Shape Descriptors I. Thomas Funkhouser CS597D, Fall 2003 Princeton University. Editing

Size: px
Start display at page:

Download "Shape Descriptors I. Thomas Funkhouser CS597D, Fall 2003 Princeton University. Editing"

Transcription

1 Shape Descriptors I Thomas Funkhouser CS597D, Fall 2003 Princeton University 3D Representations Property Editing Display Analysis Retrieval Intuitive specification Yes No No No Guaranteed continuity Yes No No No Guaranteed validity Yes No No No Efficient boolean operations Yes No No No Efficient rendering Yes Yes No No Accurate Yes Yes?? Concise??? Yes Structure Yes Yes Yes Yes

2 Shape Analysis Problems! " " Query ) 2) 3) 4) Ranked Matches How can we find 3D models best matching a query? Shape #! $ %# & & 2

3 Shape '( (() = Shape Similarity * '+(,) - ( *$ '+(,).+, / '+(,)0.+0, '+(,)0',(+)+, '+(,)2',(") '+(") 3

4 Example Distance Functions 3 p ( a ) p i b i d( A, B) = d ~ ( A, B) = max min a a A b B b ( ) d( A, B) = max d ~ ( A, B), d ~ ( B, A) 4 '5 ( 6) i i Shape Matching " 7# "8 9 " 9 Are these the same chair? 4

5 Shape Retrieval 7# 8 & 4') Is this blue chair in the database? Shape Retrieval, Geometric Query Shape Analysis Shape Descriptor Database of 3D Models Shape Analysis Shape Index Shape Retrieval Similar Objects 5

6 Shape Retrieval 7# 8 3D Query Best Matches 3D Database Challenge * " :& # 3D Query Shape Descriptor 3D Database Best Matches 6

7 Challenge * " :& # 3D Query Shape Descriptor 3D Database Best Matches Challenge * " :& # 3D Query Shape Descriptor 3D Database Best Matches 7

8 Challenge * " :& # 3D Query Shape Descriptor 3D Database Best Matches Challenge * " :& # 3D Query Shape Descriptor 3D Database Best Matches 8

9 Challenge * " :& # / / / Different Transformations (translation, scale, rotation, mirror) Challenge * " :& # / / / Scanned Surface Image courtesy of Ramamoorthi et al. 9

10 Challenge * " :& # / / / Images courtesy of Viewpoint & Stanford Different Genus Different Tessellations Challenge * " :& # / / / No Bottom! Images courtesy of Utah & De Espona &*Q?@#A%! 0

11 Taxonomy of Shape Descriptors & -$ $ ; ( (8 (< + ((666 - Taxonomy of Shape Descriptors & -$ $ Images courtesy of Amenta & Osada ; ( (8 (< + ((666 -

12 Taxonomy of Shape Descriptors Image courtesy of De Espona & -$ $ ; ( (8 (< + ((666 -? Taxonomy of Shape Descriptors & -$ $ ; ( (8 (< + ((666 -? 2

13 Statistical Shape Descriptors + $ ;! =/ + / + $ 3 Feature Vectors Image courtesy of Mao Chen! $ Tables Feature Desks File cabinets Feature 2 3

14 Feature Vectors Image courtesy of Mao Chen " (( > ( Tables What feature vectors? Feature Desks File cabinets Feature 2 Voxels? ' ) * 7 ' ) '+(,)0@@+$,@@ * ( ) d =, A B A-B N 4

15 Voxels Image courtesy of Misha Kazhdan " '#) A +, Surface Distance Transform Voxels Image courtesy of Misha Kazhdan " '#) A +, Surface Distance Transform 5

16 Voxels Image courtesy of Daniel Keim, SIGMOD 999 " 66(!/;!; Voxel Retrieval Experiment ; 8 A(BC. (BD 53 dining chairs 25 livingroom chairs 6 beds 2 dining tables 8 chests 28 bottles 39 vases 36 end tables 6

17 Evaluation Metric - $ - 0 EEFE 0 EEFEE Precision Recall Evaluation Metric - $ - 0.F. 0.FD Precision Query Ranked Matches Recall 7

18 Evaluation Metric - $ - 0AFA 0AFD Precision Query Ranked Matches Recall Evaluation Metric - $ - 0GF7 0GFD Precision Query Ranked Matches Recall 8

19 Evaluation Metric - $ - 07FD 07FD Precision Query Ranked Matches Recall Evaluation Metric - $ - 0HFI 0HFD Precision Query Ranked Matches Recall 9

20 Evaluation Metric - $ - 0DFC 0DFD Precision Query Ranked Matches Recall Voxel Retrieval Experiment ; 8 A(BC. (BD 53 dining chairs 25 livingroom chairs 6 beds 2 dining tables 8 chests 28 bottles 39 vases 36 end tables 20

21 Voxel Retrieval Results 0.8 Voxels Random Precision Recall Voxels - # / / :& J " J / 2

22 Wavelets Image courtesy of Jacobs, Finkelstein, & Salesin # 88 6,000 coefficients 400 coefficients 00 coefficients 20 coefficients Wavelets Jacobs, Finkelstein, & Salesin SIGGRAPH 95 # A = ***( ***

23 Wavelets Jacobs, Finkelstein, & Salesin SIGGRAPH 95 # A = ***( *** 8 3 # G > :> $> 2AKA Jackie Chan Example 4/ 'GDLGDL) 23

