Shape Analysis. Introduction. Introduction. Motivation. Introduction. Introduction. Thomas Funkhouser Princeton University CS526, Fall 2006

Size: px
Start display at page:

Download "Shape Analysis. Introduction. Introduction. Motivation. Introduction. Introduction. Thomas Funkhouser Princeton University CS526, Fall 2006"

Transcription

1 Introduction Cyberware, ATI, & 3Dcafe Analysis Thomas Funkhouser Princeton University CS526, Fall 2006 Cyberware Cheap Scanners ATI Fast Graphics Cards 3D Cafe World Wide Web Someday 3D models will be as common as images are today Motivation Stanford & Utah Introduction De Espona & Utah Previous research has asked: How do we acquire 3D data? Utah VW Bug Utah Teapot Stanford Bunny Future research will ask: How do we find 3D data? Utah VW Bug Analysis algorithms also are needed to create useful 3D models from raw 3D data Introduction Introduction Georgia Tech and Geometric Query Analysis Descriptor Object Recognition Matching Object Database of 3D Models Analysis Index Construction Index Object Retrieval Similar Objects Clustering & Learning Class Specification Object Classification Matching Class Object Synthesis Novel Objects 3D Model 2D Image 1

2 Lecture Outline ) * ) * ) * Ayellet Tal, Technion & Princeton University How can we find significant geometric features robustly? How can we decompose a 3D model into its parts? Ayellet Tal, Technion & Princeton University Emil Praun ) * Cup Handle ) * How can we decompose a 3D model into its parts? How can we align features of 3D models? 2

3 Image courtesy of Ilya Vakser, GRAMM ) * ) * Query 1) 2) 3) 4) Ranked Matches How can we compute a measure of geometric similarity? How can we find 3D models best matching a query? Florida State Univ. Darpa E3D Project ) * ) * Query Classes How can we find a given 3D model in a large database? How can we determine the class of a 3D model? ) * Viewpoint Lecture Outline How can we learn classes of 3D models automatically? 3

4 , ), ) vp41620.wrl, ) Image courtesy of Ayellet Tal, Technion & Princeton University, ) Bill Regli, Drexel University Darpa E3D Project, ) Morphine, ) 4

5 %& ', ), ) ', ), ) %& Hippocampus-amygdala study in schizophrenia Stanford University Boeing ' %& Image courtesy of Polina Golland, MIT Image courtesy of Ilya Vakser, GRAMM ' %& %& Delson & Freiss, ) Lecture Outline ' 5

6 -.' / / Matching 0123' ' 0-' ' ' ' % % 3D Query Descriptor Best Matches 3D Query Descriptor Best Matches 3D Database 3D Database % % 3D Query Descriptor Best Matches 3D Query Descriptor Best Matches 3D Database 3D Database 6

7 % 3D Query Descriptor 3D Database Best Matches % Different Transformations translation, scale, rotation, mirror) Image courtesy of Ramamoorthi et al. % Different Articulated Poses % Scanned Surface Viewpoint & Stanford Utah & De Espona % Different Genus Different Tessellations % No Bottom &*Q?@A% 7

8 Taxonomy of 3D Matching Methods Amenta & Osada Image courtesy of Taxonomy of 3D Matching Methods Mao Chen / - )-, -,- / - )-, -,- Feature 1 Tables Desks Feature 2 File cabinets Example Distributions ' ' %' ' We are starting with discussion of a simple method to introduce the basic ideas Audio 3D Surface 2D Contour 3D Volume Distributions 9' Which Function? ' θ θ A3 angle) D1 distance) D2 distance) D3 area) D4 volume) 3D Models D2 Distributions [Ankerst 99] 8

9 D2 Distribution D2 Distribution % % / 512 bytes 64 values) 0.5 seconds 10 6 samples) D2 Distribution D2 Distribution % Translation Rotation {Mirror Scale w/ normalization) / Normalized Means % / D2 Distribution D2 Distribution % 1% Noise % Ellipsoids with Different Eccentricities 9

10 D2 Distribution 8 % Line Segment Cylinder Sphere Circle Cube Two Spheres : ; 6 < ;= >? 2 ; Line Segment Circle Cylinder 10

11 k e b a e e e n g e p n w r r t p t l l al bl btbp bt cr cr cw hr hn lp lg me mg ok pn pe pe re sd sa sp sb te tk al bl btbp bt cr cr cw hr hn lp lg me mg ok pn pe pe re sd sa sp sb te tk Sphere Two Spheres 2A ; D2 distributions for 5 tanks gray) and 6 cars black) & / 2/ <B<><?< 2/ 6/ : : 51 potted plants 33 faces 15 desk chairs 22 dining chairs 100 humans 28 biplanes 14 flying birds 11 ships 11

