Anisotropic quality measures and adaptation for polygonal meshes

Size: px
Start display at page:

Download "Anisotropic quality measures and adaptation for polygonal meshes"

Transcription

1 Anisotropic quality measures and adaptation for polygonal meshes Yanqiu Wang, Oklahoma State University joint work with Weizhang Huang Oct 2015, POEMs, Georgia Tech. 1 / 23

2 Consider the following function / 23

3 Goal: Find a good polygonal mesh for this function Solution: 3 / 23

4 Goal: Find a good polygonal mesh for this function Solution: 3 / 23

5 Method: Moving mesh algorithm Idea: Define an objective function I (T ) such that its minimal values occur on ideally good meshes; Start from a random initial mesh, and use an iterative method to approximate the minimization problem by moving vertices of the mesh. References: Adaptive Moving Mesh Methods, W. Huang and R.D. Russell, Springer 2011 Adaptivity with moving grids, C.J. Budd, W. Huang, and R.D., Russel. Acta Numerica, / 23

6 Method: Moving mesh algorithm Idea: Define an objective function I (T ) such that its minimal values occur on ideally good meshes; Start from a random initial mesh, and use an iterative method to approximate the minimization problem by moving vertices of the mesh. References: Adaptive Moving Mesh Methods, W. Huang and R.D. Russell, Springer 2011 Adaptivity with moving grids, C.J. Budd, W. Huang, and R.D., Russel. Acta Numerica, / 23

7 Method: Moving mesh algorithm Idea: Define an objective function I (T ) such that its minimal values occur on ideally good meshes; Start from a random initial mesh, and use an iterative method to approximate the minimization problem by moving vertices of the mesh. References: Adaptive Moving Mesh Methods, W. Huang and R.D. Russell, Springer 2011 Adaptivity with moving grids, C.J. Budd, W. Huang, and R.D., Russel. Acta Numerica, / 23

8 Question: What is a good mesh? The answer depends on the applications: To minimize the interpolation error? To minimize the condition number of stiffness matrix? Or others? We focus on minimizing the L 2 interpolation error. (Can also be optimized for H 1 seminorm) In isotropic case, a good mesh should have elements regular in shape uniform in size (equidistribution, de Boor 1973) In anisotropic case, a good mesh should have shape-regularity and uniformity measured in an anisotropic metric 5 / 23

9 Question: What is a good mesh? The answer depends on the applications: To minimize the interpolation error? To minimize the condition number of stiffness matrix? Or others? We focus on minimizing the L 2 interpolation error. (Can also be optimized for H 1 seminorm) In isotropic case, a good mesh should have elements regular in shape uniform in size (equidistribution, de Boor 1973) In anisotropic case, a good mesh should have shape-regularity and uniformity measured in an anisotropic metric 5 / 23

10 Question: What is a good mesh? The answer depends on the applications: To minimize the interpolation error? To minimize the condition number of stiffness matrix? Or others? We focus on minimizing the L 2 interpolation error. (Can also be optimized for H 1 seminorm) In isotropic case, a good mesh should have elements regular in shape uniform in size (equidistribution, de Boor 1973) In anisotropic case, a good mesh should have shape-regularity and uniformity measured in an anisotropic metric 5 / 23

11 Question: What is a good mesh? The answer depends on the applications: To minimize the interpolation error? To minimize the condition number of stiffness matrix? Or others? We focus on minimizing the L 2 interpolation error. (Can also be optimized for H 1 seminorm) In isotropic case, a good mesh should have elements regular in shape uniform in size (equidistribution, de Boor 1973) In anisotropic case, a good mesh should have shape-regularity and uniformity measured in an anisotropic metric 5 / 23

12 Anisotropic metric: M is a SPD matrix Reference element T C and physical element T F ξ T C T x We say T under metric M T C under identity metric if σ e C i, e C j = e i, e j M which implies σ e C i, e C j = Je C i, Je C j M J t MJ = σi 6 / 23

13 Anisotropic metric: M is a SPD matrix Reference element T C and physical element T F ξ T C T x We say T under metric M T C under identity metric if σ e C i, e C j = e i, e j M which implies σ e C i, e C j = Je C i, Je C j M J t MJ = σi 6 / 23

14 Mesh quality measure Note that J t MJ = σi is equivalent to 1 2 trace(jt MJ) = det(j t MJ) 1/2 (Alignment) det(j) det(m) = σ (Equidistribution) Define q ali (x) = trace(jt MJ) 2 det(j t MJ) 1/2, q eq(x) = det(j) det(m) σ and Q ali = max x Ω q ali(x), Q eq = max x Ω q eq(x) 7 / 23

15 Mesh quality measure Note that J t MJ = σi is equivalent to 1 2 trace(jt MJ) = det(j t MJ) 1/2 (Alignment) det(j) det(m) = σ (Equidistribution) Define q ali (x) = trace(jt MJ) 2 det(j t MJ) 1/2, q eq(x) = det(j) det(m) σ and Q ali = max x Ω q ali(x), Q eq = max x Ω q eq(x) 7 / 23

