III. CONCEPTS OF MODELLING II.

Size: px
Start display at page:

Download "III. CONCEPTS OF MODELLING II."

Transcription

1 III. CONCEPTS OF MODELLING II. 5. THE MODELLING PROCEDURE 6. TYPES OF THE MODELS 7. SELECTION OF MODEL TYPE 8. SELECTION OF MODEL COMPLEXITY AND STRUCTURE 1 5. MODELLING PROCEDURE Three significant steps in the modelling procedure: - Verification - Calibration - Validation - All steps of the procedure are used very carefully. - Presented modelling procedure presented is accepted in modelling community. 2 1

2 5. The modelling procedure: Verification - The step that follows the selection of mathematical equations. - Answer to the following question is needed: Is the model stable in long term? State variables should are maintained at approximately the same levels despite variations of forcing functions ==> first running period the model is sensitive to initial conditions stability of the model must be achieved also under long term vales The modelling procedure: Verification Does the model react as expected? To compare model results with observations and changes of the model are made according to the modeler s intuition and knowledge of the reactions of the model. Its time to play with a model and evaluate the model outputs. ==> we use the knowledge about the system which we simulate ==> model should be useful description of real ecosystem 4 2

3 5. The modelling procedure: Verification Are applied units in the model consistent? -Equations should use consistent unites 5 5. The modelling procedure: Sensitivity analysis Get an overview of the most sensitive components of the model. To provide a measure of sensitivity of either parameters, forcing functions or submodels to the state variables of greatest interest in the model. The relative change in parameter value is chosen based on knowledge of the certainty of the parameters. It enables to distinguish between high (high impact on the system behavior) and low (low impact) leverage variables. Low leverage variables may be excluded from the model => effect on complexity and structure of the model => lower complexity => simpler dataset => higher certainty of the model. 6 3

4 5. The modelling procedure: Calibration The scope is to improve the parameter estimation (exact value or range of values of the interval): the parameter set that gives the best agreement between model output and measured values is chosen. Selection of parameter s values: - from literature - from experiments - one value or set of values from an interval 7 5. The modelling procedure: Calibration -To select the most important parameters and experiment with the variation of their values (software for automatic calibration) => time consumable or not applicable at all: (10 parameters, 15 possible values of each parameter = experiments = this is higher number then is the number of seconds since the big bang - The quality of calibration depends the most on the quality of data. 8 4

5 5. The modelling procedure: Calibration Recommendations for the calibration procedure: - Find as much as possible parameters from the literature, otherwise determine them by experiments in situ -Use sensitivity analysis to find the most important parameters. - Use an intensive data collection program for the most important state variables to provide better estimation for the most important parameters - Perform calibration using data not yet applied in order to get acquainted with the model s reactions to changes in parameters. - Repeat sensitivity analysis and try to make fine tuning of parameter s values 9 5. The modelling procedure: Validation - To test the model against an independent set of data to see how well the model simulations fit these data. - The validation is always required (to get a picture about the reliability od the model) - Data for validation must not be the same as was used for calibration. - Data need to be from wide range of forcing functions - Validation criteria (i.e. how good is the model) must be formulated on objectives of the model and the quality of the available data. 10 5

6 11 6. TYPES OF MODELS 12 6

7 6. TYPES OF MODELS Two types of models (according to the application): - Scientific models - tools for testing hypothesis - Management models tools for management TYPES OF MODELS Stohastic models: - contains: => stohastic input disturbance => random measurement errors - If both assumed to be 0 : stohastic model => deterministic model - rarely applied in ecology The predicted values depend on probability distribution. (2) Stohasic disturbance (3) Random measurement errors (1)Measured inputs System state (4) Measured outputs 14 7

8 6. TYPES OF MODELS Deterministic models: - responses of the model are completely determined with: - knowledge of the present state - future measured inputs The predicted values are computed exactly TYPES OF MODELS Reductionistic models: - To incorporate as many details as possible in the model => to capture the behavior of the system - The properties of the system are the sum of details Include as many details as possible 16 8

9 6. TYPES OF MODELS Holistic models: -To include into the model system properties of the ecosystem by using general principles. - Properties of the system are not the sum of all details => system poses additional properties because the subsystems are working as unite Use of general principles TYPES OF MODELS Dynamic models: - System s responses to external factors are described: - by differences equations : use discrete time steps for description of the state of the system - by differential equations: use continues changes of the state variables - Description of the steady state: difference equations - Description of oscillations around steady state: differential e. The variables defining the system are a function of time. 18 9