12 Precision 100% 50% 0% D2 Random 0% 50% 100% Recall Storage Compute Compare Nearest Norm Descriptor bytes) Time s) Time us) Neighbor DCGain DCGain LFD ,700 1,300 66% 64% 21% REXT , % 60% 13% SHD , % 58% 10% GEDT , % 58% 10% EXT % 56% 6% SECSHEL , % 55% 3% VOXEL , % 54% 2% SECTORS % 53% 0% CEGI , % 48% -10% EGI , % 47% -11% D % 43% -18% SHELLS % 39% -27% RANDOM % 26% -54% Next Times 2 12

Matching and Recognition in 3D. Based on slides by Tom Funkhouser and Misha Kazhdan

Matching and Recognition in 3D. Based on slides by Tom Funkhouser and Misha Kazhdan Matching and Recognition in 3D Based on slides by Tom Funkhouser and Misha Kazhdan From 2D to 3D: Some Things Easier No occlusion (but sometimes missing data instead) Segmenting objects often simpler From

More information

Shape Descriptors I. Thomas Funkhouser CS597D, Fall 2003 Princeton University. Editing

Shape Descriptors I. Thomas Funkhouser CS597D, Fall 2003 Princeton University. Editing Shape Descriptors I Thomas Funkhouser CS597D, Fall 2003 Princeton University 3D Representations Property Editing Display Analysis Retrieval Intuitive specification Yes No No No Guaranteed continuity Yes

More information

Polygonal Meshes. Thomas Funkhouser Princeton University COS 526, Fall 2016

Polygonal Meshes. Thomas Funkhouser Princeton University COS 526, Fall 2016 Polygonal Meshes Thomas Funkhouser Princeton University COS 526, Fall 2016 Digital Geometry Processing Processing of 3D surfaces Creation, acquisition Storage, transmission Editing, animation, simulation

More information

Geometric Modeling For Computer Graphics

Geometric Modeling For Computer Graphics Geometric Modeling For Computer Graphics Thomas Funkhouser Princeton University C0S 598B, Spring 2000 Hypothesis 3D models will become ubiquitous (eventually) Laser range scanners World Wide Web Fast graphics

More information

FFTs in Graphics and Vision. Invariance of Shape Descriptors

FFTs in Graphics and Vision. Invariance of Shape Descriptors FFTs in Graphics and Vision Invariance of Shape Descriptors 1 Outline Math Overview Translation and Rotation Invariance The 0 th Order Frequency Component Shape Descriptors Invariance 2 Translation Invariance

More information

Shape Matching. Michael Kazhdan ( /657)

Shape Matching. Michael Kazhdan ( /657) Shape Matching Michael Kazhdan (601.457/657) Overview Intro General Approach Minimum SSD Descriptor Goal Given a database of 3D models, and given a query shape, find the database models that are most similar

More information

CS 468 Data-driven Shape Analysis. Shape Descriptors

CS 468 Data-driven Shape Analysis. Shape Descriptors CS 468 Data-driven Shape Analysis Shape Descriptors April 1, 2014 What Is A Shape Descriptor? Shapes Shape Descriptor F1=[f1, f2,.., fn] F2=[f1, f2,.., fn] F3=[f1, f2,.., fn] What Is A Shape Descriptor?

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 597D, Fall 2003 3D Object Representations What makes a good 3D object representation? Stanford and Hearn & Baker 1 3D Object

More information

Searching for the Shape

Searching for the Shape Searching for the Shape PURDUEURDUE U N I V E R S I T Y Yagna Kalyanaraman PRECISE, Purdue University The world we are in Designers spend 60% time searching for right info 75% of design activity is design

More information

Extracting Layers and Recognizing Features for Automatic Map Understanding. Yao-Yi Chiang

Extracting Layers and Recognizing Features for Automatic Map Understanding. Yao-Yi Chiang Extracting Layers and Recognizing Features for Automatic Map Understanding Yao-Yi Chiang 0 Outline Introduction/ Problem Motivation Map Processing Overview Map Decomposition Feature Recognition Discussion

More information

Shape Distributions. Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin Princeton University, Princeton, NJ 08540, USA

Shape Distributions. Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin Princeton University, Princeton, NJ 08540, USA Shape Distributions Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David Dobkin Princeton University, Princeton, NJ 08540, USA February 12, 2002 Abstract Measuring the similarity between 3D shapes

More information

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 2.11] Jernej Barbic University of Southern California Scientific Visualization

More information

Visualization. CSCI 420 Computer Graphics Lecture 26

Visualization. CSCI 420 Computer Graphics Lecture 26 CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 11] Jernej Barbic University of Southern California 1 Scientific Visualization