16 Mesh quality measure To ensure T T = Ω, we set det(m) dx σ = Ω Ω det(j 1 ) dx = 1 det(m) dx T T C Ω It is not hard to see that Both Q ali and Q eq lie in [1, ) An ideally good mesh, with J t MJ = σi, has Q ali = 1 Q eq = 1 We can then set I (T ) = I (Q ali, Q eq ). 8 / 23

17 Mesh quality measure To ensure T T = Ω, we set det(m) dx σ = Ω Ω det(j 1 ) dx = 1 det(m) dx T T C Ω It is not hard to see that Both Q ali and Q eq lie in [1, ) An ideally good mesh, with J t MJ = σi, has Q ali = 1 Q eq = 1 We can then set I (T ) = I (Q ali, Q eq ). 8 / 23

18 How to compute? Recall that q ali (x) = trace(jt MJ) 2 det(j t MJ) 1/2, q eq(x) = det(j) det(m) σ and Q ali = max x Ω q ali(x), Q eq = max x Ω q eq(x) Two issues in the implementation: Find a proper set of reference polygons T C ; How to define the mapping F from T C to T? Or more precisely, how to compute J. 9 / 23

19 Polygonal mesh quality measures Method 1: least-squares fitting Use regular polygons as reference elements; By the Riemann mapping theorem, there exists F : T C T. Let ξ i and x i be vertices of T C and T, then x i = F (ξ i ) Compute a linear least squares fitting x = Aξ + c to F using the values on vertices. Matrix A gives a rough approximation to J. 10 / 23

20 Polygonal mesh quality measures Method 1: least-squares fitting Use regular polygons as reference elements; By the Riemann mapping theorem, there exists F : T C T. Let ξ i and x i be vertices of T C and T, then x i = F (ξ i ) Compute a linear least squares fitting x = Aξ + c to F using the values on vertices. Matrix A gives a rough approximation to J. 10 / 23

21 Polygonal mesh quality measures Method 1: least-squares fitting Use regular polygons as reference elements; By the Riemann mapping theorem, there exists F : T C T. Let ξ i and x i be vertices of T C and T, then x i = F (ξ i ) Compute a linear least squares fitting x = Aξ + c to F using the values on vertices. Matrix A gives a rough approximation to J. 10 / 23

22 Polygonal mesh quality measures Method 1: least-squares fitting Use regular polygons as reference elements; By the Riemann mapping theorem, there exists F : T C T. Let ξ i and x i be vertices of T C and T, then x i = F (ξ i ) Compute a linear least squares fitting x = Aξ + c to F using the values on vertices. Matrix A gives a rough approximation to J. 10 / 23

23 Polygonal mesh quality measures Method 2: generalized barycentric mapping Use regular polygons as reference elements; Let F be a generalized barycentric mapping Pick a generalized barycentric coordinate λ(ξ) F is the composite mapping: ξ λ x Examples: piecewise linear barycentric mapping; Wachspress barycentric mapping, / 23

24 Polygonal mesh quality measures Method 3: affine mapping with special T C In order to make F an affine mapping, We need to redefine reference polygons Lemma Using SVD of vertex matrices, each convex n-gon T is affine similar to a reference n-gon T C such that the the in-radius of T C is greater than or equal to 1 n(n 1), and the outer-radius of T C is less than or equal to n 1 n. [ ] σ1 0 The affine mapping has J = U U 0 σ t / 23

25 Polygonal mesh quality measures Method 3: examples of reference polygons n=3 n=4 n=5 13 / 23

26 Comparing the quality measures on Lloyd iteration 14 / 23

27 Comparing the quality measures on Lloyd iteration Quality measures Lloyds iteration for 32x32 mesh Q ali,1 Q eq,1 Quality measures Lloyds iteration for 32x32 mesh Q ali,2 Q eq,2 Quality measures Lloyds iteration for 32x32 mesh Q ali,3 Q eq, Number of iterations Number of iterations Number of iterations 15 / 23

28 Moving Mesh PDE To solve a second order elliptic equation: 1 Initialization: Given an initial physical mesh T (0) in Ω; 2 Outer iteration (k = 0, 1,...): 1 Update the metric tensor M (k) based on the information available at the current iteration. The information includes the current mesh T (k) and the physical solution u (k) that is obtained by solving the underlying PDE on the current mesh T (k) ; 2 Use the moving mesh method to get a new mesh T (k+1) has a better quality under the metric M (k). 16 / 23