24 Truncated And Quantized to 5000 Truncated And Quantized to

25 Truncated And Quantized to 500 Truncated 00 25

26 Truncated 50 Truncated 0 26

27 Torus Example Torus Truncated to

28 Torus Truncated to 000 Torus Truncated to

29 Torus Truncated to 00 Torus Truncated to 50 29

30 Wavelets Jacobs, Finkelstein, & Salesin SIGGRAPH 95 # A d( A, B) = w A i i, j, k [, j, k] B[ i, j k] i, j, k, 8 +M(9(&N,M(9(&N > 8 (9(& 8 ( 6 Wavelets Jacobs, Finkelstein, & Salesin SIGGRAPH 95 # G d( A, B) = [, j, k] B[ i, j, k] wi, j, k ( A i ) i, j, k: A( i, j, k )

31 Wavelets Jacobs, Finkelstein, & Salesin SIGGRAPH 95 - / / :& " # J / Moments # m pqr = x surface p y q z r dxdydz 3

32 Moments Retrieval Experiment ; 8 A(BC. (BD 53 dining chairs 25 livingroom chairs 6 beds 2 dining tables 8 chests 28 bottles 39 vases 36 end tables Moments Retrieval Results 0.8 Voxels Moments [Elad et al.] Random Precision Recall 32

33 Moments Retrieval Results 0.8 Voxels Moments [Elad et al.] Random Precision Recall Moments - / :& " J / J / J # 33

34 Extended Gaussian Image # 8 / 9 3D Model EGI EGI Retrieval Experiment ; 8 A(BC. (BD 53 dining chairs 25 livingroom chairs 6 beds 2 dining tables 8 chests 28 bottles 39 vases 36 end tables 34

35 EGI Retrieval Results Precision Voxels Moments [Elad et al.] EGI [Horn 84] Random Recall Extended Gaussian Images - / :& " J / J J / J # 35

36 Other Rotation-Dependent Descriptors Spherical Extent Functions (Vranic & Saupe, 2000) Shape Histograms (sectors) (Ankherst, 999) 36

Matching and Recognition in 3D. Based on slides by Tom Funkhouser and Misha Kazhdan

Matching and Recognition in 3D. Based on slides by Tom Funkhouser and Misha Kazhdan Matching and Recognition in 3D Based on slides by Tom Funkhouser and Misha Kazhdan From 2D to 3D: Some Things Easier No occlusion (but sometimes missing data instead) Segmenting objects often simpler From

More information

Shape Analysis. Introduction. Introduction. Motivation. Introduction. Introduction. Thomas Funkhouser Princeton University CS526, Fall 2006

Shape Analysis. Introduction. Introduction. Motivation. Introduction. Introduction. Thomas Funkhouser Princeton University CS526, Fall 2006 Introduction Cyberware, ATI, & 3Dcafe Analysis Thomas Funkhouser Princeton University CS526, Fall 2006 Cyberware Cheap Scanners ATI Fast Graphics Cards 3D Cafe World Wide Web Someday 3D models will be

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 597D, Fall 2003 3D Object Representations What makes a good 3D object representation? Stanford and Hearn & Baker 1 3D Object

More information

Shape Matching. Michael Kazhdan ( /657)

Shape Matching. Michael Kazhdan ( /657) Shape Matching Michael Kazhdan (601.457/657) Overview Intro General Approach Minimum SSD Descriptor Goal Given a database of 3D models, and given a query shape, find the database models that are most similar

More information

Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors

Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors Eurographics Symposium on Geometry Processing (2003) L. Kobbelt, P. Schröder, H. Hoppe (Editors) Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors Michael Kazhdan, Thomas Funkhouser,

More information

FFTs in Graphics and Vision. Invariance of Shape Descriptors

FFTs in Graphics and Vision. Invariance of Shape Descriptors FFTs in Graphics and Vision Invariance of Shape Descriptors 1 Outline Math Overview Translation and Rotation Invariance The 0 th Order Frequency Component Shape Descriptors Invariance 2 Translation Invariance

More information

Salient Local 3D Features for 3D Shape Retrieval

Salient Local 3D Features for 3D Shape Retrieval Salient Local 3D Features for 3D Shape Retrieval Afzal Godil a, Asim Imdad Wagan b a National Institute of Standards and Technolog Gaithersburg, MD, USA b Dept of CSE, QUEST Universit Nawabshah, Pakistan

More information

A METHOD FOR CONTENT-BASED SEARCHING OF 3D MODEL DATABASES

A METHOD FOR CONTENT-BASED SEARCHING OF 3D MODEL DATABASES A METHOD FOR CONTENT-BASED SEARCHING OF 3D MODEL DATABASES Jiale Wang *, Hongming Cai 2 and Yuanjun He * Department of Computer Science & Technology, Shanghai Jiaotong University, China Email: wjl8026@yahoo.com.cn

More information

CS 468 Data-driven Shape Analysis. Shape Descriptors

CS 468 Data-driven Shape Analysis. Shape Descriptors CS 468 Data-driven Shape Analysis Shape Descriptors April 1, 2014 What Is A Shape Descriptor? Shapes Shape Descriptor F1=[f1, f2,.., fn] F2=[f1, f2,.., fn] F3=[f1, f2,.., fn] What Is A Shape Descriptor?