10 6. TYPES OF MODELS Static models: - all variables and parameters are independent of time - they simplify computation - they may give unrealistic results because they don t respect oscillations which cause that state variables may obtain higher average values The variables defining the system are not dependent on time TYPES OF MODELS Black-box models: - what changes in the inputs will affect the ouput respons -Internal structure of the mode is not known - Relationship between inputs and outputs is find by statistics (or other methods (e.g. data mining) - Limited application in cases where the knowledge about the system is limited The input disturbances affect only the output response No causality required

11 7. SELECTION OF THE MODEL TYPE Depends on: - the problem - the ecosystem characteristics - available data SELECTION OF MODEL TYPE Four focal recommendations on the selection of the model: 1) Model is only as reliable as its least reliable input, balanced complexity on the submodels are recommended. 2) Keep the model as simple as possible and as complex as needed

12 7. SELECTION OF MODEL TYPE 3) Model should have right structure the most important output from the model is better understanding of the system. 4) Maintain system thinking. The model is not a correct representation of the reality but an attempt to describe important system features of the system-problem complex SELECTION OF MODEL COMPLEXITY AND STRUCTURE The selection of the model complexity is the matter of balance: Must include state variables and the processes essential for the problem in focus. Data request: not to make model more complex the the data set can bear. Complexity of model =f (knowledge of processes and state variables, datasets) Its easy to add more equations and state variables to the model => much harder to get needed data for calibration and validation of the model

13 8. SELECTION OF MODEL COMPLEXITY AND STRUCTURE The base model (Zeigler) => the model that will be capable of accounting for the complete input output behavior of real ecosystem and be valid for all frames => ideal model => ecosystem is very complex => the base models should be very complex as well => it is impossible to make a base model of ecosystem. Central question: How could we select the complexity and the structure of the model to ensure the optimum knowledge gained or the best answer to the question posed by the model? SELECTION OF MODEL COMPLEXITY AND STRUCTURE New knowledge Very good data Bad data Complexity of the model 26 13

14 8. SELECTION OF MODEL COMPLEXITY AND STRUCTURE Balance between complexity and expectations: 1. Good definition of the problem 2. Good knowledge about the system 3. Right complexity of the model Model is a simplification of real system! => it s impossible to make a model of real ecosystem, => models of some aspects of ecosystem may be made SELECTION OF MODEL COMPLEXITY AND STRUCTURE Selection of complexity and model structure depends on feasibility to aggregate similar state variables the number of variables is reduced to one variable the problem is nonlinear relationships between variables which are going to be aggregated. Aggregation of state variables may reduce the reliability of the model

15 8. SELECTION OF MODEL COMPLEXITY AND STRUCTURE Selection of the complicity must not be random because: It affects the outputs from the model (main product of the modeler) Enough time need to be taken to select right level of complexity

1. Introduction. 2. Modelling elements III. CONCEPTS OF MODELLING. - Models in environmental sciences have five components:

1. Introduction. 2. Modelling elements III. CONCEPTS OF MODELLING. - Models in environmental sciences have five components: III. CONCEPTS OF MODELLING 1. INTRODUCTION 2. MODELLING ELEMENTS 3. THE MODELLING PROCEDURE 4. CONCEPTUAL MODELS 5. THE MODELLING PROCEDURE 6. SELECTION OF MODEL COMPLEXITY AND STRUCTURE 1 1. Introduction

More information

Computational Methods. Sources of Errors

Computational Methods. Sources of Errors Computational Methods Sources of Errors Manfred Huber 2011 1 Numerical Analysis / Scientific Computing Many problems in Science and Engineering can not be solved analytically on a computer Numeric solutions

More information

Output-error model identification: linear time-invariant systems

Output-error model identification: linear time-invariant systems Output-error model identification: linear time-invariant systems Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano The OE method for LTI systems 2 For linear time-invariant systems

More information

Define the problem and gather relevant data Formulate a mathematical model to represent the problem Develop a procedure for driving solutions to the

Define the problem and gather relevant data Formulate a mathematical model to represent the problem Develop a procedure for driving solutions to the Define the problem and gather relevant data Formulate a mathematical model to represent the problem Develop a procedure for driving solutions to the problem Test the model and refine it as needed Prepare

More information

Operations Research and Optimization: A Primer

Operations Research and Optimization: A Primer Operations Research and Optimization: A Primer Ron Rardin, PhD NSF Program Director, Operations Research and Service Enterprise Engineering also Professor of Industrial Engineering, Purdue University Introduction

More information

Modeling Plant Succession with Markov Matrices

Modeling Plant Succession with Markov Matrices Modeling Plant Succession with Markov Matrices 1 Modeling Plant Succession with Markov Matrices Concluding Paper Undergraduate Biology and Math Training Program New Jersey Institute of Technology Catherine

More information

Bioinformatics: Network Analysis

Bioinformatics: Network Analysis Bioinformatics: Network Analysis Modeling in Biology COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 Biology in Time and Space A description of biological entities and their