29 Numerical results: Example 1 Example 1 u = f with exact solution u = tanh(40y 80x 2 ) tanh(40x 80y 2 ) / 23

30 Numerical results: Example 1 Using the MMPDE method gives 18 / 23

31 Numerical results: Example 1 History of Q ali and Q eq 3 History of alignment measure 3.5 History of equidistribution measure Q eq,1 Q ali,1 2.5 Q ali,2 Q ali,3 3 Q eq,2 Q eq,3 Q ali 2 Q eq MMPDE outer iter MMPDE outer iter. History of (u u h ) and u u h 8 H1 semi-norm of the error 0.06 L2 norm of the error error 4 error MMPDE outer iter MMPDE outer iter. 19 / 23

32 Numerical results: Example 2 Example 2 u = f with exact solution u = 0.5(r x) 0.25r 2 Corner singularity at (0, 0), and u H 3 2 ε (Ω) Convergence on quasi-uniform mesh L 2 norm H 1 semi-norm N error order error order e e e e e e e e e e / 23

33 Numerical results: Example 2 Using the MMPDE method gives 21 / 23

34 Numerical results: Example 2 MMPDE T (5), optimized for H 1 seminorm L 2 norm H 1 semi-norm N error order error order e e e e e e e e e e / 23

35 Thank you! 23 / 23

A Moving Mesh Method for Time Dependent Problems based on Schwarz Waveform Relaxation

A Moving Mesh Method for Time Dependent Problems based on Schwarz Waveform Relaxation A Moving Mesh Method for Time Dependent Problems based on Schwarz Waveform Relaation Ronald D. Haynes, Weizhang Huang 2, and Robert D. Russell 3 Acadia University, Wolfville, N.S., Canada ronald.haynes@acadiau.ca

More information

A Moving Mesh Method for Time dependent Problems Based on Schwarz Waveform Relaxation

A Moving Mesh Method for Time dependent Problems Based on Schwarz Waveform Relaxation A Moving Mesh Method for Time dependent Problems Based on Schwarz Waveform Relaation Ronald D. Haynes, Weizhang Huang 2, and Robert D. Russell 3 Acadia University, Wolfville, N.S., Canada. ronald.haynes@acadiau.ca

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Dual Interpolants for Finite Element Methods

Dual Interpolants for Finite Element Methods Dual Interpolants for Finite Element Methods Andrew Gillette joint work with Chandrajit Bajaj and Alexander Rand Department of Mathematics Institute of Computational Engineering and Sciences University

More information

Adaptive numerical methods

Adaptive numerical methods METRO MEtallurgical TRaining On-line Adaptive numerical methods Arkadiusz Nagórka CzUT Education and Culture Introduction Common steps of finite element computations consists of preprocessing - definition

More information

Element Quality Metrics for Higher-Order Bernstein Bézier Elements

Element Quality Metrics for Higher-Order Bernstein Bézier Elements Element Quality Metrics for Higher-Order Bernstein Bézier Elements Luke Engvall and John A. Evans Abstract In this note, we review the interpolation theory for curvilinear finite elements originally derived

More information

Conforming Vector Interpolation Functions for Polyhedral Meshes

Conforming Vector Interpolation Functions for Polyhedral Meshes Conforming Vector Interpolation Functions for Polyhedral Meshes Andrew Gillette joint work with Chandrajit Bajaj and Alexander Rand Department of Mathematics Institute of Computational Engineering and

More information

arxiv: v1 [math.na] 20 Sep 2016

arxiv: v1 [math.na] 20 Sep 2016 arxiv:1609.06236v1 [math.na] 20 Sep 2016 A Local Mesh Modification Strategy for Interface Problems with Application to Shape and Topology Optimization P. Gangl 1,2 and U. Langer 3 1 Doctoral Program Comp.

More information

Galerkin Projections Between Finite Element Spaces

Galerkin Projections Between Finite Element Spaces Galerkin Projections Between Finite Element Spaces Ross A. Thompson Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15 22.520 Numerical Methods for PDEs : Video 11: 1D Finite Difference Mappings Theory and Matlab February 15, 2015 22.520 Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings 2015

More information

On a nested refinement of anisotropic tetrahedral grids under Hessian metrics

On a nested refinement of anisotropic tetrahedral grids under Hessian metrics On a nested refinement of anisotropic tetrahedral grids under Hessian metrics Shangyou Zhang Abstract Anisotropic grids, having drastically different grid sizes in different directions, are efficient and

More information

Generalized barycentric coordinates

Generalized barycentric coordinates Generalized barycentric coordinates Michael S. Floater August 20, 2012 In this lecture, we review the definitions and properties of barycentric coordinates on triangles, and study generalizations to convex,

More information

2D Object Definition (1/3)

2D Object Definition (1/3) 2D Object Definition (1/3) Lines and Polylines Lines drawn between ordered points to create more complex forms called polylines Same first and last point make closed polyline or polygon Can intersect itself

More information

A new 8-node quadrilateral spline finite element

A new 8-node quadrilateral spline finite element Journal of Computational and Applied Mathematics 195 (2006) 54 65 www.elsevier.com/locate/cam A new 8-node quadrilateral spline finite element Chong-Jun Li, Ren-Hong Wang Institute of Mathematical Sciences,

