Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application

Size: px
Start display at page:

Download "Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application"

Transcription

1 Proection onto the probability simplex: An efficient algorithm with a simple proof, and an application Weiran Wang Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science, University of California, Merced {wwang5,mcarreira-perpinan}@ucmerced.edu September 3, 203 Abstract We provide an elementary proof of a simple, efficient algorithm for computing the Euclidean proection of a point onto the probability simplex. We also show an application in Laplacian K-modes clustering. Proection onto the probability simplex Consider the problem of computing the Euclidean proection of a point y = [y,...,y D ] R D onto the probability simplex, which is defined by the following optimization problem: x R D 2 x y 2 a s.t. x = x 0. This is a quadratic program and the obective function is strictly convex, so there is a unique solution which we denote by x = [x,...,x D ] with a slight abuse of notation. 2 Algorithm The following ODlogD algorithm finds the solution x to the problem: Algorithm Euclidean proection of a vector onto the probability simplex. Input: y R D Sort y into u: u u 2 u D Find ρ = max{ D: u + u i > 0} Define λ = ρ ρ u i Output: x s.t. x i = max{y i +λ,0}, i =,...,D. The complexity of the algorithm is doated by the cost of sorting the components of y. The algorithm is not iterative and identifies the active set exactly after at most D steps. It can be easily implemented see section 4. The algorithm has the following geometric interpretation. The solution can be written as x i = max{y i + λ,0}, i =,...,D, where λ is chosen such that D x i =. Place the values y,...,y D as points on the X axis. Then the solution is given by a rigid shift of the points such that the points to the right of the Y axis sum to. The pseudocode above appears in Duchi et al. 2008, although earlier papers Brucker, 984; Pardalos and Kovoor, 990 solved the problem in greater generality. b c

2 Other algorithms The problem can be solved in many other ways, for example by particularizing QP algorithms such as active-set methods, gradient-proection methods or interior-point methods. It can also be solved by alternating proection onto the two constraints in a finite number of steps Michelot, 986. Another way Boyd and Vandenberghe, 2004, Exercise 4., solution available at materials/lsocoee364b/hw4sol.pdf is to construct a Lagrangian formulation by dualizing the equality constraint and then solve a D nonsmooth optimization over the Lagrange multiplier. Algorithm has the advantage of being very simple, not iterative, and identifying exactly the active set at the solution after at most D steps each of cost O after sorting. 3 A simple proof A proof of correctness of Algorithm can be found in Shalev-Shwartz and Singer 2006 and Chen and Ye 20, but we offer a simpler proof which involves only the KKT theorem. We apply the standard KKT conditions for the problem Nocedal and Wright, The Lagrangian of the problem is Lx,λ,β = 2 x y 2 λx β x where λ and β = [β,...,β D ] are the Lagrange multipliers for the equality and inequality constraints, respectively. At the optimal solution x the following KKT conditions hold: x i y i λ β i = 0, i =,...,D 2a x i 0, i =,...,D 2b β i 0, i =,...,D 2c x i β i = 0, i =,...,D 2d D x i =. 2e From the complementarity condition 2d, it is clear that if x i > 0, we must have β i = 0 and x i = y i +λ > 0; if x i = 0, we must have β i 0 and x i = y i + λ + β i = 0, whence y i + λ = β i 0. Obviously, the components of the optimal solution x that are zeros correspond to the smaller components of y. Without loss of generality, we assume the components of y are sorted and x uses the same ordering, i.e., y y ρ y ρ+ y D, x x ρ > x ρ+ = = x D, and that x x ρ > 0, x ρ+ = = x D = 0. In other words, ρ is the number of positive components in the solution x. Now we apply the last condition and have = D x i = x i = y i +λ whichgivesλ = ρ ρ y i. Henceρisthekeytothesolution. OnceweknowρthereareonlyD possible values of it, we can compute λ, and the optimal solution is obtained by ust adding λ to each component of y and thresholding as in the end of Algorithm. It is easy to check that this solution indeed satisfies all KKT conditions. In the algorithm, we carry out the tests for =,...,D if t = y + y i > 0. We now prove that the number of times this test turns out positive is exactly ρ. The following theorem is essentially Lemma 3 of Shalev-Shwartz and Singer Theorem. Let ρ be the number of positive components in the solution x, then ρ = max{ D: y + y i > 0}. 2