More information

Polygonal Meshes. Thomas Funkhouser Princeton University COS 526, Fall 2016

Polygonal Meshes. Thomas Funkhouser Princeton University COS 526, Fall 2016 Polygonal Meshes Thomas Funkhouser Princeton University COS 526, Fall 2016 Digital Geometry Processing Processing of 3D surfaces Creation, acquisition Storage, transmission Editing, animation, simulation

More information

A Shape Relationship Descriptor for Radiation Therapy Planning

A Shape Relationship Descriptor for Radiation Therapy Planning A Shape Relationship Descriptor for Radiation Therapy Planning Michael Kazhdan 1, Patricio Simari 1,ToddMcNutt 2,BinbinWu 2, Robert Jacques 3,MingChuang 1, and Russell Taylor 1 1 Department of Computer

More information

3D MODEL RETRIEVAL USING GLOBAL AND LOCAL RADIAL DISTANCES. Bo Li, Henry Johan

3D MODEL RETRIEVAL USING GLOBAL AND LOCAL RADIAL DISTANCES. Bo Li, Henry Johan 3D MODEL RETRIEVAL USING GLOBAL AND LOCAL RADIAL DISTANCES Bo Li, Henry Johan School of Computer Engineering Nanyang Technological University Singapore E-mail: libo0002@ntu.edu.sg, henryjohan@ntu.edu.sg

More information

Enhanced 2D/3D Approaches Based on Relevance Index for 3D-Shape Retrieval

Enhanced 2D/3D Approaches Based on Relevance Index for 3D-Shape Retrieval Shape Modeling International 06, Matsushima, June 14-16, 2006 Enhanced 2D/3D Approaches Based on Relevance Index for 3D-Shape Retrieval Mohamed Chaouch, Anne Verroust-Blondet INRIA Rocquencourt Domaine

More information

Searching for the Shape

Searching for the Shape Searching for the Shape PURDUEURDUE U N I V E R S I T Y Yagna Kalyanaraman PRECISE, Purdue University The world we are in Designers spend 60% time searching for right info 75% of design activity is design

More information

Geometric Modeling For Computer Graphics

Geometric Modeling For Computer Graphics Geometric Modeling For Computer Graphics Thomas Funkhouser Princeton University C0S 598B, Spring 2000 Hypothesis 3D models will become ubiquitous (eventually) Laser range scanners World Wide Web Fast graphics

More information

3D Modeling I. CG08b Lior Shapira Lecture 8. Based on: Thomas Funkhouser,Princeton University. Thomas Funkhouser 2000

3D Modeling I. CG08b Lior Shapira Lecture 8. Based on: Thomas Funkhouser,Princeton University. Thomas Funkhouser 2000 3D Modeling I CG08b Lior Shapira Lecture 8 Based on: Thomas Funkhouser,Princeton University Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman,

More information

Retrieving 3D Shapes Based On Their Appearance

Retrieving 3D Shapes Based On Their Appearance Retrieving 3D Shapes Based On Their Appearance Ryutarou Ohbuchi University of Yamanashi 4-3-11 Takeda, Kofu-shi Yamanashi-ken, Japan, 400-8511 +85-55-220-8570 ohbuchi@acm.org Masatoshi Nakazawa University

More information

Feature-based Similarity Search in 3D Object Databases

Feature-based Similarity Search in 3D Object Databases Feature-based Similarity Search in 3D Object Databases BENJAMIN BUSTOS, DANIEL A. KEIM, DIETMAR SAUPE, TOBIAS SCHRECK, and DEJAN V. VRANIĆ Department of Computer and Information Science, University of

More information

Su et al. Shape Descriptors - III

Su et al. Shape Descriptors - III Su et al. Shape Descriptors - III Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 Funkhouser; Feng, Liu, Gong Recap Global A shape descriptor is a set of numbers that describes a shape in a way that

More information

Report on Image Processing (ECE 8741) Project. Fast Multiresolution Image Querying implementation of paper by Jacobs, Finkelstein, Salesin.

Report on Image Processing (ECE 8741) Project. Fast Multiresolution Image Querying implementation of paper by Jacobs, Finkelstein, Salesin. Report on Image Processing (ECE 8741) Project Fast Multiresolution Image Querying implementation of paper by Jacobs, Finkelstein, Salesin. Author: Keywords: wavelet-signature, multiresolution, image-search,

More information

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 5 - Slide 1 AND

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 5 - Slide 1 AND Copyright 2009 Pearson Education, Inc. Chapter 9 Section 5 - Slide 1 AND Chapter 9 Geometry Copyright 2009 Pearson Education, Inc. Chapter 9 Section 5 - Slide 2 WHAT YOU WILL LEARN Transformational geometry,

More information

Geometric Transformations: Translation:

Geometric Transformations: Translation: Geometric Transformations: Translation: slide Reflection: Rotation: Dialation: mirror turn enlarge or reduce Notation: Pre-Image: original figure Image: after transformation. Use prime notation C A B C

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 426, Fall 2000 Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman,

More information

What You Give Is What You Get: Multitype Querying for Pottery

What You Give Is What You Get: Multitype Querying for Pottery What You Give Is What You Get: Multitype Querying for Pottery Chemnitz University of Technology Computer Graphics and Visualization {stefan.wagner; hoerr; brunner; brunnett}@cs.tu-chemnitz.de Abstract

More information

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview Mesh Simplification Mesh Simplification Adam Finkelstein Princeton University COS 56, Fall 008 Slides from: Funkhouser Division, Viewpoint, Cohen Mesh Simplification Motivation Interactive visualization

More information

Solid Modeling. Thomas Funkhouser Princeton University C0S 426, Fall Represent solid interiors of objects