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger For Inverse Obstacle Problems Martin Burger Outline Introduction Optimal Geometries Inverse Obstacle Problems & Shape Optimization Sensitivity Analysis based on Gradient Flows Numerical Methods University

More information

Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons

Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons Noname manuscript No. (will be inserted by the editor) Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons S. E. Mousavi N. Sukumar Received: date

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

Adaptive Isogeometric Analysis by Local h-refinement with T-splines

Adaptive Isogeometric Analysis by Local h-refinement with T-splines Adaptive Isogeometric Analysis by Local h-refinement with T-splines Michael Dörfel 1, Bert Jüttler 2, Bernd Simeon 1 1 TU Munich, Germany 2 JKU Linz, Austria SIMAI, Minisymposium M13 Outline Preliminaries:

More information

Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons

Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons Comput Mech (2011) 47:535 554 DOI 10.1007/s00466-010-0562-5 ORIGINAL PAPER Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons S. E. Mousavi N.

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

08 - Designing Approximating Curves

08 - Designing Approximating Curves 08 - Designing Approximating Curves Acknowledgement: Olga Sorkine-Hornung, Alexander Sorkine-Hornung, Ilya Baran Last time Interpolating curves Monomials Lagrange Hermite Different control types Polynomials

More information

An introduction to mesh generation Part IV : elliptic meshing

An introduction to mesh generation Part IV : elliptic meshing Elliptic An introduction to mesh generation Part IV : elliptic meshing Department of Civil Engineering, Université catholique de Louvain, Belgium Elliptic Curvilinear Meshes Basic concept A curvilinear

More information

An Image Curvature Microscope

An Image Curvature Microscope An Jean-Michel MOREL Joint work with Adina CIOMAGA and Pascal MONASSE Centre de Mathématiques et de Leurs Applications, Ecole Normale Supérieure de Cachan Séminaire Jean Serra - 70 ans April 2, 2010 Jean-Michel

More information

Discrete geometry. Lecture 2. Alexander & Michael Bronstein tosca.cs.technion.ac.il/book

Discrete geometry. Lecture 2. Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Discrete geometry Lecture 2 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 The world is continuous, but the mind is discrete

More information

Conjectures concerning the geometry of 2-point Centroidal Voronoi Tessellations

Conjectures concerning the geometry of 2-point Centroidal Voronoi Tessellations Conjectures concerning the geometry of 2-point Centroidal Voronoi Tessellations Emma Twersky May 2017 Abstract This paper is an exploration into centroidal Voronoi tessellations, or CVTs. A centroidal

More information

Deformation II. Disney/Pixar

Deformation II. Disney/Pixar Deformation II Disney/Pixar 1 Space Deformation Deformation function on ambient space f : n n Shape S deformed by applying f to points of S S = f (S) f (x,y)=(2x,y) S S 2 Motivation Can be applied to any

More information

1. In this problem we use Monte Carlo integration to approximate the area of a circle of radius, R = 1.

1. In this problem we use Monte Carlo integration to approximate the area of a circle of radius, R = 1. 1. In this problem we use Monte Carlo integration to approximate the area of a circle of radius, R = 1. A. For method 1, the idea is to conduct a binomial experiment using the random number generator:

More information

Adaptive Computations Using Material Forces and Residual-Based Error Estimators on Quadtree Meshes

Adaptive Computations Using Material Forces and Residual-Based Error Estimators on Quadtree Meshes Adaptive Computations Using Material Forces and Residual-Based Error Estimators on Quadtree Meshes A. Tabarraei, N. Sukumar Department of Civil and Environmental Engineering, University of California,

More information

ECE 600, Dr. Farag, Summer 09

ECE 600, Dr. Farag, Summer 09 ECE 6 Summer29 Course Supplements. Lecture 4 Curves and Surfaces Aly A. Farag University of Louisville Acknowledgements: Help with these slides were provided by Shireen Elhabian A smile is a curve that

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws

Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws Nonoscillatory Central Schemes on Unstructured Triangulations for Hyperbolic Systems of Conservation Laws Ivan Christov Bojan Popov Department of Mathematics, Texas A&M University, College Station, Texas

More information

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization M2DO Lab 1,2 1 Cardiff University 2 University of California, San Diego November 2017 A brief description of theory

More information

Simplicial Hyperbolic Surfaces

Simplicial Hyperbolic Surfaces Simplicial Hyperbolic Surfaces Talk by Ken Bromberg August 21, 2007 1-Lipschitz Surfaces- In this lecture we will discuss geometrically meaningful ways of mapping a surface S into a hyperbolic manifold

More information

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems Long Chen University of California, Irvine chenlong@math.uci.edu Joint work with: Huayi Wei (Xiangtan University),

More information

ARE BILINEAR QUADRILATERALS BETTER THAN LINEAR TRIANGLES?