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 Motivation The presence of uncertainties and disturbances has always been a vital issue in the control of dynamic systems. The classical linear controllers, PI and PID controllers

More information

System dynamic (SD) modeling. Lisa Brouwers

System dynamic (SD) modeling. Lisa Brouwers System dynamic (SD) modeling Lisa Brouwers Agenda Modelling and simulation Different type of models System dynamics SIR in Vensim Verification and validation Modelling process (steps in a simulation project)

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

PART I - Fundamentals of Parallel Computing

PART I - Fundamentals of Parallel Computing PART I - Fundamentals of Parallel Computing Objectives What is scientific computing? The need for more computing power The need for parallel computing and parallel programs 1 What is scientific computing?

More information

Relationship between Fourier Space and Image Space. Academic Resource Center

Relationship between Fourier Space and Image Space. Academic Resource Center Relationship between Fourier Space and Image Space Academic Resource Center Presentation Outline What is an image? Noise Why do we transform images? What is the Fourier Transform? Examples of images in

More information

Massive Data Analysis

Massive Data Analysis Professor, Department of Electrical and Computer Engineering Tennessee Technological University February 25, 2015 Big Data This talk is based on the report [1]. The growth of big data is changing that

More information

Engineering Design Notes I Introduction. EE 498/499 Capstone Design Classes Klipsch School of Electrical & Computer Engineering

Engineering Design Notes I Introduction. EE 498/499 Capstone Design Classes Klipsch School of Electrical & Computer Engineering Engineering Design Notes I Introduction EE 498/499 Capstone Design Classes Klipsch School of Electrical & Computer Engineering Topics Overview Analysis vs. Design Design Stages Systems Engineering Integration

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Part 2: Basic concepts Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation

More information

Session 4b: Review of Program Quality

Session 4b: Review of Program Quality Session 4b: Review of Program Quality What makes one program "better" than another? COMP 170 -- Fall, 2013 Mr. Weisert What is a good program? Suppose we give the same assignment to two programmers (or

More information

New Mexico Tech Hyd 510

New Mexico Tech Hyd 510 Numerics Motivation Modeling process (JLW) To construct a model we assemble and synthesize data and other information to formulate a conceptual model of the situation. The model is conditioned on the science

More information

The Travelling Salesman Problem. in Fuzzy Membership Functions 1. Abstract

The Travelling Salesman Problem. in Fuzzy Membership Functions 1. Abstract Chapter 7 The Travelling Salesman Problem in Fuzzy Membership Functions 1 Abstract In this chapter, the fuzzification of travelling salesman problem in the way of trapezoidal fuzzy membership functions

More information

Topic 3: GIS Models 10/2/2017. What is a Model? What is a GIS Model. Geography 38/42:477 Advanced Geomatics

Topic 3: GIS Models 10/2/2017. What is a Model? What is a GIS Model. Geography 38/42:477 Advanced Geomatics Geography 38/42:477 Advanced Geomatics Topic 3: GIS Models What is a Model? Simplified representation of real world Physical, Schematic, Mathematical Map GIS database Reduce complexity and help us understand

More information

Estimation of Model Parameters Using Limited Data for the Simulation of Electric Power Systems

Estimation of Model Parameters Using Limited Data for the Simulation of Electric Power Systems Estimation of Model Parameters Using Limited Data for the Simulation of Electric Power Systems Robert Kerestes Emerson Process Management Presentation Roadmap Embedded Simulator Overview Mathematical Modeling

More information

Lecture 3: Linear Classification

Lecture 3: Linear Classification Lecture 3: Linear Classification Roger Grosse 1 Introduction Last week, we saw an example of a learning task called regression. There, the goal was to predict a scalar-valued target from a set of features.

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2008 CS 551, Spring 2008 c 2008, Selim Aksoy (Bilkent University)

More information

Linear Programming. L.W. Dasanayake Department of Economics University of Kelaniya

Linear Programming. L.W. Dasanayake Department of Economics University of Kelaniya Linear Programming L.W. Dasanayake Department of Economics University of Kelaniya Linear programming (LP) LP is one of Management Science techniques that can be used to solve resource allocation problem

More information

Lecture: Simulation. of Manufacturing Systems. Sivakumar AI. Simulation. SMA6304 M2 ---Factory Planning and scheduling. Simulation - A Predictive Tool

Lecture: Simulation. of Manufacturing Systems. Sivakumar AI. Simulation. SMA6304 M2 ---Factory Planning and scheduling. Simulation - A Predictive Tool SMA6304 M2 ---Factory Planning and scheduling Lecture Discrete Event of Manufacturing Systems Simulation Sivakumar AI Lecture: 12 copyright 2002 Sivakumar 1 Simulation Simulation - A Predictive Tool Next