Solid Modeling. Thomas Funkhouser Princeton University C0S 426, Fall Represent solid interiors of objects Solid Modeling Thomas Funkhouser Princeton University C0S 426, Fall 2000 Solid Modeling Represent solid interiors of objects Surface may not be described explicitly Visible Human (National Library of Medicine)

More information

3D Object Retrieval using an Efficient and Compact Hybrid Shape Descriptor

3D Object Retrieval using an Efficient and Compact Hybrid Shape Descriptor Eurographics Workshop on 3D Object Retrieval (2008) I. Pratikakis and T. Theoharis (Editors) 3D Object Retrieval using an Efficient and Compact Hybrid Shape Descriptor P. Papadakis 1,2, I. Pratikakis 1,

More information

Content-based Image Retrieval (CBIR)

Content-based Image Retrieval (CBIR) Content-based Image Retrieval (CBIR) Content-based Image Retrieval (CBIR) Searching a large database for images that match a query: What kinds of databases? What kinds of queries? What constitutes a match?

More information

3D Model Retrieval Based on 3D Fractional Fourier Transform

3D Model Retrieval Based on 3D Fractional Fourier Transform The International Arab Journal of Information Technology, Vol., o. 5, September 23 42 3D Model Retrieval Based on 3D Fractional Fourier Transform Liu Yu-Jie, Bao Feng, Li Zong-Min, and Li Hua 2 School

More information

Selecting Distinctive 3D Shape Descriptors for Similarity Retrieval

Selecting Distinctive 3D Shape Descriptors for Similarity Retrieval Selecting Distinctive 3D Shape Descriptors for Similarity Retrieval Philip Shilane and Thomas Funkhouser Department of Computer Science, Princeton University 35 Olden Street, Princeton, NJ 854 {pshilane,funk}@cs.princeton.edu

More information

The Generalized Shape Distributions for Shape Matching and Analysis

The Generalized Shape Distributions for Shape Matching and Analysis The Generalized Shape Distributions for Shape Matching and Analysis Yi Liu 1, Hongbin Zha 1, Hong Qin 2 {liuyi, zha}@cis.pku.edu.cn, qin@cs.sunysb.edu National Laboratory on Machine Perception, Peking

More information

[FMIQ] Ajit Datar. Fast Multiresolution Image Querying

[FMIQ] Ajit Datar. Fast Multiresolution Image Querying Fast Multiresoution Image Querying [FMIQ] Ajit Datar 1 Background Implementation of FMIQ paper by Jacobs et al (see references) Use of Haar wavelet based signatures Small signature database Search time

More information

Feature-Based Similarity Search in 3D Object Databases

Feature-Based Similarity Search in 3D Object Databases Feature-Based Similarity Search in 3D Object Databases BENJAMIN BUSTOS, DANIEL A. KEIM, DIETMAR SAUPE, TOBIAS SCHRECK, AND DEJAN V. VRANIĆ University of Konstanz The development of effective content-based

More information

Accelerating Bag-of-Features SIFT Algorithm for 3D Model Retrieval

Accelerating Bag-of-Features SIFT Algorithm for 3D Model Retrieval Accelerating Bag-of-Features SIFT Algorithm for 3D Model Retrieval Ryutarou Ohbuchi, Takahiko Furuya 4-3-11 Takeda, Kofu-shi, Yamanashi-ken, 400-8511, Japan ohbuchi@yamanashi.ac.jp, snc49925@gmail.com

More information

Polygonal Meshes. 3D Object Representations. 3D Object Representations. 3D Polygonal Mesh. 3D Polygonal Mesh. Geometry background

Polygonal Meshes. 3D Object Representations. 3D Object Representations. 3D Polygonal Mesh. 3D Polygonal Mesh. Geometry background 3D Object Representations Polygonal Meshes Adam Finkelstein & Tim Weyrich Princeton University C0S 426, Spring 2008 Points o Range image o Point cloud Surfaces o Polygonal mesh o Subdivision o Parametric

More information

NEW METHOD FOR 3D SHAPE RETRIEVAL

NEW METHOD FOR 3D SHAPE RETRIEVAL NEW METHOD FOR 3D SHAPE RETRIEVAL Abdelghni Lakehal and Omar El Beqqali 1 1 Sidi Mohamed Ben AbdEllah University GRMS2I FSDM B.P 1796 Fez Morocco lakehal_abdelghni@yahoo.fr ABSTRACT The recent technological

More information

Salient Geometric Features for Partial Shape Matching and Similarity

Salient Geometric Features for Partial Shape Matching and Similarity Salient Geometric Features for Partial Shape Matching and Similarity RAN GAL and DANIEL COHEN-OR Tel-Aviv University This article introduces a method for partial matching of surfaces represented by triangular

More information

Statistical Spherical Wavelet Moments for Content-based 3D Model Retrieval

Statistical Spherical Wavelet Moments for Content-based 3D Model Retrieval Noname manuscript No. (will be inserted by the editor) Statistical Spherical Wavelet Moments for Content-based 3D Model Retrieval Hamid Laga 1, Masayuki Nakajima 2 1 Global Edge Institute, Tokyo Institute

More information

A New MPEG-7 Standard: Perceptual 3-D Shape Descriptor

A New MPEG-7 Standard: Perceptual 3-D Shape Descriptor A New MPEG-7 Standard: Perceptual 3-D Shape Descriptor Duck Hoon Kim 1, In Kyu Park 2, Il Dong Yun 3, and Sang Uk Lee 1 1 School of Electrical Engineering and Computer Science, Seoul National University,