3 Proof. Recall fromthekktconditions 2 thatλρ = ρ y i, y i +λ > 0for i =,...,ρandy i +λ 0for i = ρ+,...,d. In the sequel, we show that for =,...,D, the test will continue to be positive until = ρ and then stay non-positive afterwards, i.e., y + y i > 0 for ρ, and y + y i 0 for > ρ. i For = ρ, we have y ρ + ρ y i = y ρ +λ = x ρ > 0. ii For < ρ, we have y + y i = y + y i = y + i=+ y i + Since y i +λ > 0 for i =,...,ρ, we have y + y i > 0. iii For > ρ, we have y + y i = y + y i = y + y i = y i = y + i=ρ+ = y +λ+ i=+ y i +ρλ y i +λ. i=+ y i = y +ρλ ρy +λ+ i=ρ+ y y i. i=ρ+ Notice y +λ 0 for > ρ, and y y i for i since y is sorted, therefore y + y i < 0. y i Remarks. We denote λ = y i. At the -th test, λ can be considered as a guess of the true λ indeed, λ ρ = λ. If we use this guess to compute a tentative solution x where x i = max{y i +λ,0}, then it is easy to see that x i > 0 for i =,...,, and x i =. In other words, the first components of x are positive and sum to. If we find x + = 0 or y + +λ 0, then we know we have found the optimal solution and = ρ because x satisfies all KKT conditions. 2. To extend the algorithm to a simplex with a different scale, i.e., x = a for a > 0, replace the u i terms with a u i in Algorithm. 4 Matlab code The following vectorized Matlab code implements algorithm. It proects each row vector in the N D matrix Y onto the probability simplex in D dimensions. function X = SimplexProY [N,D] = sizey; X = sorty,2, descend ; Xtmp = cumsumx,2-*diagsparse./:d; X = maxbsxfun@us,y,xtmpsub2ind[n,d],:n,sumx>xtmp,2,0; 3

4 5 An application: Laplacian K-modes clustering Consider the Laplacian K-modes clustering algorithm of Wang and Carreira-Perpiñán 203 which is an extension of the K-modes algorithm of Carreira-Perpiñán and Wang, 203a. Given a dataset x,...,x N R D and suitably defined affinity values w nm 0 between each pair of points x n and x m for example, Gaussian, we define the obective function Z,C s.t. λ 2 N N N K w mn z m z n 2 x n c k 2 z nk G σ m=n= K z nk =, for n =,...,N k= n=k= z nk 0, for n =,...,N, k =,...,K. Z is a matrix of N K, with Z = z,...,z N, where z n = z n,...,z nk are the soft assignments of point x n to clusters,...,k, and c,...,c K R D are modes of the kernel density estimates defined for each cluster where G 2 gives a Gaussian. The problem of proection on the simplex appears in the training problem, i.e., in finding a local imum Z, C of 3, and in the out-of-sample problem, i.e., in assigning a new point to the clusters. Training The optimization of 3 is done by alternating imization over Z and C. For fixed C, the problem over Z is a quadratic program of NK variables: 3a 3b 3c Z λtr Z LZ tr B Z 4a s.t. Z K = N 4b Z 0, 4c where b nk = G x n c k /σ 2, n =,...,N, k =,...,K, and L is the graph Laplacian computed from the pairwise affinities w mn. The problem is convex since L is positive semidefinite. One simple and quite efficient way to solve it is to use an accelerated gradient proection algorithm. The basic gradient proection algorithm iteratively takes a step in the negative gradient from the current point and proects the new point onto the constraint set. In our case, this proection is simple: it separates over each row of Z i.e., the soft assignment of each data point, n =,...,N, and corresponds to a proection on the probability simplex of a K-dimensional row vector, i.e., the problem. Out-of-sample mapping Given a new, test point x R D, we wish to assign it to the clusters found during training. We are given the affinity vectors w = w n and g = g k, where w n is the affinity between x and x n, n =,...,N, and g k = G x c k /σ 2, k =,...,K, respectively. A natural and efficient way to define an out-of-sample mapping zx is to solve a problem of the form 3 with a dataset consisting of the original training set augmented with x, but keeping Z and C fixed to the values obtained during training this avoids having to solve for all points again. Hence, the only free parameter is the assignment vector z for the new point x. After dropping constant terms, the optimization problem 3 reduces to the following quadratic program over K variables: z 2 z z+γg 2 5a s.t. z K = 5b z 0 5c where γ = /2λ N n= w n and N z = Z w w = w n N n = w z n n n= 4

