms I

Convex Analysis and Minimization Algorithms I Jean-Baptiste Hiriart-Urruty Claude Lemarechal Convex Analysis and Minimization Algorithms I Fundamentals With 113 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona

More information

Convex Optimization. Chapter 1 - chapter 2.2

Convex Optimization. Chapter 1 - chapter 2.2 Convex Optimization Chapter 1 - chapter 2.2 Introduction In optimization literatures, one will frequently encounter terms like linear programming, convex set convex cone, convex hull, semidefinite cone

More information

Research Interests Optimization:

Research Interests Optimization: Mitchell: Research interests 1 Research Interests Optimization: looking for the best solution from among a number of candidates. Prototypical optimization problem: min f(x) subject to g(x) 0 x X IR n Here,

More information

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm Instructor: Shaddin Dughmi Algorithms for Convex Optimization We will look at 2 algorithms in detail: Simplex and Ellipsoid.

More information

FACES OF CONVEX SETS

FACES OF CONVEX SETS FACES OF CONVEX SETS VERA ROSHCHINA Abstract. We remind the basic definitions of faces of convex sets and their basic properties. For more details see the classic references [1, 2] and [4] for polytopes.

More information

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1

Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1 Solving equations and inequalities graphically and algebraically 1. Plot points on the Cartesian coordinate plane. P.1 2. Represent data graphically using scatter plots, bar graphs, & line graphs. P.1

More information

Modern Multidimensional Scaling

Modern Multidimensional Scaling Ingwer Borg Patrick J.F. Groenen Modern Multidimensional Scaling Theory and Applications Second Edition With 176 Illustrations ~ Springer Preface vii I Fundamentals of MDS 1 1 The Four Purposes of Multidimensional

More information

Simplicial Global Optimization

Simplicial Global Optimization Simplicial Global Optimization Julius Žilinskas Vilnius University, Lithuania September, 7 http://web.vu.lt/mii/j.zilinskas Global optimization Find f = min x A f (x) and x A, f (x ) = f, where A R n.

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Convex Sets. Pontus Giselsson

Convex Sets. Pontus Giselsson Convex Sets Pontus Giselsson 1 Today s lecture convex sets convex, affine, conical hulls closure, interior, relative interior, boundary, relative boundary separating and supporting hyperplane theorems

More information

Constrained optimization

Constrained optimization Constrained optimization Problem in standard form minimize f(x) subject to a i (x) = 0, for i =1, 2, p c j (x) 0 for j =1, 2,,q f : R n R a i : R n R c j : R n R f(x )=, if problem is infeasible f(x )=,

More information

Digital Level Layers for Digital Curve Decomposition and Vectorization

Digital Level Layers for Digital Curve Decomposition and Vectorization 2014/07/01 v0.5 IPOL article class Published in Image Processing On Line on 2014 07 30. Submitted on 2013 02 10, accepted on 2013 05 06. ISSN 2105 1232 c 2014 IPOL & the authors CC BY NC SA This article

More information

Recovery of Piecewise Smooth Images from Few Fourier Samples

Recovery of Piecewise Smooth Images from Few Fourier Samples Recovery of Piecewise Smooth Images from Few Fourier Samples Greg Ongie*, Mathews Jacob Computational Biomedical Imaging Group (CBIG) University of Iowa SampTA 2015 Washington, D.C. 1. Introduction 2.

More information

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes.

POLYTOPES. Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of convex polytopes. POLYTOPES MARGARET A. READDY 1. Lecture I: Introduction to Polytopes and Face Enumeration Grünbaum and Shephard [40] remarked that there were three developments which foreshadowed the modern theory of

More information

Algebraic Iterative Methods for Computed Tomography

Algebraic Iterative Methods for Computed Tomography Algebraic Iterative Methods for Computed Tomography Per Christian Hansen DTU Compute Department of Applied Mathematics and Computer Science Technical University of Denmark Per Christian Hansen Algebraic

More information