ARE BILINEAR QUADRILATERALS BETTER THAN LINEAR TRIANGLES? ARE BILINEAR QUADRILATERALS BETTER THAN LINEAR TRIANGLES? E. F. D AZEVEDO y Abstract. This paper compares the theoretical effectiveness of bilinear approximation over quadrilaterals with linear approximation

More information

Level-set and ALE Based Topology Optimization Using Nonlinear Programming

Level-set and ALE Based Topology Optimization Using Nonlinear Programming 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Level-set and ALE Based Topology Optimization Using Nonlinear Programming Shintaro Yamasaki

More information

Polygonal spline spaces and the numerical solution of the Poisson equation

Polygonal spline spaces and the numerical solution of the Poisson equation Polygonal spline spaces and the numerical solution of the Poisson equation Michael S. Floater, Ming-Jun Lai September 10, 2015 Abstract It is known that generalized barycentric coordinates (GBCs) can be

More information

arxiv: v1 [math.na] 1 Apr 2015

arxiv: v1 [math.na] 1 Apr 2015 Stochastic domain decomposition for time dependent adaptive mesh generation Alexander Bihlo, Ronald D. Haynes and Emily J. Walsh arxiv:1504.00084v1 [math.na] 1 Apr 015 Department of Mathematics and Statistics,

More information

An Image Curvature Microscope

An Image Curvature Microscope An Jean-Michel MOREL Joint work with Adina CIOMAGA and Pascal MONASSE Centre de Mathématiques et de Leurs Applications, Ecole Normale Supérieure de Cachan Séminaire Jean Serra - 70 ans April 2, 2010 Jean-Michel

More information

Extremal Configurations of Polygonal Linkages

Extremal Configurations of Polygonal Linkages Extremal Configurations of Polygonal Linkages Dirk Siersma Department of Mathematics University of Utrecht Singularity Conference Bruce 60, Wall 75 Liverpool, June 18-22, 2012 Outline Introduction Planar

More information

DEVELOPMENTS OF PARALLEL CURVED MESHING FOR HIGH-ORDER FINITE ELEMENT SIMULATIONS

DEVELOPMENTS OF PARALLEL CURVED MESHING FOR HIGH-ORDER FINITE ELEMENT SIMULATIONS DEVELOPMENTS OF PARALLEL CURVED MESHING FOR HIGH-ORDER FINITE ELEMENT SIMULATIONS By Qiukai Lu A Thesis Submitted to the Graduate Faculty of Rensselaer Polytechnic Institute in Partial Fulfillment of the

More information

CSE 554 Lecture 6: Fairing and Simplification

CSE 554 Lecture 6: Fairing and Simplification CSE 554 Lecture 6: Fairing and Simplification Fall 2012 CSE554 Fairing and simplification Slide 1 Review Iso-contours in grayscale images and volumes Piece-wise linear representations Polylines (2D) and

More information

Fully discrete Finite Element Approximations of Semilinear Parabolic Equations in a Nonconvex Polygon

Fully discrete Finite Element Approximations of Semilinear Parabolic Equations in a Nonconvex Polygon Fully discrete Finite Element Approximations of Semilinear Parabolic Equations in a Nonconvex Polygon Tamal Pramanick 1,a) 1 Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati

More information

Curves and Surfaces. Shireen Elhabian and Aly A. Farag University of Louisville

Curves and Surfaces. Shireen Elhabian and Aly A. Farag University of Louisville Curves and Surfaces Shireen Elhabian and Aly A. Farag University of Louisville February 21 A smile is a curve that sets everything straight Phyllis Diller (American comedienne and actress, born 1917) Outline

More information

APPROXIMATING PDE s IN L 1

APPROXIMATING PDE s IN L 1 APPROXIMATING PDE s IN L 1 Veselin Dobrev Jean-Luc Guermond Bojan Popov Department of Mathematics Texas A&M University NONLINEAR APPROXIMATION TECHNIQUES USING L 1 Texas A&M May 16-18, 2008 Outline 1 Outline

More information

1 Exercise: Heat equation in 2-D with FE

1 Exercise: Heat equation in 2-D with FE 1 Exercise: Heat equation in 2-D with FE Reading Hughes (2000, sec. 2.3-2.6 Dabrowski et al. (2008, sec. 1-3, 4.1.1, 4.1.3, 4.2.1 This FE exercise and most of the following ones are based on the MILAMIN

More information

Transfinite Interpolation Based Analysis

Transfinite Interpolation Based Analysis Transfinite Interpolation Based Analysis Nathan Collier 1 V.M. Calo 1 Javier Principe 2 1 King Abdullah University of Science and Technology 2 International Center for Numerical Methods in Engineering