More information

computational Fluid Dynamics - Prof. V. Esfahanian

computational Fluid Dynamics - Prof. V. Esfahanian Three boards categories: Experimental Theoretical Computational Crucial to know all three: Each has their advantages and disadvantages. Require validation and verification. School of Mechanical Engineering

More information

Experiment 6 SIMULINK

Experiment 6 SIMULINK Experiment 6 SIMULINK Simulink Introduction to simulink SIMULINK is an interactive environment for modeling, analyzing, and simulating a wide variety of dynamic systems. SIMULINK provides a graphical user

More information

ACT s College Readiness Standards

ACT s College Readiness Standards Course ACT s College Readiness Standards Select a single piece of data (numerical or nonnumerical) from a simple data presentation (e.g., a table or graph with two or three variables; a food web diagram)

More information

An Optimal Regression Algorithm for Piecewise Functions Expressed as Object-Oriented Programs

An Optimal Regression Algorithm for Piecewise Functions Expressed as Object-Oriented Programs 2010 Ninth International Conference on Machine Learning and Applications An Optimal Regression Algorithm for Piecewise Functions Expressed as Object-Oriented Programs Juan Luo Department of Computer Science

More information

Robotics: Science and Systems

Robotics: Science and Systems Robotics: Science and Systems System Identification & Filtering Zhibin (Alex) Li School of Informatics University of Edinburgh 1 Outline 1. Introduction 2. Background 3. System identification 4. Signal

More information

MINI-PAPER A Gentle Introduction to the Analysis of Sequential Data

MINI-PAPER A Gentle Introduction to the Analysis of Sequential Data MINI-PAPER by Rong Pan, Ph.D., Assistant Professor of Industrial Engineering, Arizona State University We, applied statisticians and manufacturing engineers, often need to deal with sequential data, which

More information

Chemical Reaction Engineering - Part 4 - Integration Richard K. Herz,

Chemical Reaction Engineering - Part 4 - Integration Richard K. Herz, Chemical Reaction Engineering - Part 4 - Integration Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Integrating the component balance for a batch reactor For a single reaction in a batch reactor,

More information

VALIDATION METHODOLOGY FOR SIMULATION SOFTWARE OF SHIP BEHAVIOUR IN EXTREME SEAS

VALIDATION METHODOLOGY FOR SIMULATION SOFTWARE OF SHIP BEHAVIOUR IN EXTREME SEAS 10 th International Conference 409 VALIDATION METHODOLOGY FOR SIMULATION SOFTWARE OF SHIP BEHAVIOUR IN EXTREME SEAS Stefan Grochowalski, Polish Register of Shipping, S.Grochowalski@prs.pl Jan Jankowski,

More information

Section 1.8. Simplifying Expressions

Section 1.8. Simplifying Expressions Section 1.8 Simplifying Expressions But, first Commutative property: a + b = b + a; a * b = b * a Associative property: (a + b) + c = a + (b + c) (a * b) * c = a * (b * c) Distributive property: a * (b

More information

Classification of Optimization Problems and the Place of Calculus of Variations in it

Classification of Optimization Problems and the Place of Calculus of Variations in it Lecture 1 Classification of Optimization Problems and the Place of Calculus of Variations in it ME256 Indian Institute of Science G. K. Ananthasuresh Professor, Mechanical Engineering, Indian Institute

More information

II. Linear Programming

II. Linear Programming II. Linear Programming A Quick Example Suppose we own and manage a small manufacturing facility that produced television sets. - What would be our organization s immediate goal? - On what would our relative

More information

4.7 Approximate Integration

4.7 Approximate Integration 4.7 Approximate Integration Some anti-derivatives are difficult to impossible to find. For example, 1 0 e x2 dx or 1 1 1 + x3 dx We came across this situation back in calculus I when we introduced the

More information

CHAPTER 2 LITERATURE REVIEW

CHAPTER 2 LITERATURE REVIEW 22 CHAPTER 2 LITERATURE REVIEW 2.1 GENERAL The basic transportation problem was originally developed by Hitchcock (1941). Efficient methods of solution are derived from the simplex algorithm and were developed

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

COMP 161 Lecture Notes 16 Analyzing Search and Sort

COMP 161 Lecture Notes 16 Analyzing Search and Sort COMP 161 Lecture Notes 16 Analyzing Search and Sort In these notes we analyze search and sort. Counting Operations When we analyze the complexity of procedures we re determine the order of the number of

More information

Inclusion of Aleatory and Epistemic Uncertainty in Design Optimization

Inclusion of Aleatory and Epistemic Uncertainty in Design Optimization 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Inclusion of Aleatory and Epistemic Uncertainty in Design Optimization Sirisha Rangavajhala