5 is a weighted average of the training points assignments, and so z+γg is itself an average between this and the point-to-centroid affinities. Thus, the solution is the proection of the K-dimensional vector z + γg onto the probability simplex, i.e., the problem again. LASS In general, the optimization problem of eq. 4 is called Laplacian assignment model LASS by Carreira-Perpiñán and Wang 203b. Here, we consider N items and K categories and want to learn a soft assignment z nk of each item to each category, given an item-item graph Laplacian matrix L of N N and an item-category similarity matrix B of N K. The training is as in eq. 4 and the out-of-sample mapping as in eq. 5, and the problem of proection on the simplex appears in both cases. References S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, U.K., P. Brucker. An On algorithm for quadratic knapsack problems. Operations Research Letters, 33:63 66, Aug M. Á. Carreira-Perpiñán and W. Wang. The K-modes algorithm for clustering. Unpublished manuscript, arxiv: , Apr a. M. Á. Carreira-Perpiñán and W. Wang. A simple assignment model with Laplacian smoothing. Unpublished manuscript, 203b. Y. Chen and X. Ye. Proection onto a simplex. Unpublished manuscript, arxiv:0.608, Feb J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient proections onto the l -ball for learning in high dimensions. In A. McCallum and S. Roweis, editors, Proc. of the 25th Int. Conf. Machine Learning ICML 08, pages , Helsinki, Finland, July C. Michelot. A finite algorithm for finding the proection of a point onto the canonical simplex of R n. J. Optimization Theory and Applications, 50:95 200, July 986. J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer-Verlag, New York, second edition, P. M. Pardalos and N. Kovoor. An algorithm for a singly constrained class of quadratic programs subect to upper and lower bounds. Math. Prog., 46 3:32 328, Jan S. Shalev-Shwartz and Y. Singer. Efficient learning of label ranking by soft proections onto polyhedra. J. Machine Learning Research, 7: , W. Wang and M. Á. Carreira-Perpiñán. Laplacian K-modes clustering. Unpublished manuscript,

The K-modes and Laplacian K-modes algorithms for clustering

The K-modes and Laplacian K-modes algorithms for clustering The K-modes and Laplacian K-modes algorithms for clustering Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science University of California, Merced http://faculty.ucmerced.edu/mcarreira-perpinan

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

Introduction to Constrained Optimization

Introduction to Constrained Optimization Introduction to Constrained Optimization Duality and KKT Conditions Pratik Shah {pratik.shah [at] lnmiit.ac.in} The LNM Institute of Information Technology www.lnmiit.ac.in February 13, 2013 LNMIIT MLPR

More information

This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course?

This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course? Lec4 Page 1 Lec4p1, ORF363/COS323 This lecture: Convex optimization Convex sets Convex functions Convex optimization problems Why convex optimization? Why so early in the course? Instructor: Amir Ali Ahmadi

More information

Introduction to Operations Research

Introduction to Operations Research - Introduction to Operations Research Peng Zhang April, 5 School of Computer Science and Technology, Shandong University, Ji nan 5, China. Email: algzhang@sdu.edu.cn. Introduction Overview of the Operations

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

Data Analysis 3. Support Vector Machines. Jan Platoš October 30, 2017

Data Analysis 3. Support Vector Machines. Jan Platoš October 30, 2017 Data Analysis 3 Support Vector Machines Jan Platoš October 30, 2017 Department of Computer Science Faculty of Electrical Engineering and Computer Science VŠB - Technical University of Ostrava Table of