More information

Ma/CS 6b Class 26: Art Galleries and Politicians

Ma/CS 6b Class 26: Art Galleries and Politicians Ma/CS 6b Class 26: Art Galleries and Politicians By Adam Sheffer The Art Gallery Problem Problem. We wish to place security cameras at a gallery, such that they cover it completely. Every camera can cover

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Polygonal, Polyhedral, and Serendipity Finite Element Methods

Polygonal, Polyhedral, and Serendipity Finite Element Methods Polygonal, Polyhedral, and Serendipity Finite Element Methods Andrew Gillette Department of Mathematics University of Arizona ASU Computational and Applied Math Seminar Slides and more info at: http://math.arizona.edu/

More information

Linear Finite Element Methods

Linear Finite Element Methods Chapter 3 Linear Finite Element Methods The finite element methods provide spaces V n of functions that are piecewise smooth and simple, and locally supported basis function of these spaces to achieve

More information

Lecture 5 2D Transformation

Lecture 5 2D Transformation Lecture 5 2D Transformation What is a transformation? In computer graphics an object can be transformed according to position, orientation and size. Exactly what it says - an operation that transforms

More information

Bounded Distortion Mapping and Shape Deformation

Bounded Distortion Mapping and Shape Deformation Bounded Distortion Mapping and Shape Deformation 陈仁杰 德国马克斯普朗克计算机研究所 GAMES Web Seminar, 29 March 2018 Outline Planar Mapping & Applications Bounded Distortion Mapping Harmonic Shape Deformation Shape Interpolation

More information

Efficient Numerical Integration in. Polygonal Finite Element Method. S. E. Mousavi a and N. Sukumar b. University of Texas, Austin

Efficient Numerical Integration in. Polygonal Finite Element Method. S. E. Mousavi a and N. Sukumar b. University of Texas, Austin Efficient Numerical Integration in Polygonal Finite Element Method S. E. Mousavi a and N. Sukumar b a University of Texas, Austin b University of California, Davis NSF Workshop on Barycentric Coordinates

More information

Discrete Geometry Processing

Discrete Geometry Processing Non Convex Boundary Convex boundary creates significant distortion Free boundary is better Some slides from the Mesh Parameterization Course (Siggraph Asia 008) 1 Fixed vs Free Boundary Fixed vs Free Boundary

More information

Lecture 3.2 Methods for Structured Mesh Generation

Lecture 3.2 Methods for Structured Mesh Generation Lecture 3.2 Methods for Structured Mesh Generation 1 There are several methods to develop the structured meshes: Algebraic methods, Interpolation methods, and methods based on solving partial differential

More information

Bilinear Programming

Bilinear Programming Bilinear Programming Artyom G. Nahapetyan Center for Applied Optimization Industrial and Systems Engineering Department University of Florida Gainesville, Florida 32611-6595 Email address: artyom@ufl.edu

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

HONOM EUROPEAN WORKSHOP on High Order Nonlinear Numerical Methods for Evolutionary PDEs, Bordeaux, March 18-22, 2013

HONOM EUROPEAN WORKSHOP on High Order Nonlinear Numerical Methods for Evolutionary PDEs, Bordeaux, March 18-22, 2013 HONOM 2013 EUROPEAN WORKSHOP on High Order Nonlinear Numerical Methods for Evolutionary PDEs, Bordeaux, March 18-22, 2013 A priori-based mesh adaptation for third-order accurate Euler simulation Alexandre

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

An Intuitive Framework for Real-Time Freeform Modeling

An Intuitive Framework for Real-Time Freeform Modeling An Intuitive Framework for Real-Time Freeform Modeling Leif Kobbelt Shape Deformation Complex shapes Complex deformations User Interaction Very limited user interface 2D screen & mouse Intuitive metaphor

More information

ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PDEs BASED ON CONFORMING CENTROIDAL VORONOI DELAUNAY TRIANGULATIONS

ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PDEs BASED ON CONFORMING CENTROIDAL VORONOI DELAUNAY TRIANGULATIONS SIAM J. SCI. COMPUT. Vol. 8, No. 6, pp. 3 53 c 6 Society for Industrial and Applied Mathematics ADAPTIVE FINITE ELEMENT METHODS FOR ELLIPTIC PDEs BASED ON CONFORMING CENTROIDAL VORONOI DELAUNAY TRIANGULATIONS

More information

3D Nearest-Nodes Finite Element Method for Solid Continuum Analysis

3D Nearest-Nodes Finite Element Method for Solid Continuum Analysis Adv. Theor. Appl. Mech., Vol. 1, 2008, no. 3, 131-139 3D Nearest-Nodes Finite Element Method for Solid Continuum Analysis Yunhua Luo Department of Mechanical & Manufacturing Engineering, University of

More information

ORNL/TM On Optimal Bilinear Quadrilateral Meshes

ORNL/TM On Optimal Bilinear Quadrilateral Meshes ORNL/TM-13688 On Optimal Bilinear Quadrilateral Meshes E. F. D Azevedo This report has been reproduced directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientific

More information

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia 2008 1 Non-Convex Non Convex Boundary Convex boundary creates significant distortion Free boundary is better 2 Fixed

More information

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS JIAN LIANG AND HONGKAI ZHAO Abstract. In this paper we present a general framework for solving partial differential equations on manifolds represented

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

Matrix Generation in Isogeometric Analysis by Low Rank Tensor Approximation

Matrix Generation in Isogeometric Analysis by Low Rank Tensor Approximation www.oeaw.ac.at Matrix Generation in Isogeometric Analysis by Low Rank Tensor Approximation A. Mantzaflaris, B. Jüttler, B.N. Khoromskij, U. Langer RICAM-Report 2014-22 www.ricam.oeaw.ac.at Matrix Generation

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Estimation of the Surface Area of a Three-Dimensional Set from Digitizations

Estimation of the Surface Area of a Three-Dimensional Set from Digitizations Estimation of the Surface Area of a Three-Dimensional Set from Digitizations Markus Kiderlen based on joint work with Johanna Ziegel Thiele Centre University of Aarhus 3rd Workshop on 3D Imaging, Analyis,

More information

Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation

Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation Modified Catmull-Clark Methods for Modelling, Reparameterization and Grid Generation Karl-Heinz Brakhage RWTH Aachen, 55 Aachen, Deutschland, Email: brakhage@igpm.rwth-aachen.de Abstract In this paper

More information

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

H(curl) and H(div) Elements on Polytopes from Generalized Barycentric Coordinates

H(curl) and H(div) Elements on Polytopes from Generalized Barycentric Coordinates H(curl) and H(div) Elements on Polytopes from Generalized Barycentric Coordinates Andrew Gillette Department of Mathematics University of Arizona joint work with Alex Rand (CD-adapco) Chandrajit Bajaj

More information

Supplementary Material : Partial Sum Minimization of Singular Values in RPCA for Low-Level Vision

Supplementary Material : Partial Sum Minimization of Singular Values in RPCA for Low-Level Vision Supplementary Material : Partial Sum Minimization of Singular Values in RPCA for Low-Level Vision Due to space limitation in the main paper, we present additional experimental results in this supplementary

More information

A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods

A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods Scott A. Sarra, Derek Sturgill Marshall University, Department of Mathematics, One John Marshall Drive, Huntington

More information

Implicit Matrix Representations of Rational Bézier Curves and Surfaces

Implicit Matrix Representations of Rational Bézier Curves and Surfaces Implicit Matrix Representations of Rational Bézier Curves and Surfaces Laurent Busé INRIA Sophia Antipolis, France Laurent.Buse@inria.fr GD/SPM Conference, Denver, USA November 11, 2013 Overall motivation

More information

Inequality Constrained Spline Interpolation

Inequality Constrained Spline Interpolation Inequality Constrained Spline Interpolation Scott Kersey Workshop on Spline Approximation and Applications on Carl de Boor s 80th Birthday Institute for Mathematical Sciences National University of Singapore

More information

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link)

Subdivision. Outline. Key Questions. Subdivision Surfaces. Advanced Computer Graphics (Spring 2013) Video: Geri s Game (outside link) Advanced Computer Graphics (Spring 03) CS 83, Lecture 7: Subdivision Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs83/sp3 Slides courtesy of Szymon Rusinkiewicz, James O Brien with material from Denis

More information

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please)

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please) Virginia Tech. Computer Science CS 5614 (Big) Data Management Systems Fall 2014, Prakash Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Spline Curves Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Problem: In the previous chapter, we have seen that interpolating polynomials, especially those of high degree, tend to produce strong

More information

Iterative Closest Point Algorithm in the Presence of Anisotropic Noise

Iterative Closest Point Algorithm in the Presence of Anisotropic Noise Iterative Closest Point Algorithm in the Presence of Anisotropic Noise L. Maier-Hein, T. R. dos Santos, A. M. Franz, H.-P. Meinzer German Cancer Research Center, Div. of Medical and Biological Informatics

More information

Data Representation in Visualisation

Data Representation in Visualisation Data Representation in Visualisation Visualisation Lecture 4 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Taku Komura Data Representation 1 Data Representation We have

More information

IsoGeometric Analysis: Be zier techniques in Numerical Simulations

IsoGeometric Analysis: Be zier techniques in Numerical Simulations IsoGeometric Analysis: Be zier techniques in Numerical Simulations Ahmed Ratnani IPP, Garching, Germany July 30, 2015 1/ 1 1/1 Outline Motivations Computer Aided Design (CAD) Zoology Splines/NURBS Finite

More information

Efficient Mesh Optimization Schemes based on Optimal Delaunay Triangulations

Efficient Mesh Optimization Schemes based on Optimal Delaunay Triangulations Efficient Mesh Optimization Schemes based on Optimal Delaunay Triangulations Long Chen a,, Michael Holst b,1 a Department of Mathematics, University of California at Irvine, Irvine, CA 92697 Email: chenlong@math.uci.edu