More information

A MULTI-ROBOT SYSTEM FOR ASSEMBLY TASKS IN AUTOMOTIVE INDUSTRY

A MULTI-ROBOT SYSTEM FOR ASSEMBLY TASKS IN AUTOMOTIVE INDUSTRY The 4th International Conference Computational Mechanics and Virtual Engineering COMEC 2011 20-22 OCTOBER 2011, Brasov, Romania A MULTI-ROBOT SYSTEM FOR ASSEMBLY TASKS IN AUTOMOTIVE INDUSTRY A. Fratu 1

More information

Introduction to FEM calculations

Introduction to FEM calculations Introduction to FEM calculations How to start informations Michał Rad (rad@agh.edu.pl) 20.04.2018 Outline Field calculations what is it? Model Program How to: Make a model Set up the parameters Perform

More information

Numerical Methods in Scientific Computation

Numerical Methods in Scientific Computation Numerical Methods in Scientific Computation Programming and Software Introduction to error analysis 1 Packages vs. Programming Packages MATLAB Excel Mathematica Maple Packages do the work for you Most

More information

8.1 Model building, verification, and validation

8.1 Model building, verification, and validation UNIT 8: VERIFICATION AND VALIDATION OF SIMULATION MODELS, OPTIMIZATION: Model building, verification and validation; Verification of simulation models; Calibration and validation of models. Optimization

More information

A PACKAGE FOR DEVELOPMENT OF ALGORITHMS FOR GLOBAL OPTIMIZATION 1

A PACKAGE FOR DEVELOPMENT OF ALGORITHMS FOR GLOBAL OPTIMIZATION 1 Mathematical Modelling and Analysis 2005. Pages 185 190 Proceedings of the 10 th International Conference MMA2005&CMAM2, Trakai c 2005 Technika ISBN 9986-05-924-0 A PACKAGE FOR DEVELOPMENT OF ALGORITHMS

More information

Why Use Graphs? Test Grade. Time Sleeping (Hrs) Time Sleeping (Hrs) Test Grade

Why Use Graphs? Test Grade. Time Sleeping (Hrs) Time Sleeping (Hrs) Test Grade Analyzing Graphs Why Use Graphs? It has once been said that a picture is worth a thousand words. This is very true in science. In science we deal with numbers, some times a great many numbers. These numbers,

More information

A Keypoint Descriptor Inspired by Retinal Computation

A Keypoint Descriptor Inspired by Retinal Computation A Keypoint Descriptor Inspired by Retinal Computation Bongsoo Suh, Sungjoon Choi, Han Lee Stanford University {bssuh,sungjoonchoi,hanlee}@stanford.edu Abstract. The main goal of our project is to implement

More information

Engineering 1000 Chapter 6: Abstraction and Modeling

Engineering 1000 Chapter 6: Abstraction and Modeling Engineering 1000 Chapter 6: Abstraction and Modeling Outline Why is abstraction useful? What are models? how are models different from theory and simulation? Examples from microelectronics Types of model

More information

Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods

Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods We have seen examples of first-order differential equations which can, by one method of another, be solved

More information

Error in Numerical Methods

Error in Numerical Methods Error in Numerical Methods By Brian D. Storey This section will describe two types of error that are common in numerical calculations: roundoff and truncation error. Roundoff error is due to the fact that

More information

CFD Project Workflow Guide

CFD Project Workflow Guide CFD Project Workflow Guide Contents Select a problem with known results for proof-of-concept testing... 1 Set up and run a coarse test case... 2 Select and calibrate numerical methods... 3 Minimize & quantify

More information

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable:

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: Euler s Methods ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an initial value/condition (i.e., value

More information

Design and Construction of Relational Database for Structural Modeling Verification and Validation. Weiju Ren, Ph. D.

Design and Construction of Relational Database for Structural Modeling Verification and Validation. Weiju Ren, Ph. D. Design and Construction of Relational Database for Structural Modeling Verification and Validation Weiju Ren, Ph. D. Oak Ridge National Laboratory renw@ornl.gov ASME Verification and Validation Symposium

More information

Excel for Algebra 1 Lesson 5: The Solver

Excel for Algebra 1 Lesson 5: The Solver Excel for Algebra 1 Lesson 5: The Solver OK, what s The Solver? Speaking very informally, the Solver is like Goal Seek on steroids. It s a lot more powerful, but it s also more challenging to control.

More information

The listing says y(1) = How did the computer know this?

The listing says y(1) = How did the computer know this? 18.03 Class 2, Feb 3, 2010 Numerical Methods [1] How do you know the value of e? [2] Euler's method [3] Sources of error [4] Higher order methods [1] The study of differential equations has three parts:.