More information

Thanks to Chris Bregler. COS 429: Computer Vision

Thanks to Chris Bregler. COS 429: Computer Vision Thanks to Chris Bregler COS 429: Computer Vision COS 429: Computer Vision Instructor: Thomas Funkhouser funk@cs.princeton.edu Preceptors: Ohad Fried, Xinyi Fan {ohad,xinyi}@cs.princeton.edu Web page: http://www.cs.princeton.edu/courses/archive/fall13/cos429/

More information

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION

THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION THE HALF-EDGE DATA STRUCTURE MODELING AND ANIMATION Dan Englesson danen344@student.liu.se Sunday 12th April, 2011 Abstract In this lab assignment which was done in the course TNM079, Modeling and animation,

More information

Efficient Surface and Feature Estimation in RGBD

Efficient Surface and Feature Estimation in RGBD Efficient Surface and Feature Estimation in RGBD Zoltan-Csaba Marton, Dejan Pangercic, Michael Beetz Intelligent Autonomous Systems Group Technische Universität München RGB-D Workshop on 3D Perception

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 15, 2003 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors

Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors Eurographics Symposium on Geometry Processing (2003) L. Kobbelt, P. Schröder, H. Hoppe (Editors) Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors Michael Kazhdan, Thomas Funkhouser,

More information

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010)

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010) Advanced Computer Graphics (Fall 2010) CS 283, Lecture 19: Basic Geometric Concepts and Rotations Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/fa10 Motivation Moving from rendering to simulation,

More information

Overview of 3D Object Representations

Overview of 3D Object Representations Overview of 3D Object Representations Thomas Funkhouser Princeton University C0S 426, Fall 2000 Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman,

More information

Learning from 3D Data

Learning from 3D Data Learning from 3D Data Thomas Funkhouser Princeton University* * On sabbatical at Stanford and Google Disclaimer: I am talking about the work of these people Shuran Song Andy Zeng Fisher Yu Yinda Zhang

More information

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo Geometric Modeling Bing-Yu Chen National Taiwan University The University of Tokyo What are 3D Objects? 3D Object Representations What are 3D objects? The Graphics Process 3D Object Representations Raw

More information

Accelerating Bag-of-Features SIFT Algorithm for 3D Model Retrieval

Accelerating Bag-of-Features SIFT Algorithm for 3D Model Retrieval Accelerating Bag-of-Features SIFT Algorithm for 3D Model Retrieval Ryutarou Ohbuchi, Takahiko Furuya 4-3-11 Takeda, Kofu-shi, Yamanashi-ken, 400-8511, Japan ohbuchi@yamanashi.ac.jp, snc49925@gmail.com

More information

Instance-level recognition

Instance-level recognition Instance-level recognition 1) Local invariant features 2) Matching and recognition with local features 3) Efficient visual search 4) Very large scale indexing Matching of descriptors Matching and 3D reconstruction

More information

Instance-level recognition

Instance-level recognition Instance-level recognition 1) Local invariant features 2) Matching and recognition with local features 3) Efficient visual search 4) Very large scale indexing Matching of descriptors Matching and 3D reconstruction

More information

Delaunay Triangulation

Delaunay Triangulation Delaunay Triangulation Steve Oudot slides courtesy of O. Devillers MST MST MST use Kruskal s algorithm with Del as input O(n log n) Last: lower bound for Delaunay Let x 1, x 2,..., x n R, to be sorted

More information

Distinctive Regions of 3D Surfaces

Distinctive Regions of 3D Surfaces Distinctive Regions of 3D Surfaces PHILIP SHILANE and THOMAS FUNKHOUSER Princeton University Selecting the most important regions of a surface is useful for shape matching and a variety of applications

More information

Lecture 18 of 41. Scene Graphs: Rendering Lab 3b: Shader

Lecture 18 of 41. Scene Graphs: Rendering Lab 3b: Shader Scene Graphs: Rendering Lab 3b: Shader William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre Public mirror web site: http://www.kddresearch.org/courses/cis636

More information

Su et al. Shape Descriptors - III

Su et al. Shape Descriptors - III Su et al. Shape Descriptors - III Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 Funkhouser; Feng, Liu, Gong Recap Global A shape descriptor is a set of numbers that describes a shape in a way that

More information

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University

Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University 15-462 Computer Graphics I Lecture 21 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] April 23, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

More information

3D Transformations World Window to Viewport Transformation Week 2, Lecture 4

3D Transformations World Window to Viewport Transformation Week 2, Lecture 4 CS 430/536 Computer Graphics I 3D Transformations World Window to Viewport Transformation Week 2, Lecture 4 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory

More information

Tracking system. Danica Kragic. Object Recognition & Model Based Tracking

Tracking system. Danica Kragic. Object Recognition & Model Based Tracking Tracking system Object Recognition & Model Based Tracking Motivation Manipulating objects in domestic environments Localization / Navigation Object Recognition Servoing Tracking Grasping Pose estimation