More information

Lecture 15: Log Barrier Method

Lecture 15: Log Barrier Method 10-725/36-725: Convex Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 15: Log Barrier Method Scribes: Pradeep Dasigi, Mohammad Gowayyed Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods 1 Nonlinear Programming Types of Nonlinear Programs (NLP) Convexity and Convex Programs NLP Solutions Unconstrained Optimization Principles of Unconstrained Optimization Search Methods Constrained Optimization

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Linear methods for supervised learning

Linear methods for supervised learning Linear methods for supervised learning LDA Logistic regression Naïve Bayes PLA Maximum margin hyperplanes Soft-margin hyperplanes Least squares resgression Ridge regression Nonlinear feature maps Sometimes

More information

COMS 4771 Support Vector Machines. Nakul Verma

COMS 4771 Support Vector Machines. Nakul Verma COMS 4771 Support Vector Machines Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake bound for the perceptron

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview 1. Overview of SVMs 2. Margin Geometry 3. SVM Optimization 4. Overlapping Distributions 5. Relationship to Logistic Regression 6. Dealing

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Maximum Margin Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Convex Optimization. Erick Delage, and Ashutosh Saxena. October 20, (a) (b) (c)

Convex Optimization. Erick Delage, and Ashutosh Saxena. October 20, (a) (b) (c) Convex Optimization (for CS229) Erick Delage, and Ashutosh Saxena October 20, 2006 1 Convex Sets Definition: A set G R n is convex if every pair of point (x, y) G, the segment beteen x and y is in A. More

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

Simplex Algorithm in 1 Slide

Simplex Algorithm in 1 Slide Administrivia 1 Canonical form: Simplex Algorithm in 1 Slide If we do pivot in A r,s >0, where c s

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

California Institute of Technology Crash-Course on Convex Optimization Fall Ec 133 Guilherme Freitas

California Institute of Technology Crash-Course on Convex Optimization Fall Ec 133 Guilherme Freitas California Institute of Technology HSS Division Crash-Course on Convex Optimization Fall 2011-12 Ec 133 Guilherme Freitas In this text, we will study the following basic problem: maximize x C f(x) subject

More information

The Affine Scaling Method

The Affine Scaling Method MA33 Linear Programming W. J. Martin October 9, 8 The Affine Scaling Method Overview Given a linear programming problem in equality form with full rank constraint matrix and a strictly positive feasible

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - C) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

Minimum-Polytope-Based Linear Programming Decoder for LDPC Codes via ADMM Approach

Minimum-Polytope-Based Linear Programming Decoder for LDPC Codes via ADMM Approach Minimum-Polytope-Based Linear Programg Decoder for LDPC Codes via ADMM Approach Jing Bai, Yongchao Wang, Member, IEEE, Francis C. M. Lau, Senior Member, IEEE arxiv:90.07806v [cs.it] 23 Jan 209 Abstract

More information

11 Linear Programming

11 Linear Programming 11 Linear Programming 11.1 Definition and Importance The final topic in this course is Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed

More information

A Short SVM (Support Vector Machine) Tutorial

A Short SVM (Support Vector Machine) Tutorial A Short SVM (Support Vector Machine) Tutorial j.p.lewis CGIT Lab / IMSC U. Southern California version 0.zz dec 004 This tutorial assumes you are familiar with linear algebra and equality-constrained optimization/lagrange

More information

MATH3016: OPTIMIZATION

MATH3016: OPTIMIZATION MATH3016: OPTIMIZATION Lecturer: Dr Huifu Xu School of Mathematics University of Southampton Highfield SO17 1BJ Southampton Email: h.xu@soton.ac.uk 1 Introduction What is optimization? Optimization is

More information

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if

POLYHEDRAL GEOMETRY. Convex functions and sets. Mathematical Programming Niels Lauritzen Recall that a subset C R n is convex if POLYHEDRAL GEOMETRY Mathematical Programming Niels Lauritzen 7.9.2007 Convex functions and sets Recall that a subset C R n is convex if {λx + (1 λ)y 0 λ 1} C for every x, y C and 0 λ 1. A function f :