More information

CPSC 340: Machine Learning and Data Mining. Feature Selection Fall 2016

CPSC 340: Machine Learning and Data Mining. Feature Selection Fall 2016 CPSC 34: Machine Learning and Data Mining Feature Selection Fall 26 Assignment 3: Admin Solutions will be posted after class Wednesday. Extra office hours Thursday: :3-2 and 4:3-6 in X836. Midterm Friday:

More information

Euler s Methods (a family of Runge- Ku9a methods)

Euler s Methods (a family of Runge- Ku9a methods) Euler s Methods (a family of Runge- Ku9a methods) ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an

More information

course outline basic principles of numerical analysis, intro FEM

course outline basic principles of numerical analysis, intro FEM idealization, equilibrium, solutions, interpretation of results types of numerical engineering problems continuous vs discrete systems direct stiffness approach differential & variational formulation introduction

More information

An Introduction to Complex Systems Science

An Introduction to Complex Systems Science DEIS, Campus of Cesena Alma Mater Studiorum Università di Bologna andrea.roli@unibo.it Disclaimer The field of Complex systems science is wide and it involves numerous themes and disciplines. This talk

More information

CHAPTER 4 WEIGHT-BASED DESIRABILITY METHOD TO SOLVE MULTI-RESPONSE PROBLEMS

CHAPTER 4 WEIGHT-BASED DESIRABILITY METHOD TO SOLVE MULTI-RESPONSE PROBLEMS 72 CHAPTER 4 WEIGHT-BASED DESIRABILITY METHOD TO SOLVE MULTI-RESPONSE PROBLEMS 4.1 INTRODUCTION Optimizing the quality of a product is widespread in the industry. Products have to be manufactured such

More information

Technical Report of ISO/IEC Test Program of the M-DISC Archival DVD Media June, 2013

Technical Report of ISO/IEC Test Program of the M-DISC Archival DVD Media June, 2013 Technical Report of ISO/IEC 10995 Test Program of the M-DISC Archival DVD Media June, 2013 With the introduction of the M-DISC family of inorganic optical media, Traxdata set the standard for permanent

More information

CHAPTER. The Role of PL/SQL in Contemporary Development

CHAPTER. The Role of PL/SQL in Contemporary Development CHAPTER 1 The Role of PL/SQL in Contemporary Development 4 Oracle PL/SQL Performance Tuning Tips & Techniques When building systems, it is critical to ensure that the systems will perform well. For example,

More information

REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA

REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA REGRESSION ANALYSIS : LINEAR BY MAUAJAMA FIRDAUS & TULIKA SAHA MACHINE LEARNING It is the science of getting computer to learn without being explicitly programmed. Machine learning is an area of artificial

More information

Tour-Based Mode Choice Modeling: Using An Ensemble of (Un-) Conditional Data-Mining Classifiers

Tour-Based Mode Choice Modeling: Using An Ensemble of (Un-) Conditional Data-Mining Classifiers Tour-Based Mode Choice Modeling: Using An Ensemble of (Un-) Conditional Data-Mining Classifiers James P. Biagioni Piotr M. Szczurek Peter C. Nelson, Ph.D. Abolfazl Mohammadian, Ph.D. Agenda Background

More information

Topics in Software Testing

Topics in Software Testing Dependable Software Systems Topics in Software Testing Material drawn from [Beizer, Sommerville] Software Testing Software testing is a critical element of software quality assurance and represents the

More information

Unit 1 Algebraic Functions and Graphs

Unit 1 Algebraic Functions and Graphs Algebra 2 Unit 1 Algebraic Functions and Graphs Name: Unit 1 Day 1: Function Notation Today we are: Using Function Notation We are successful when: We can Use function notation to evaluate a function This

More information

Discrete-Event Simulation: A First Course. Steve Park and Larry Leemis College of William and Mary

Discrete-Event Simulation: A First Course. Steve Park and Larry Leemis College of William and Mary Discrete-Event Simulation: A First Course Steve Park and Larry Leemis College of William and Mary Technical Attractions of Simulation * Ability to compress time, expand time Ability to control sources

More information

The latest trend of hybrid instrumentation

The latest trend of hybrid instrumentation Multivariate Data Processing of Spectral Images: The Ugly, the Bad, and the True The results of various multivariate data-processing methods of Raman maps recorded with a dispersive Raman microscope are

More information

PARAMETRIC TROJANS FOR FAULT-BASED ATTACKS ON CRYPTOGRAPHIC HARDWARE

PARAMETRIC TROJANS FOR FAULT-BASED ATTACKS ON CRYPTOGRAPHIC HARDWARE PARAMETRIC TROJANS FOR FAULT-BASED ATTACKS ON CRYPTOGRAPHIC HARDWARE Raghavan Kumar, University of Massachusetts Amherst Contributions by: Philipp Jovanovic, University of Passau Wayne P. Burleson, University

More information

4 Visualization and. Approximation

4 Visualization and. Approximation 4 Visualization and Approximation b A slope field for the differential equation y tan(x + y) tan(x) tan(y). It is not always possible to write down an explicit formula for the solution to a differential

More information

Introduction. Seeing the Elephant. PLM Data Migration happens rarely at a company, but is very difficult to plan and design.