More information

Selecting Distinctive 3D Shape Descriptors for Similarity Retrieval

Selecting Distinctive 3D Shape Descriptors for Similarity Retrieval Selecting Distinctive 3D Shape Descriptors for Similarity Retrieval Philip Shilane and Thomas Funkhouser Department of Computer Science, Princeton University 35 Olden Street, Princeton, NJ 854 {pshilane,funk}@cs.princeton.edu

More information

Automatic Image Alignment (feature-based)

Automatic Image Alignment (feature-based) Automatic Image Alignment (feature-based) Mike Nese with a lot of slides stolen from Steve Seitz and Rick Szeliski 15-463: Computational Photography Alexei Efros, CMU, Fall 2006 Today s lecture Feature

More information

Visualization Computer Graphics I Lecture 20

Visualization Computer Graphics I Lecture 20 15-462 Computer Graphics I Lecture 20 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 12] November 20, 2003 Doug James Carnegie Mellon University http://www.cs.cmu.edu/~djames/15-462/fall03

More information

ADVANCED MACHINE LEARNING MACHINE LEARNING. Kernel for Clustering kernel K-Means

ADVANCED MACHINE LEARNING MACHINE LEARNING. Kernel for Clustering kernel K-Means 1 MACHINE LEARNING Kernel for Clustering ernel K-Means Outline of Today s Lecture 1. Review principle and steps of K-Means algorithm. Derive ernel version of K-means 3. Exercise: Discuss the geometrical

More information

A METHOD FOR CONTENT-BASED SEARCHING OF 3D MODEL DATABASES

A METHOD FOR CONTENT-BASED SEARCHING OF 3D MODEL DATABASES A METHOD FOR CONTENT-BASED SEARCHING OF 3D MODEL DATABASES Jiale Wang *, Hongming Cai 2 and Yuanjun He * Department of Computer Science & Technology, Shanghai Jiaotong University, China Email: wjl8026@yahoo.com.cn

More information

EECS150 - Digital Design Lecture 14 FIFO 2 and SIFT. Recap and Outline

EECS150 - Digital Design Lecture 14 FIFO 2 and SIFT. Recap and Outline EECS150 - Digital Design Lecture 14 FIFO 2 and SIFT Oct. 15, 2013 Prof. Ronald Fearing Electrical Engineering and Computer Sciences University of California, Berkeley (slides courtesy of Prof. John Wawrzynek)

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 8: Geometric transformations Szeliski: Chapter 3.6 Reading Announcements Project 2 out today, due Oct. 4 (demo at end of class today) Image alignment Why don

More information

Seminar Heidelberg University

Seminar Heidelberg University Seminar Heidelberg University Mobile Human Detection Systems Pedestrian Detection by Stereo Vision on Mobile Robots Philip Mayer Matrikelnummer: 3300646 Motivation Fig.1: Pedestrians Within Bounding Box

More information

3D Shape Representation and Analysis of the Human Body and Ontology for Anthropometric Landmarks

3D Shape Representation and Analysis of the Human Body and Ontology for Anthropometric Landmarks 3D Shape Representation and Analysis of the Human Body and Ontology for Anthropometric Landmarks Afzal Godil National Institute of Standards and Technology, USA WEAR conference, Banff, Canada 2007 Introduction

More information

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011

Computer Graphics 1. Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling. LMU München Medieninformatik Andreas Butz Computergraphik 1 SS2011 Computer Graphics 1 Chapter 2 (May 19th, 2011, 2-4pm): 3D Modeling 1 The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in

More information

Lecture 12: Video Representation, Summarisation, and Query

Lecture 12: Video Representation, Summarisation, and Query Lecture 12: Video Representation, Summarisation, and Query Dr Jing Chen NICTA & CSE UNSW CS9519 Multimedia Systems S2 2006 jchen@cse.unsw.edu.au Last week Structure of video Frame Shot Scene Story Why

More information

3D Modeling I. CG08b Lior Shapira Lecture 8. Based on: Thomas Funkhouser,Princeton University. Thomas Funkhouser 2000

3D Modeling I. CG08b Lior Shapira Lecture 8. Based on: Thomas Funkhouser,Princeton University. Thomas Funkhouser 2000 3D Modeling I CG08b Lior Shapira Lecture 8 Based on: Thomas Funkhouser,Princeton University Course Syllabus I. Image processing II. Rendering III. Modeling IV. Animation Image Processing (Rusty Coleman,

More information

3D MODEL RETRIEVAL USING GLOBAL AND LOCAL RADIAL DISTANCES. Bo Li, Henry Johan

3D MODEL RETRIEVAL USING GLOBAL AND LOCAL RADIAL DISTANCES. Bo Li, Henry Johan 3D MODEL RETRIEVAL USING GLOBAL AND LOCAL RADIAL DISTANCES Bo Li, Henry Johan School of Computer Engineering Nanyang Technological University Singapore E-mail: libo0002@ntu.edu.sg, henryjohan@ntu.edu.sg