More information

Structured light 3D reconstruction

Structured light 3D reconstruction Structured light 3D reconstruction Reconstruction pipeline and industrial applications rodola@dsi.unive.it 11/05/2010 3D Reconstruction 3D reconstruction is the process of capturing the shape and appearance

More information

CBIVR: Content-Based Image and Video Retrieval

CBIVR: Content-Based Image and Video Retrieval CBIVR: Content-Based Image and Video Retrieval QBIC: Query by Image Content QBIC First commercial system Search by: color percentages color layout teture shape/location keywords Try their demo: http://wwwqbic.almaden.ibm.com

More information

Retrieving Articulated 3-D Models Using Medial Surfaces and their Graph Spectra

Retrieving Articulated 3-D Models Using Medial Surfaces and their Graph Spectra Retrieving Articulated 3-D Models Using Medial Surfaces and their Graph Spectra Juan Zhang, Kaleem Siddiqi, Diego Macrini 2, Ali Shokoufandeh 3, and Sven Dickinson 2 McGill University, School of Computer

More information

Shape-Based Retrieval of Articulated 3D Models Using Spectral Embedding

Shape-Based Retrieval of Articulated 3D Models Using Spectral Embedding Shape-Based Retrieval of Articulated 3D Models Using Spectral Embedding Varun Jain and Hao Zhang GrUVi Lab, School of Computing Sciences, Simon Fraser University, Burnaby, British Columbia, Canada {vjain,

More information

Solid Modeling. Michael Kazhdan ( /657) HB , FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al.

Solid Modeling. Michael Kazhdan ( /657) HB , FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al. Solid Modeling Michael Kazhdan (601.457/657) HB 10.15 10.17, 10.22 FvDFH 12.1, 12.2, 12.6, 12.7 Marching Cubes, Lorensen et al. 1987 Announcement OpenGL review session: When: Today @ 9:00 PM Where: Malone

More information

Lecture 18 of 41. Scene Graphs: Rendering Lab 3b: Shader

Lecture 18 of 41. Scene Graphs: Rendering Lab 3b: Shader Scene Graphs: Rendering Lab 3b: Shader William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre Public mirror web site: http://www.kddresearch.org/courses/cis636

More information

Image Compression. -The idea is to remove redundant data from the image (i.e., data which do not affect image quality significantly)

Image Compression. -The idea is to remove redundant data from the image (i.e., data which do not affect image quality significantly) Introduction Image Compression -The goal of image compression is the reduction of the amount of data required to represent a digital image. -The idea is to remove redundant data from the image (i.e., data

More information

Improved Query by Image Retrieval using Multi-feature Algorithms

Improved Query by Image Retrieval using Multi-feature Algorithms International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August 2013 Improved Query by Image using Multi-feature Algorithms Rani Saritha R, Varghese Paul, P. Ganesh Kumar Abstract

More information

Improving 3D Shape Retrieval Methods based on Bag-of Feature Approach by using Local Codebooks

Improving 3D Shape Retrieval Methods based on Bag-of Feature Approach by using Local Codebooks Improving 3D Shape Retrieval Methods based on Bag-of Feature Approach by using Local Codebooks El Wardani Dadi 1,*, El Mostafa Daoudi 1 and Claude Tadonki 2 1 University Mohammed First, Faculty of Sciences,

More information

3D Object Representation. Michael Kazhdan ( /657)

3D Object Representation. Michael Kazhdan ( /657) 3D Object Representation Michael Kazhdan (601.457/657) 3D Objects How can this object be represented in a computer? 3D Objects This one? H&B Figure 10.46 3D Objects This one? H&B Figure 9.9 3D Objects

More information

Distinctive Regions of 3D Surfaces

Distinctive Regions of 3D Surfaces Distinctive Regions of 3D Surfaces PHILIP SHILANE and THOMAS FUNKHOUSER Princeton University Selecting the most important regions of a surface is useful for shape matching and a variety of applications

More information

Computing Similarity between Cultural Heritage Items using Multimodal Features

Computing Similarity between Cultural Heritage Items using Multimodal Features Computing Similarity between Cultural Heritage Items using Multimodal Features Nikolaos Aletras and Mark Stevenson Department of Computer Science, University of Sheffield Could the combination of textual

More information

Short Run length Descriptor for Image Retrieval

Short Run length Descriptor for Image Retrieval CHAPTER -6 Short Run length Descriptor for Image Retrieval 6.1 Introduction In the recent years, growth of multimedia information from various sources has increased many folds. This has created the demand

More information

A Reflective Symmetry Descriptor

A Reflective Symmetry Descriptor A Reflective Symmetry Descriptor Michael Kazhdan, Bernard Chazelle, David Dobkin, Adam Finkelstein, and Thomas Funkhouser Princeton University, Princeton NJ 08544, USA Abstract. Computing reflective symmetries

More information

3D Shape Matching by Geodesic Eccentricity

3D Shape Matching by Geodesic Eccentricity Author manuscript, published in "Search in 3D 28, Anchorage, Alaska : United States (28)" DOI :.9/CVPRW.28.456332 3D Shape Matching by Geodesic Eccentricity Adrian Ion PRIP, Vienna University of Technology