More information

Lec13p1, ORF363/COS323

Lec13p1, ORF363/COS323 Lec13 Page 1 Lec13p1, ORF363/COS323 This lecture: Semidefinite programming (SDP) Definition and basic properties Review of positive semidefinite matrices SDP duality SDP relaxations for nonconvex optimization

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

Efficient Euclidean Projections in Linear Time

Efficient Euclidean Projections in Linear Time Jun Liu J.LIU@ASU.EDU Jieping Ye JIEPING.YE@ASU.EDU Department of Computer Science and Engineering, Arizona State University, Tempe, AZ 85287, USA Abstract We consider the problem of computing the Euclidean

More information

Convex Optimization. Lijun Zhang Modification of

Convex Optimization. Lijun Zhang   Modification of Convex Optimization Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf Outline Introduction Convex Sets & Functions Convex Optimization

More information

Finding Euclidean Distance to a Convex Cone Generated by a Large Number of Discrete Points

Finding Euclidean Distance to a Convex Cone Generated by a Large Number of Discrete Points Submitted to Operations Research manuscript (Please, provide the manuscript number!) Finding Euclidean Distance to a Convex Cone Generated by a Large Number of Discrete Points Ali Fattahi Anderson School

More information

Programs. Introduction

Programs. Introduction 16 Interior Point I: Linear Programs Lab Objective: For decades after its invention, the Simplex algorithm was the only competitive method for linear programming. The past 30 years, however, have seen

More information

Constrained optimization

Constrained optimization Constrained optimization A general constrained optimization problem has the form where The Lagrangian function is given by Primal and dual optimization problems Primal: Dual: Weak duality: Strong duality:

More information

The Constrained Laplacian Rank Algorithm for Graph-Based Clustering

The Constrained Laplacian Rank Algorithm for Graph-Based Clustering The Constrained Laplacian Rank Algorithm for Graph-Based Clustering Feiping Nie, Xiaoqian Wang, Michael I. Jordan, Heng Huang Department of Computer Science and Engineering, University of Texas, Arlington

More information

60 2 Convex sets. {x a T x b} {x ã T x b}

60 2 Convex sets. {x a T x b} {x ã T x b} 60 2 Convex sets Exercises Definition of convexity 21 Let C R n be a convex set, with x 1,, x k C, and let θ 1,, θ k R satisfy θ i 0, θ 1 + + θ k = 1 Show that θ 1x 1 + + θ k x k C (The definition of convexity

More information

Local and Global Minimum

Local and Global Minimum Local and Global Minimum Stationary Point. From elementary calculus, a single variable function has a stationary point at if the derivative vanishes at, i.e., 0. Graphically, the slope of the function

More information

CS446: Machine Learning Fall Problem Set 4. Handed Out: October 17, 2013 Due: October 31 th, w T x i w

CS446: Machine Learning Fall Problem Set 4. Handed Out: October 17, 2013 Due: October 31 th, w T x i w CS446: Machine Learning Fall 2013 Problem Set 4 Handed Out: October 17, 2013 Due: October 31 th, 2013 Feel free to talk to other members of the class in doing the homework. I am more concerned that you

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

21-256: Lagrange multipliers

21-256: Lagrange multipliers 21-256: Lagrange multipliers Clive Newstead, Thursday 12th June 2014 Lagrange multipliers give us a means of optimizing multivariate functions subject to a number of constraints on their variables. Problems

More information

Lecture 2. Topology of Sets in R n. August 27, 2008

Lecture 2. Topology of Sets in R n. August 27, 2008 Lecture 2 Topology of Sets in R n August 27, 2008 Outline Vectors, Matrices, Norms, Convergence Open and Closed Sets Special Sets: Subspace, Affine Set, Cone, Convex Set Special Convex Sets: Hyperplane,

More information

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize.