More information

Multiple-Choice Questionnaire Group C

Multiple-Choice Questionnaire Group C Family name: Vision and Machine-Learning Given name: 1/28/2011 Multiple-Choice naire Group C No documents authorized. There can be several right answers to a question. Marking-scheme: 2 points if all right

More information

Salient Local 3D Features for 3D Shape Retrieval

Salient Local 3D Features for 3D Shape Retrieval Salient Local 3D Features for 3D Shape Retrieval Afzal Godil a, Asim Imdad Wagan b a National Institute of Standards and Technolog Gaithersburg, MD, USA b Dept of CSE, QUEST Universit Nawabshah, Pakistan

More information

Modeling. Simulating the Everyday World

Modeling. Simulating the Everyday World Modeling Simulating the Everyday World Three broad areas: Modeling (Geometric) = Shape Animation = Motion/Behavior Rendering = Appearance Page 1 Geometric Modeling 1. How to represent 3d shapes Polygonal

More information

Polygonal Meshes. 3D Object Representations. 3D Object Representations. 3D Polygonal Mesh. 3D Polygonal Mesh. Geometry background

Polygonal Meshes. 3D Object Representations. 3D Object Representations. 3D Polygonal Mesh. 3D Polygonal Mesh. Geometry background 3D Object Representations Polygonal Meshes Adam Finkelstein & Tim Weyrich Princeton University C0S 426, Spring 2008 Points o Range image o Point cloud Surfaces o Polygonal mesh o Subdivision o Parametric

More information

COMP 175 COMPUTER GRAPHICS. Ray Casting. COMP 175: Computer Graphics April 26, Erik Anderson 09 Ray Casting

COMP 175 COMPUTER GRAPHICS. Ray Casting. COMP 175: Computer Graphics April 26, Erik Anderson 09 Ray Casting Ray Casting COMP 175: Computer Graphics April 26, 2018 1/41 Admin } Assignment 4 posted } Picking new partners today for rest of the assignments } Demo in the works } Mac demo may require a new dylib I

More information

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking

Feature descriptors. Alain Pagani Prof. Didier Stricker. Computer Vision: Object and People Tracking Feature descriptors Alain Pagani Prof. Didier Stricker Computer Vision: Object and People Tracking 1 Overview Previous lectures: Feature extraction Today: Gradiant/edge Points (Kanade-Tomasi + Harris)

More information

A Systems View of Large- Scale 3D Reconstruction

A Systems View of Large- Scale 3D Reconstruction Lecture 23: A Systems View of Large- Scale 3D Reconstruction Visual Computing Systems Goals and motivation Construct a detailed 3D model of the world from unstructured photographs (e.g., Flickr, Facebook)

More information

Wall Painting Reconstruction Using a Genetic Algorithm. Elena Sizikova, Thomas Funkhouser Princeton University

Wall Painting Reconstruction Using a Genetic Algorithm. Elena Sizikova, Thomas Funkhouser Princeton University Wall Painting Reconstruction Using a Genetic Algorithm Elena Sizikova, Thomas Funkhouser Princeton University Motivation Wall paintings recovered from Akrotiri (Santorini), Greece Part of a reconstructed

More information

Geometric Registration for Deformable Shapes 1.1 Introduction

Geometric Registration for Deformable Shapes 1.1 Introduction Geometric Registration for Deformable Shapes 1.1 Introduction Overview Data Sources and Applications Problem Statement Overview Presenters Will Chang University of California at San Diego, USA Hao Li ETH

More information

Multi-level Partition of Unity Implicits

Multi-level Partition of Unity Implicits Multi-level Partition of Unity Implicits Diego Salume October 23 rd, 2013 Author: Ohtake, et.al. Overview Goal: Use multi-level partition of unity (MPU) implicit surface to construct surface models. 3

More information

Solid Modeling. Thomas Funkhouser Princeton University C0S 426, Fall Represent solid interiors of objects

Solid Modeling. Thomas Funkhouser Princeton University C0S 426, Fall Represent solid interiors of objects Solid Modeling Thomas Funkhouser Princeton University C0S 426, Fall 2000 Solid Modeling Represent solid interiors of objects Surface may not be described explicitly Visible Human (National Library of Medicine)

More information

3D Object Recognition using Multiclass SVM-KNN

3D Object Recognition using Multiclass SVM-KNN 3D Object Recognition using Multiclass SVM-KNN R. Muralidharan, C. Chandradekar April 29, 2014 Presented by: Tasadduk Chowdhury Problem We address the problem of recognizing 3D objects based on various