More information

Feature-based Part Retrieval for Interactive 3D Reassembly

Feature-based Part Retrieval for Interactive 3D Reassembly Feature-based Part Retrieval for Interactive 3D Reassembly Devi Parikh 1 Rahul Sukthankar 2,1 Tsuhan Chen 1 Mei Chen 2 dparikh@cmu.edu rahuls@cs.cmu.edu tsuhan@cmu.edu meichen@ieee.org 1 Carnegie Mellon

More information

STELA: Sketch-Based 3D Model Retrieval using a Structure-Based Local Approach

STELA: Sketch-Based 3D Model Retrieval using a Structure-Based Local Approach STELA: Sketch-Based 3D Model Retrieval using a Structure-Based Local Approach Jose M. Saavedra PRISMA Research Group DCC, University of Chile Av. Blanco Encalada 2120 Santiago, Chile jsaavedr@dcc.uchile.cl

More information

Multi-view 3D retrieval using silhouette intersection and multi-scale contour representation

Multi-view 3D retrieval using silhouette intersection and multi-scale contour representation Multi-view 3D retrieval using silhouette intersection and multi-scale contour representation Thibault Napoléon Telecom Paris CNRS UMR 5141 75013 Paris, France napoleon@enst.fr Tomasz Adamek CDVP Dublin

More information

Measuring Cubeness of 3D Shapes

Measuring Cubeness of 3D Shapes Measuring Cubeness of 3D Shapes Carlos Martinez-Ortiz and Joviša Žunić Department of Computer Science, University of Exeter, Exeter EX4 4QF, U.K. {cm265,j.zunic}@ex.ac.uk Abstract. In this paper we introduce

More information

3D Object Representation

3D Object Representation 3D Object Representation Connelly Barnes CS 4810: Graphics Acknowledgment: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David Dobkin 3D Object Representation

More information

An Image-Based Approach to Visual Feature Space Analysis

An Image-Based Approach to Visual Feature Space Analysis An Image-Based Approach to Visual Feature Space Analysis Tobias Schreck Technische Universität Darmstadt, Germany tobias.schreck@gris.informatik.tu-darmstadt.de Jörn Schneidewind University of Konstanz,

More information

On 3D retrieval from photos

On 3D retrieval from photos On 3D retrieval from photos Tarik Filali Ansary, Jean-Phillipe Vandeborre, Mohamed Daoudi FOX-MIIRE Research Group (LIFL UMR 822 CNRS/USTL) (GET/INT Telecom Lille ) email: {filali, vandeborre, daoudi}@enic.fr

More information

3D B Spline Interval Wavelet Moments for 3D Objects

3D B Spline Interval Wavelet Moments for 3D Objects Journal of Information & Computational Science 10:5 (2013) 1377 1389 March 20, 2013 Available at http://www.joics.com 3D B Spline Interval Wavelet Moments for 3D Objects Li Cui a,, Ying Li b a School of

More information

Learning from 3D Data

Learning from 3D Data Learning from 3D Data Thomas Funkhouser Princeton University* * On sabbatical at Stanford and Google Disclaimer: I am talking about the work of these people Shuran Song Andy Zeng Fisher Yu Yinda Zhang

More information

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011 Computer Graphics 1 Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in

More information

Image retrieval based on region shape similarity

Image retrieval based on region shape similarity Image retrieval based on region shape similarity Cheng Chang Liu Wenyin Hongjiang Zhang Microsoft Research China, 49 Zhichun Road, Beijing 8, China {wyliu, hjzhang}@microsoft.com ABSTRACT This paper presents

More information

Shape Retrieval with Flat Contour Segments

Shape Retrieval with Flat Contour Segments Shape Retrieval with Flat Contour Segments Dalong Li 1, Steven Simske Intelligent Enterprise Technologies Laboratory HP Laboratories Palo Alto HPL-2002-250 September 9 th, 2002* image database, image retrieval,

More information

Learning 3D Part Detection from Sparsely Labeled Data: Supplemental Material

Learning 3D Part Detection from Sparsely Labeled Data: Supplemental Material Learning 3D Part Detection from Sparsely Labeled Data: Supplemental Material Ameesh Makadia Google New York, NY 10011 makadia@google.com Mehmet Ersin Yumer Carnegie Mellon University Pittsburgh, PA 15213

More information

A Salient-Point Signature for 3D Object Retrieval

A Salient-Point Signature for 3D Object Retrieval A Salient-Point Signature for 3D Object Retrieval Indriyati Atmosukarto, Linda G. Shapiro Department of Computer Science and Engineering University of Washington Seattle, WA, USA indria, shapiro@cs.washington.edu

More information

Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material

Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material Charles R. Qi Hao Su Matthias Nießner Angela Dai Mengyuan Yan Leonidas J. Guibas Stanford University 1. Details

More information

Image Comparison on the Base of a Combinatorial Matching Algorithm

Image Comparison on the Base of a Combinatorial Matching Algorithm Image Comparison on the Base of a Combinatorial Matching Algorithm Benjamin Drayer Department of Computer Science, University of Freiburg Abstract. In this paper we compare images based on the constellation

More information

Spherical Wavelet Descriptors for Content-based 3D Model Retrieval

Spherical Wavelet Descriptors for Content-based 3D Model Retrieval Spherical Wavelet Descriptors for Content-based 3D Model Retrieval Hamid Laga Hiroki Takahashi Masayuki Nakajima Computer Science Department Tokyo Institute of Technology, Japan email:{hamid,rocky,nakajima}@img.cs.titech.ac.jp