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2017 CS 6820: Algorithms Lecture notes on the simplex method September 2017 1 The Simplex Method We will present an algorithm to solve linear programs of the form maximize subject

More information

4. Simplicial Complexes and Simplicial Homology

4. Simplicial Complexes and Simplicial Homology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 4. Simplicial Complexes and Simplicial Homology Geometric simplicial complexes 4.1 Definition. A finite subset { v 0, v 1,..., v r } R n

More information

Lecture 7: Support Vector Machine

Lecture 7: Support Vector Machine Lecture 7: Support Vector Machine Hien Van Nguyen University of Houston 9/28/2017 Separating hyperplane Red and green dots can be separated by a separating hyperplane Two classes are separable, i.e., each

More information

Fast-Lipschitz Optimization

Fast-Lipschitz Optimization Fast-Lipschitz Optimization DREAM Seminar Series University of California at Berkeley September 11, 2012 Carlo Fischione ACCESS Linnaeus Center, Electrical Engineering KTH Royal Institute of Technology

More information

of Convex Analysis Fundamentals Jean-Baptiste Hiriart-Urruty Claude Lemarechal Springer With 66 Figures

of Convex Analysis Fundamentals Jean-Baptiste Hiriart-Urruty Claude Lemarechal Springer With 66 Figures 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Jean-Baptiste Hiriart-Urruty Claude Lemarechal Fundamentals of Convex

More information

Convex Optimization MLSS 2015

Convex Optimization MLSS 2015 Convex Optimization MLSS 2015 Constantine Caramanis The University of Texas at Austin The Optimization Problem minimize : f (x) subject to : x X. The Optimization Problem minimize : f (x) subject to :

More information

Inverse and Implicit functions

Inverse and Implicit functions CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

More information

AVERAGING RANDOM PROJECTION: A FAST ONLINE SOLUTION FOR LARGE-SCALE CONSTRAINED STOCHASTIC OPTIMIZATION. Jialin Liu, Yuantao Gu, and Mengdi Wang

AVERAGING RANDOM PROJECTION: A FAST ONLINE SOLUTION FOR LARGE-SCALE CONSTRAINED STOCHASTIC OPTIMIZATION. Jialin Liu, Yuantao Gu, and Mengdi Wang AVERAGING RANDOM PROJECTION: A FAST ONLINE SOLUTION FOR LARGE-SCALE CONSTRAINED STOCHASTIC OPTIMIZATION Jialin Liu, Yuantao Gu, and Mengdi Wang Tsinghua National Laboratory for Information Science and

More information

Modified Augmented Lagrangian Coordination and Alternating Direction Method of Multipliers with

Modified Augmented Lagrangian Coordination and Alternating Direction Method of Multipliers with Modified Augmented Lagrangian Coordination and Alternating Direction Method of Multipliers with Parallelization in Non-hierarchical Analytical Target Cascading Yongsu Jung Department of Mechanical Engineering,

More information

The Simplex Algorithm

The Simplex Algorithm The Simplex Algorithm Uri Feige November 2011 1 The simplex algorithm The simplex algorithm was designed by Danzig in 1947. This write-up presents the main ideas involved. It is a slight update (mostly

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

Sequential Coordinate-wise Algorithm for Non-negative Least Squares Problem

Sequential Coordinate-wise Algorithm for Non-negative Least Squares Problem CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Sequential Coordinate-wise Algorithm for Non-negative Least Squares Problem Woring document of the EU project COSPAL IST-004176 Vojtěch Franc, Miro

More information

arxiv: v1 [math.at] 8 Jan 2015

arxiv: v1 [math.at] 8 Jan 2015 HOMOLOGY GROUPS OF SIMPLICIAL COMPLEMENTS: A NEW PROOF OF HOCHSTER THEOREM arxiv:1501.01787v1 [math.at] 8 Jan 2015 JUN MA, FEIFEI FAN AND XIANGJUN WANG Abstract. In this paper, we consider homology groups

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

Convexity: an introduction

Convexity: an introduction Convexity: an introduction Geir Dahl CMA, Dept. of Mathematics and Dept. of Informatics University of Oslo 1 / 74 1. Introduction 1. Introduction what is convexity where does it arise main concepts and

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

REGULAR GRAPHS OF GIVEN GIRTH. Contents

REGULAR GRAPHS OF GIVEN GIRTH. Contents REGULAR GRAPHS OF GIVEN GIRTH BROOKE ULLERY Contents 1. Introduction This paper gives an introduction to the area of graph theory dealing with properties of regular graphs of given girth. A large portion

More information

1 Linear Programming. 1.1 Optimizion problems and convex polytopes 1 LINEAR PROGRAMMING

1 Linear Programming. 1.1 Optimizion problems and convex polytopes 1 LINEAR PROGRAMMING 1 LINEAR PROGRAMMING 1 Linear Programming Now, we will talk a little bit about Linear Programming. We say that a problem is an instance of linear programming when it can be effectively expressed in the

More information

Geometry. Every Simplicial Polytope with at Most d + 4 Vertices Is a Quotient of a Neighborly Polytope. U. H. Kortenkamp. 1.