More information

Part I: HumanEva-I dataset and evaluation metrics

Part I: HumanEva-I dataset and evaluation metrics Part I: HumanEva-I dataset and evaluation metrics Leonid Sigal Michael J. Black Department of Computer Science Brown University http://www.cs.brown.edu/people/ls/ http://vision.cs.brown.edu/humaneva/ Motivation

More information

Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material

Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material Volumetric and Multi-View CNNs for Object Classification on 3D Data Supplementary Material Charles R. Qi Hao Su Matthias Nießner Angela Dai Mengyuan Yan Leonidas J. Guibas Stanford University 1. Details

More information

Categorization by Learning and Combining Object Parts

Categorization by Learning and Combining Object Parts Categorization by Learning and Combining Object Parts Bernd Heisele yz Thomas Serre y Massimiliano Pontil x Thomas Vetter Λ Tomaso Poggio y y Center for Biological and Computational Learning, M.I.T., Cambridge,

More information

Novelty Detection from an Ego- Centric Perspective

Novelty Detection from an Ego- Centric Perspective Novelty Detection from an Ego- Centric Perspective Omid Aghazadeh, Josephine Sullivan, and Stefan Carlsson Presented by Randall Smith 1 Outline Introduction Sequence Alignment Appearance Based Cues Geometric

More information

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013

Feature Descriptors. CS 510 Lecture #21 April 29 th, 2013 Feature Descriptors CS 510 Lecture #21 April 29 th, 2013 Programming Assignment #4 Due two weeks from today Any questions? How is it going? Where are we? We have two umbrella schemes for object recognition

More information

Specular 3D Object Tracking by View Generative Learning

Specular 3D Object Tracking by View Generative Learning Specular 3D Object Tracking by View Generative Learning Yukiko Shinozuka, Francois de Sorbier and Hideo Saito Keio University 3-14-1 Hiyoshi, Kohoku-ku 223-8522 Yokohama, Japan shinozuka@hvrl.ics.keio.ac.jp

More information

Leaf Classification from Boundary Analysis

Leaf Classification from Boundary Analysis Leaf Classification from Boundary Analysis Anne Jorstad AMSC 663 Midterm Progress Report Fall 2007 Advisor: Dr. David Jacobs, Computer Science 1 Outline Background, Problem Statement Algorithm Validation

More information

CS277 - Experimental Haptics Lecture 3. Proxy-Based Rendering

CS277 - Experimental Haptics Lecture 3. Proxy-Based Rendering CS277 - Experimental Haptics Lecture 3 Proxy-Based Rendering Outline Announcements A note on timing... Limitations with potential fields God-object algorithm Finger-proxy algorithm Course Project Showcase

More information

Depth Estimation Using Collection of Models

Depth Estimation Using Collection of Models Depth Estimation Using Collection of Models Karankumar Thakkar 1, Viral Borisagar 2 PG scholar 1, Assistant Professor 2 Computer Science & Engineering Department 1, 2 Government Engineering College, Sector

More information

Transformations Week 9, Lecture 18

Transformations Week 9, Lecture 18 CS 536 Computer Graphics Transformations Week 9, Lecture 18 2D Transformations David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 3 2D Affine Transformations

More information

Large-scale visual recognition The bag-of-words representation

Large-scale visual recognition The bag-of-words representation Large-scale visual recognition The bag-of-words representation Florent Perronnin, XRCE Hervé Jégou, INRIA CVPR tutorial June 16, 2012 Outline Bag-of-words Large or small vocabularies? Extensions for instance-level

More information

CS 231A CA Session: Problem Set 4 Review. Kevin Chen May 13, 2016

CS 231A CA Session: Problem Set 4 Review. Kevin Chen May 13, 2016 CS 231A CA Session: Problem Set 4 Review Kevin Chen May 13, 2016 PS4 Outline Problem 1: Viewpoint estimation Problem 2: Segmentation Meanshift segmentation Normalized cut Problem 1: Viewpoint Estimation

More information

Partial Matching of 3D Shapes with Priority-Driven Search

Partial Matching of 3D Shapes with Priority-Driven Search Eurographics Symposium on Geometry Processing (2006) Konrad Polthier, Alla Sheffer (Editors) Partial Matching of 3D Shapes with Priority-Driven Search T. Funkhouser and P. Shilane Princeton University,

More information

Ray Tracing. Outline. Ray Tracing: History

Ray Tracing. Outline. Ray Tracing: History Foundations of omputer Graphics Online Lecture 9: Ray Tracing 1 History and asic Ray asting Ravi Ramamoorthi Effects needed for Realism (Soft) Shadows Reflections (Mirrors and Glossy) Transparency (Water,

More information

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology Text classification II CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2015 Some slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1 Robot Mapping SLAM Front-Ends Cyrill Stachniss Partial image courtesy: Edwin Olson 1 Graph-Based SLAM Constraints connect the nodes through odometry and observations Robot pose Constraint 2 Graph-Based