More information

3D Object Retrieval using Many-to-many Matching of Curve Skeletons

3D Object Retrieval using Many-to-many Matching of Curve Skeletons 3D Object Retrieval using Many-to-many Matching of Curve Skeletons Nicu D. Cornea 1 M. Fatih Demirci 2 Deborah Silver 1 Ali Shokoufandeh 2 Sven J. Dickinson 3 Paul B. Kantor 1 1 Rutgers University 2 Drexel

More information

Countdown to your final Maths exam Part 13 (2018)

Countdown to your final Maths exam Part 13 (2018) Countdown to your final Maths exam Part 13 (2018) Marks Actual Q1. Translations (Clip 67) 2 Q2. Reflections & enlargements (Clips 64 & 63) 5 Q3. Rotations (Clip 65) 3 Q4. Rotations (Clip 65) 2 Q5. Rotations

More information

A Content Based Image Retrieval System Based on Color Features

A Content Based Image Retrieval System Based on Color Features A Content Based Image Retrieval System Based on Features Irena Valova, University of Rousse Angel Kanchev, Department of Computer Systems and Technologies, Rousse, Bulgaria, Irena@ecs.ru.acad.bg Boris

More information

Implicit Surfaces & Solid Representations COS 426

Implicit Surfaces & Solid Representations COS 426 Implicit Surfaces & Solid Representations COS 426 3D Object Representations Desirable properties of an object representation Easy to acquire Accurate Concise Intuitive editing Efficient editing Efficient

More information

SHAPE DISTINCTION FOR 3D OBJECT RETRIEVAL PHILIP NATHAN SHILANE A DISSERTATION PRESENTED TO THE FACULTY RECOMMENDED FOR ACCEPTANCE

SHAPE DISTINCTION FOR 3D OBJECT RETRIEVAL PHILIP NATHAN SHILANE A DISSERTATION PRESENTED TO THE FACULTY RECOMMENDED FOR ACCEPTANCE SHAPE DISTINCTION FOR 3D OBJECT RETRIEVAL PHILIP NATHAN SHILANE A DISSERTATION PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY RECOMMENDED FOR ACCEPTANCE

More information

X-tree. Daniel Keim a, Benjamin Bustos b, Stefan Berchtold c, and Hans-Peter Kriegel d. SYNONYMS Extended node tree

X-tree. Daniel Keim a, Benjamin Bustos b, Stefan Berchtold c, and Hans-Peter Kriegel d. SYNONYMS Extended node tree X-tree Daniel Keim a, Benjamin Bustos b, Stefan Berchtold c, and Hans-Peter Kriegel d a Department of Computer and Information Science, University of Konstanz b Department of Computer Science, University

More information

Blobworld: A System for Region-Based Image Indexing and Retrieval

Blobworld: A System for Region-Based Image Indexing and Retrieval Blobworld: A System for Region-Based Image Indexing and Retrieval Chad Carson, Megan Thomas, Serge Belongie, Joseph M. Hellerstein, and Jitendra Malik EECS Department University of California, Berkeley,

More information

Structure-oriented Networks of Shape Collections

Structure-oriented Networks of Shape Collections Structure-oriented Networks of Shape Collections Noa Fish 1 Oliver van Kaick 2 Amit Bermano 3 Daniel Cohen-Or 1 1 Tel Aviv University 2 Carleton University 3 Princeton University 1 pplementary material

More information

Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator

Describing 3D Geometric Primitives Using the Gaussian Sphere and the Gaussian Accumulator Noname manuscript No. (will be inserted by the editor) Describing 3D Geometric Primitives Using the Gaussian and the Gaussian Accumulator Zahra Toony Denis Laurendeau Christian Gagné Received: date / Accepted:

More information

Data-driven Depth Inference from a Single Still Image

Data-driven Depth Inference from a Single Still Image Data-driven Depth Inference from a Single Still Image Kyunghee Kim Computer Science Department Stanford University kyunghee.kim@stanford.edu Abstract Given an indoor image, how to recover its depth information

More information

PROCUREMENT BDMS GUIDE

PROCUREMENT BDMS GUIDE PROCUREMENT BDMS GUIDE Procurement BDMS Guide Page 1 TABLE OF CONTENTS 1. Introduction... 3 2. Adding a PC Doc to BDMS... 4 2.1 FGIDOCR form:... 4 2.2 BDMS attach PC Doc document:... 4 2.2.1 Initial BDMS

More information

Subdivision Surfaces. Course Syllabus. Course Syllabus. Modeling. Equivalence of Representations. 3D Object Representations

Subdivision Surfaces. Course Syllabus. Course Syllabus. Modeling. Equivalence of Representations. 3D Object Representations Subdivision Surfaces Adam Finkelstein Princeton University COS 426, Spring 2003 Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman, CS426, Fall99)

More information

Madison Dark Range Junior Archipelago Range Sofas & Chairs

Madison Dark Range Junior Archipelago Range Sofas & Chairs Product Catalogue Archipelago is a furniture and accessories lifestyle gallery in Dubai that sells solid American oak furniture in a range of different styles and shades to suit different tastes. There

More information

A Pivot-based Index Structure for Combination of Feature Vectors

A Pivot-based Index Structure for Combination of Feature Vectors A Pivot-based Index Structure for Combination of Feature Vectors Benjamin Bustos Daniel Keim Tobias Schreck Department of Computer and Information Science, University of Konstanz Universitätstr. 10 Box