Introduction. Seeing the Elephant. PLM Data Migration happens rarely at a company, but is very difficult to plan and design. Introduction Seeing the Elephant PLM Data Migration happens rarely at a company, but is very difficult to plan and design. 1 14 Approach The Iterative Nature of the Process The design of the new PLM implementation

More information

Bootstrapping Method for 14 June 2016 R. Russell Rhinehart. Bootstrapping

Bootstrapping Method for  14 June 2016 R. Russell Rhinehart. Bootstrapping Bootstrapping Method for www.r3eda.com 14 June 2016 R. Russell Rhinehart Bootstrapping This is extracted from the book, Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation,

More information

=.1( sin(2πx/24) y) y(0) = 70.

=.1( sin(2πx/24) y) y(0) = 70. Differential Equations, Spring 2017 Computer Project 2, Due 11:30 am, Friday, March 10 The goal of this project is to implement the Euler Method and the Improved Euler Method, and to use these methods

More information

Slides credited from Dr. David Silver & Hung-Yi Lee

Slides credited from Dr. David Silver & Hung-Yi Lee Slides credited from Dr. David Silver & Hung-Yi Lee Review Reinforcement Learning 2 Reinforcement Learning RL is a general purpose framework for decision making RL is for an agent with the capacity to

More information

Neuro-Dynamic Programming An Overview

Neuro-Dynamic Programming An Overview 1 Neuro-Dynamic Programming An Overview Dimitri Bertsekas Dept. of Electrical Engineering and Computer Science M.I.T. May 2006 2 BELLMAN AND THE DUAL CURSES Dynamic Programming (DP) is very broadly applicable,

More information

9.1 Solutions, Slope Fields, and Euler s Method

9.1 Solutions, Slope Fields, and Euler s Method Math 181 www.timetodare.com 9.1 Solutions, Slope Fields, and Euler s Method In-class work: Model of Population Growth One model for the growth of a population is based on the assumption that the population

More information

Visibility Analysis and Management

Visibility Analysis and Management Risk Management Insight Visibility Analysis and Management Jack Jones, CISM, CISSP, CISA RMI Founder Ignorance is not bliss 2 What we ll cover... What do we mean by visibility? Whose visibility are we

More information

Simulation. Outline. Common Mistakes in Simulation (3 of 4) Common Mistakes in Simulation (2 of 4) Performance Modeling Lecture #8

Simulation. Outline. Common Mistakes in Simulation (3 of 4) Common Mistakes in Simulation (2 of 4) Performance Modeling Lecture #8 Introduction (1 of 3) The best advice to those about to embark on a very large simulation is often the same as Punch s famous advice to those about to marry: Don t! Bratley, Fox and Schrage (1986) Simulation

More information

Course notes for Data Compression - 2 Kolmogorov complexity Fall 2005

Course notes for Data Compression - 2 Kolmogorov complexity Fall 2005 Course notes for Data Compression - 2 Kolmogorov complexity Fall 2005 Peter Bro Miltersen September 29, 2005 Version 2.0 1 Kolmogorov Complexity In this section, we present the concept of Kolmogorov Complexity

More information

Task Force Code System Dynamic Issues for the synchronous zone of Continental Europe

Task Force Code System Dynamic Issues for the synchronous zone of Continental Europe Task Force Code System Dynamic Issues for the synchronous zone of Continental Europe - Final - RG-CE System Protection & Dynamics Sub Group 14 September 2017 Table of Contents 1. Introduction... 3 2. Inertia

More information

Structural and Syntactic Pattern Recognition

Structural and Syntactic Pattern Recognition Structural and Syntactic Pattern Recognition Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2017 CS 551, Fall 2017 c 2017, Selim Aksoy (Bilkent

More information

function at the given point. Thus, for our previous example we would find that lim f(x) = 0

function at the given point. Thus, for our previous example we would find that lim f(x) = 0 Limits In order to introduce the notion of the it, we will consider the following situation. Suppose you are given a function, defined on some interval, except at a single point in the interval. What,