More information

Modeling by Example. Abstract. 1 Introduction. 2 Related Work

Modeling by Example. Abstract. 1 Introduction. 2 Related Work Modeling by Example Thomas Funkhouser, 1 Michael Kazhdan, 1 Philip Shilane, 1 Patrick Min, 2 William Kiefer, 1 Ayellet Tal, 3 Szymon Rusinkiewicz, 1 and David Dobkin 1 1 Princeton University 2 Utrecht

More information

Implicit Surfaces & Solid Representations COS 426

Implicit Surfaces & Solid Representations COS 426 Implicit Surfaces & Solid Representations COS 426 3D Object Representations Desirable properties of an object representation Easy to acquire Accurate Concise Intuitive editing Efficient editing Efficient

More information

Scanning and Printing Objects in 3D Jürgen Sturm

Scanning and Printing Objects in 3D Jürgen Sturm Scanning and Printing Objects in 3D Jürgen Sturm Metaio (formerly Technical University of Munich) My Research Areas Visual navigation for mobile robots RoboCup Kinematic Learning Articulated Objects Quadrocopters

More information

A Learning Approach to 3D Object Representation for Classification

A Learning Approach to 3D Object Representation for Classification A Learning Approach to 3D Object Representation for Classification Indriyati Atmosukarto and Linda G. Shapiro University of Washington, Department of Computer Science and Engineering,Seattle, WA, USA {indria,shapiro}@cs.washington.edu

More information

Decomposing and Sketching 3D Objects by Curve Skeleton Processing

Decomposing and Sketching 3D Objects by Curve Skeleton Processing Decomposing and Sketching 3D Objects by Curve Skeleton Processing Luca Serino, Carlo Arcelli, and Gabriella Sanniti di Baja Institute of Cybernetics E. Caianiello, CNR, Naples, Italy {l.serino,c.arcelli,g.sannitidibaja}@cib.na.cnr.it

More information

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016

ECCV Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 ECCV 2016 Presented by: Boris Ivanovic and Yolanda Wang CS 331B - November 16, 2016 Fundamental Question What is a good vector representation of an object? Something that can be easily predicted from 2D

More information

3D Energy Dispersive Spectroscopy Elemental Tomography in the Scanning Transmission Electron Microscope

3D Energy Dispersive Spectroscopy Elemental Tomography in the Scanning Transmission Electron Microscope 3D Energy Dispersive Spectroscopy Elemental Tomography in the Scanning Transmission Electron Microscope Brian Van Devener Topics 1.Introduction to EDS in the STEM 2.Extending EDS into three dimensions

More information

Geometric Covering. Nadav Shragai CGGC, CS, Technion, Israel. MSc Thesis

Geometric Covering. Nadav Shragai CGGC, CS, Technion, Israel. MSc Thesis Geometric Covering Nadav Shragai CGGC, CS, Technion, Israel MSc Thesis 1 Introduction Introduction Geometric Covering (GC) queries appear in numerous applications: Mold design in manufacturing Inspection

More information

Tutorial 3. Jun Xu, Teaching Asistant csjunxu/ February 16, COMP4134 Biometrics Authentication

Tutorial 3. Jun Xu, Teaching Asistant   csjunxu/ February 16, COMP4134 Biometrics Authentication Tutorial 3 Jun Xu, Teaching Asistant http://www4.comp.polyu.edu.hk/ csjunxu/ COMP4134 Biometrics Authentication February 16, 2017 Table of Contents Problems Problem 1: Answer the questions Problem 2: Pattern

More information

3D Modeling: Solid Models

3D Modeling: Solid Models CS 430/536 Computer Graphics I 3D Modeling: Solid Models Week 9, Lecture 18 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science

More information

Statistical Shape Analysis of Anatomical Structures. Polina Golland

Statistical Shape Analysis of Anatomical Structures. Polina Golland Statistical Shape Analysis of Anatomical Structures by Polina Golland B.A., Technion, Israel (1993) M.Sc., Technion, Israel (1995) Submitted to the Department of Electrical Engineering and Computer Science

More information

Motivation. Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi

Motivation. Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283 Acknowledgements and many slides courtesy: Thomas Funkhouser, Szymon

More information

Modeling. Michael Kazhdan ( /657) HB FvDFH Modeling Seashells, Fowler et al. 1992

Modeling. Michael Kazhdan ( /657) HB FvDFH Modeling Seashells, Fowler et al. 1992 Modeling Michael Kazhdan (601.457/657) HB 10.18 10.19 FvDFH 20.2 20.4 Modeling Seashells, Fowler et al. 1992 Modeling How do we... Represent 3D objects in a computer? Construct such representations quickly