More information

Temperature Distribution Descriptor for Robust 3D Shape Retrieval

Temperature Distribution Descriptor for Robust 3D Shape Retrieval Temperature Distribution Descriptor for Robust 3D Shape Retrieval Yi Fang Purdue University West Lafayette, IN, USA fang4@purdue.edu Mengtian Sun Purdue University West Lafayette, IN, USA sun84@purdue.edu

More information

3D Object Representations. COS 526, Fall 2016 Princeton University

3D Object Representations. COS 526, Fall 2016 Princeton University 3D Object Representations COS 526, Fall 2016 Princeton University 3D Object Representations How do we... Represent 3D objects in a computer? Acquire computer representations of 3D objects? Manipulate computer

More information

Edge-transitive tessellations with non-negative Euler characteristic

Edge-transitive tessellations with non-negative Euler characteristic October, 2009 p. Edge-transitive tessellations with non-negative Euler characteristic Alen Orbanić Daniel Pellicer Tomaž Pisanski Thomas Tucker Arjana Žitnik October, 2009 p. Maps 2-CELL EMBEDDING of a

More information

3D Object Classification using Shape Distributions and Deep Learning

3D Object Classification using Shape Distributions and Deep Learning 3D Object Classification using Shape Distributions and Deep Learning Melvin Low Stanford University mwlow@cs.stanford.edu Abstract This paper shows that the Absolute Angle shape distribution (AAD) feature

More information

Global Shape Matching

Global Shape Matching Global Shape Matching Section 3.2: Extrinsic Key Point Detection and Feature Descriptors 1 The story so far Problem statement Given pair of shapes/scans, find correspondences between the shapes Local shape

More information

MULTI-LEVEL 3D CONVOLUTIONAL NEURAL NETWORK FOR OBJECT RECOGNITION SAMBIT GHADAI XIAN LEE ADITYA BALU SOUMIK SARKAR ADARSH KRISHNAMURTHY

MULTI-LEVEL 3D CONVOLUTIONAL NEURAL NETWORK FOR OBJECT RECOGNITION SAMBIT GHADAI XIAN LEE ADITYA BALU SOUMIK SARKAR ADARSH KRISHNAMURTHY MULTI-LEVEL 3D CONVOLUTIONAL NEURAL NETWORK FOR OBJECT RECOGNITION SAMBIT GHADAI XIAN LEE ADITYA BALU SOUMIK SARKAR ADARSH KRISHNAMURTHY Outline Object Recognition Multi-Level Volumetric Representations

More information

THE signature of a shape is a concise representation of the

THE signature of a shape is a concise representation of the IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 13, NO 2, MARCH/APRIL 2007 261 Pose-Oblivious Shape Signature Ran Gal, Student Member, IEEE, Ariel Shamir, Member, IEEE, and Daniel Cohen-Or,

More information

CS 283: Assignment 1 Geometric Modeling and Mesh Simplification

CS 283: Assignment 1 Geometric Modeling and Mesh Simplification CS 283: Assignment 1 Geometric Modeling and Mesh Simplification Ravi Ramamoorthi 1 Introduction This assignment is about triangle meshes as a tool for geometric modeling. As the complexity of models becomes

More information

Feature Combination and Relevance Feedback for 3D Model Retrieval

Feature Combination and Relevance Feedback for 3D Model Retrieval Feature Combination and Relevance Feedback for 3D Model Retrieval Indriyati Atmosukarto, Wee Kheng Leow, Zhiyong Huang Dept. of Computer Science, National University of Singapore 3 Science Drive 2, Singapore

More information

Product Catalogue. Provencale Range Madison Dark Range Classic Chic Range Mon Chic Range... Junior Archipelago Range...

Product Catalogue. Provencale Range Madison Dark Range Classic Chic Range Mon Chic Range... Junior Archipelago Range... Product Catalogue Archipelago is a furniture and accessories lifestyle gallery in Dubai that sells solid American oak furniture in a range of different styles and shades to suit different tastes. There

More information

Methods for Representing and Recognizing 3D objects

Methods for Representing and Recognizing 3D objects Methods for Representing and Recognizing 3D objects part 1 Silvio Savarese University of Michigan at Ann Arbor Object: Building, 45º pose, 8-10 meters away Object: Person, back; 1-2 meters away Object:

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] November 20, 2003 Doug James Carnegie Mellon University http://www.cs.cmu.edu/~djames/15-462/fall03

More information

PANORAMA: A 3D Shape Descriptor based on Panoramic Views for Unsupervised 3D Object Retrieval

PANORAMA: A 3D Shape Descriptor based on Panoramic Views for Unsupervised 3D Object Retrieval PANORAMA: A 3D Shape Descriptor based on Panoramic Views for Unsupervised 3D Object Retrieval Panagiotis Papadakis, Ioannis Pratikakis, Theoharis Theoharis, Stavros Perantonis To cite this version: Panagiotis

More information

A Rectilinearity Measurement for 3D Meshes

A Rectilinearity Measurement for 3D Meshes A Rectilinearity Measurement for 3D Meshes Z houhui Lian Beihang Univer s ity, PR C hina Cardiff University, UK Z houhui. Lian@c s. c ardif f. ac. uk Paul L. Ros i n Cardiff University, UK Paul. R os in@c

More information

3D Shape Retrieval from a 2D Image as Query

3D Shape Retrieval from a 2D Image as Query 3D Shape Retrieval from a 2D Image as Query Masaki Aono and Hiroki Iwabuchi Toyohashi University of Technology, Aichi, Japan E-mail:aono@tut.jp Tel: +81-532-44-6764 Abstract 3D shape retrieval has gained

More information