More information

Scanning Real World Objects without Worries 3D Reconstruction

Scanning Real World Objects without Worries 3D Reconstruction Scanning Real World Objects without Worries 3D Reconstruction 1. Overview Feng Li 308262 Kuan Tian 308263 This document is written for the 3D reconstruction part in the course Scanning real world objects

More information

Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws

Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws Nonoscillatory Central Schemes on Unstructured Triangular Grids for Hyperbolic Systems of Conservation Laws Ivan Christov 1,* Bojan Popov 1 Peter Popov 2 1 Department of Mathematics, 2 Institute for Scientific

More information

REDUCED ORDER MODELING IN MULTISPECTRAL PHOTOACOUSTIC TOMOGRAPHY

REDUCED ORDER MODELING IN MULTISPECTRAL PHOTOACOUSTIC TOMOGRAPHY REDUCED ORDER MODELING IN MULTISPECTRAL PHOTOACOUSTIC TOMOGRAPHY Arvind Saibaba Sarah Vallélian Statistical and Applied Mathematical Sciences Institute & North Carolina State University May 26, 2016 OUTLINE

More information

AN ADAPTIVE MESH REDISTRIBUTION ALGORITHM FOR CONVECTION-DOMINATED PROBLEMS. Zheng-Ru Zhang and Tao Tang

AN ADAPTIVE MESH REDISTRIBUTION ALGORITHM FOR CONVECTION-DOMINATED PROBLEMS. Zheng-Ru Zhang and Tao Tang COMMUNICATIONS ON Website: http://aimsciences.org PURE AND APPLIED ANALYSIS Volume, Number 3, september pp. 34 357 AN ADAPTIVE MESH REDISTRIBUTION ALGORITHM FOR CONVECTION-DOMINATED PROBLEMS Zheng-Ru Zhang

More information

A Polygonal Spline Method for General 2nd-Order Elliptic Equations and Its Applications

A Polygonal Spline Method for General 2nd-Order Elliptic Equations and Its Applications A Polygonal Spline Method for General 2nd-Order Elliptic Equations and Its Applications Ming-Jun Lai James Lanterman Nov. 29, 2016 Abstract We explain how to use polygonal splines to numerically solve

More information

Optimal transport and redistricting: numerical experiments and a few questions. Nestor Guillen University of Massachusetts

Optimal transport and redistricting: numerical experiments and a few questions. Nestor Guillen University of Massachusetts Optimal transport and redistricting: numerical experiments and a few questions Nestor Guillen University of Massachusetts From Rebecca Solnit s Hope in the dark (apropos of nothing in particular) To hope

More information

Motion Estimation (II) Ce Liu Microsoft Research New England

Motion Estimation (II) Ce Liu Microsoft Research New England Motion Estimation (II) Ce Liu celiu@microsoft.com Microsoft Research New England Last time Motion perception Motion representation Parametric motion: Lucas-Kanade T I x du dv = I x I T x I y I x T I y

More information

Computer Graphics Hands-on

Computer Graphics Hands-on Computer Graphics Hands-on Two-Dimensional Transformations Objectives Visualize the fundamental 2D geometric operations translation, rotation about the origin, and scale about the origin Learn how to compose

More information

Tessellations. Irena Swanson Reed College, Portland, Oregon. MathPath, Lewis & Clark College, Portland, Oregon, 24 July 2018

Tessellations. Irena Swanson Reed College, Portland, Oregon. MathPath, Lewis & Clark College, Portland, Oregon, 24 July 2018 Tessellations Irena Swanson Reed College, Portland, Oregon MathPath, Lewis & Clark College, Portland, Oregon, 24 July 2018 What is a tessellation? A tiling or a tessellation of the plane is a covering

More information

Multi-View Matching & Mesh Generation. Qixing Huang Feb. 13 th 2017

Multi-View Matching & Mesh Generation. Qixing Huang Feb. 13 th 2017 Multi-View Matching & Mesh Generation Qixing Huang Feb. 13 th 2017 Geometry Reconstruction Pipeline RANSAC --- facts Sampling Feature point detection [Gelfand et al. 05, Huang et al. 06] Correspondences

More information

A NEW LEVEL SET METHOD FOR MOTION IN NORMAL DIRECTION BASED ON A FORWARD-BACKWARD DIFFUSION FORMULATION

A NEW LEVEL SET METHOD FOR MOTION IN NORMAL DIRECTION BASED ON A FORWARD-BACKWARD DIFFUSION FORMULATION A NEW LEVEL SET METHOD FOR MOTION IN NORMAL DIRECTION BASED ON A FORWARD-BACKWARD DIFFUSION FORMULATION KAROL MIKULA AND MARIO OHLBERGER Abstract. We introduce a new level set method for motion in normal

More information