More information

Shape Matching for 3D Retrieval and Recognition. Agenda. 3D collections. Ivan Sipiran and Benjamin Bustos

Shape Matching for 3D Retrieval and Recognition. Agenda. 3D collections. Ivan Sipiran and Benjamin Bustos Shape Matching for 3D Retrieval and Recognition Ivan Sipiran and Benjamin Bustos PRISMA Research Group Department of Computer Science University of Chile Agenda Introduction Applications Datasets Shape

More information

3D object recognition used by team robotto

3D object recognition used by team robotto 3D object recognition used by team robotto Workshop Juliane Hoebel February 1, 2016 Faculty of Computer Science, Otto-von-Guericke University Magdeburg Content 1. Introduction 2. Depth sensor 3. 3D object

More information

2D Image Processing Feature Descriptors

2D Image Processing Feature Descriptors 2D Image Processing Feature Descriptors Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Overview

More information

Salient Geometric Features for Partial Shape Matching and Similarity

Salient Geometric Features for Partial Shape Matching and Similarity Salient Geometric Features for Partial Shape Matching and Similarity RAN GAL and DANIEL COHEN-OR Tel-Aviv University This article introduces a method for partial matching of surfaces represented by triangular

More information

Retrieving Articulated 3-D Models Using Medial Surfaces and their Graph Spectra

Retrieving Articulated 3-D Models Using Medial Surfaces and their Graph Spectra Retrieving Articulated 3-D Models Using Medial Surfaces and their Graph Spectra Juan Zhang, Kaleem Siddiqi, Diego Macrini 2, Ali Shokoufandeh 3, and Sven Dickinson 2 McGill University, School of Computer

More information

CS 283: Assignment 1 Geometric Modeling and Mesh Simplification

CS 283: Assignment 1 Geometric Modeling and Mesh Simplification CS 283: Assignment 1 Geometric Modeling and Mesh Simplification Ravi Ramamoorthi 1 Introduction This assignment is about triangle meshes as a tool for geometric modeling. As the complexity of models becomes

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza 1 Lab exercise today replaced by Deep Learning Tutorial Room ETH HG E 1.1 from 13:15 to 15:00 Optional lab

More information

Structured light 3D reconstruction

Structured light 3D reconstruction Structured light 3D reconstruction Reconstruction pipeline and industrial applications rodola@dsi.unive.it 11/05/2010 3D Reconstruction 3D reconstruction is the process of capturing the shape and appearance

More information

Adaptive Binary Quantization for Fast Nearest Neighbor Search

Adaptive Binary Quantization for Fast Nearest Neighbor Search IBM Research Adaptive Binary Quantization for Fast Nearest Neighbor Search Zhujin Li 1, Xianglong Liu 1*, Junjie Wu 1, and Hao Su 2 1 Beihang University, Beijing, China 2 Stanford University, Stanford,

More information

Probabilistic Surfel Fusion for Dense LiDAR Mapping Chanoh Park, Soohwan Kim, Peyman Moghadam, Clinton Fookes, Sridha Sridharan

Probabilistic Surfel Fusion for Dense LiDAR Mapping Chanoh Park, Soohwan Kim, Peyman Moghadam, Clinton Fookes, Sridha Sridharan Probabilistic Surfel Fusion for Dense LiDAR Mapping Chanoh Park, Soohwan Kim, Peyman Moghadam, Clinton Fookes, Sridha Sridharan ICCV workshop 2017 www.data61.csiro.au Introduction Narrow FoV Short sensing

More information

3D Modeling: Surfaces

3D Modeling: Surfaces CS 430/536 Computer Graphics I 3D Modeling: Surfaces Week 8, Lecture 16 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel

More information

Advanced Data Visualization

Advanced Data Visualization Advanced Data Visualization CS 6965 Spring 2018 Prof. Bei Wang Phillips University of Utah Lecture 04 Mapper, Clustering & beyond HD The Mapper Algorithm: History and Overview A tool for high-dimensional

More information

XPM 2D Transformations Week 2, Lecture 3

XPM 2D Transformations Week 2, Lecture 3 CS 430/585 Computer Graphics I XPM 2D Transformations Week 2, Lecture 3 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel

More information

AN AVERGE BASED ORIENTATION FIELD ESTIMATION METHOD FOR LATENT FINGER PRINT MATCHING.

AN AVERGE BASED ORIENTATION FIELD ESTIMATION METHOD FOR LATENT FINGER PRINT MATCHING. AN AVERGE BASED ORIENTATION FIELD ESTIMATION METHOD FOR LATENT FINGER PRINT MATCHING. B.RAJA RAO 1, Dr.E.V.KRISHNA RAO 2 1 Associate Professor in E.C.E Dept,KITS,DIVILI, Research Scholar in S.C.S.V.M.V

More information