More information

Finite difference methods

Finite difference methods Finite difference methods Siltanen/Railo/Kaarnioja Spring 8 Applications of matrix computations Applications of matrix computations Finite difference methods Spring 8 / Introduction Finite difference methods

More information

Workshop - Model Calibration and Uncertainty Analysis Using PEST

Workshop - Model Calibration and Uncertainty Analysis Using PEST About PEST PEST (Parameter ESTimation) is a general-purpose, model-independent, parameter estimation and model predictive uncertainty analysis package developed by Dr. John Doherty. PEST is the most advanced

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Exam in INF3480 Introduction to Robotics Day of exam: 31 th May, 2017 Exam hours: 14:30, 4 hours This examination paper consists of 6 pages

More information

Modeling a complex production process as a State-Task-Network formulation

Modeling a complex production process as a State-Task-Network formulation Modeling a complex production process as a State-Task-Network formulation Mikael Nyberg OSE-seminar 3.11.2010 Agenda Why is this interesting? The system Tailor made model STN-model Comparison of models

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Introduction and Motivation Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Organizational Stuff Lectures: Tuesday 11:00 12:30 in room SR015 Cover

More information

Scientific Visualization Example exam questions with commented answers

Scientific Visualization Example exam questions with commented answers Scientific Visualization Example exam questions with commented answers The theoretical part of this course is evaluated by means of a multiple- choice exam. The questions cover the material mentioned during

More information

ME 555: Distributed Optimization

ME 555: Distributed Optimization ME 555: Distributed Optimization Duke University Spring 2015 1 Administrative Course: ME 555: Distributed Optimization (Spring 2015) Instructor: Time: Location: Office hours: Website: Soomin Lee (email:

More information

Testing. Unit, integration, regression, validation, system. OO Testing techniques Application of traditional techniques to OO software

Testing. Unit, integration, regression, validation, system. OO Testing techniques Application of traditional techniques to OO software Testing Basic ideas and principles Traditional testing strategies Unit, integration, regression, validation, system OO Testing techniques Application of traditional techniques to OO software Testing-11,

More information

x y

x y 10. LECTURE 10 Objectives I understand the difficulty in finding an appropriate function for a data set in general. In some cases, I can define a function type that may fit a data set well. Last time,

More information

Using RecurDyn. Contents

Using RecurDyn. Contents Using RecurDyn Contents 1.0 Multibody Dynamics Overview... 2 2.0 Multibody Dynamics Applications... 3 3.0 What is RecurDyn and how is it different?... 4 4.0 Types of RecurDyn Analysis... 5 5.0 MBD Simulation

More information

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 18: Deep learning and Vision: Convolutional neural networks Teacher: Gianni A. Di Caro DEEP, SHALLOW, CONNECTED, SPARSE? Fully connected multi-layer feed-forward perceptrons: More powerful

More information

Introduction to the Finite Element Method (3)

Introduction to the Finite Element Method (3) Introduction to the Finite Element Method (3) Petr Kabele Czech Technical University in Prague Faculty of Civil Engineering Czech Republic petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele 1 Outline

More information

Section 2.1: Intro to Simple Linear Regression & Least Squares

Section 2.1: Intro to Simple Linear Regression & Least Squares Section 2.1: Intro to Simple Linear Regression & Least Squares Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 7.1, 7.2 1 Regression:

More information

Isn t it Saturday? IMO Trainning Camp NUK, 2004_06_19 2

Isn t it Saturday? IMO Trainning Camp NUK, 2004_06_19 2 2004 6 19 Isn t it Saturday? IMO Trainning Camp NUK, 2004_06_19 2 But, I guess you want to be the IMO Trainning Camp NUK, 2004_06_19 3 So, let s go! IMO Trainning Camp NUK, 2004_06_19 4 Outline Brief introduction

More information

Visualizing Multi-Dimensional Functions in Economics

Visualizing Multi-Dimensional Functions in Economics Visualizing Multi-Dimensional Functions in Economics William L. Goffe Dept. of Economics and International Business University of Southern Mississippi Hattiesburg, MS 3946 Bill.Goffe@usm.edu June, 1999

More information

The Automation of the Feature Selection Process. Ronen Meiri & Jacob Zahavi

The Automation of the Feature Selection Process. Ronen Meiri & Jacob Zahavi The Automation of the Feature Selection Process Ronen Meiri & Jacob Zahavi Automated Data Science http://www.kdnuggets.com/2016/03/automated-data-science.html Outline The feature selection problem Objective

More information

Modeling of Complex Social. MATH 800 Fall 2011

Modeling of Complex Social. MATH 800 Fall 2011 Modeling of Complex Social Systems MATH 800 Fall 2011 Complex SocialSystems A systemis a set of elements and relationships A complex system is a system whose behavior cannot be easily or intuitively predicted

More information