Geometry. Every Simplicial Polytope with at Most d + 4 Vertices Is a Quotient of a Neighborly Polytope. U. H. Kortenkamp. 1. Discrete Comput Geom 18:455 462 (1997) Discrete & Computational Geometry 1997 Springer-Verlag New York Inc. Every Simplicial Polytope with at Most d + 4 Vertices Is a Quotient of a Neighborly Polytope

More information

Hyperbolic structures and triangulations

Hyperbolic structures and triangulations CHAPTER Hyperbolic structures and triangulations In chapter 3, we learned that hyperbolic structures lead to developing maps and holonomy, and that the developing map is a covering map if and only if the

More information

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know learn the proximal

More information

Analysis of high dimensional data via Topology. Louis Xiang. Oak Ridge National Laboratory. Oak Ridge, Tennessee

Analysis of high dimensional data via Topology. Louis Xiang. Oak Ridge National Laboratory. Oak Ridge, Tennessee Analysis of high dimensional data via Topology Louis Xiang Oak Ridge National Laboratory Oak Ridge, Tennessee Contents Abstract iii 1 Overview 1 2 Data Set 1 3 Simplicial Complex 5 4 Computation of homology

More information

Bilinear Programming

Bilinear Programming Bilinear Programming Artyom G. Nahapetyan Center for Applied Optimization Industrial and Systems Engineering Department University of Florida Gainesville, Florida 32611-6595 Email address: artyom@ufl.edu

More information

Numerical Optimization

Numerical Optimization Convex Sets Computer Science and Automation Indian Institute of Science Bangalore 560 012, India. NPTEL Course on Let x 1, x 2 R n, x 1 x 2. Line and line segment Line passing through x 1 and x 2 : {y

More information

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015

Convex Optimization - Chapter 1-2. Xiangru Lian August 28, 2015 Convex Optimization - Chapter 1-2 Xiangru Lian August 28, 2015 1 Mathematical optimization minimize f 0 (x) s.t. f j (x) 0, j=1,,m, (1) x S x. (x 1,,x n ). optimization variable. f 0. R n R. objective

More information

Linear Programming. Readings: Read text section 11.6, and sections 1 and 2 of Tom Ferguson s notes (see course homepage).

Linear Programming. Readings: Read text section 11.6, and sections 1 and 2 of Tom Ferguson s notes (see course homepage). Linear Programming Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory: Feasible Set, Vertices, Existence of Solutions. Equivalent formulations. Outline

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Convex Optimization M2

Convex Optimization M2 Convex Optimization M2 Lecture 1 A. d Aspremont. Convex Optimization M2. 1/49 Today Convex optimization: introduction Course organization and other gory details... Convex sets, basic definitions. A. d

More information

Kernel Methods & Support Vector Machines

Kernel Methods & Support Vector Machines & Support Vector Machines & Support Vector Machines Arvind Visvanathan CSCE 970 Pattern Recognition 1 & Support Vector Machines Question? Draw a single line to separate two classes? 2 & Support Vector

More information

New Methods for Solving Large Scale Linear Programming Problems in the Windows and Linux computer operating systems

New Methods for Solving Large Scale Linear Programming Problems in the Windows and Linux computer operating systems arxiv:1209.4308v1 [math.oc] 19 Sep 2012 New Methods for Solving Large Scale Linear Programming Problems in the Windows and Linux computer operating systems Saeed Ketabchi, Hossein Moosaei, Hossein Sahleh

More information

Lecture Notes 2: The Simplex Algorithm

Lecture Notes 2: The Simplex Algorithm Algorithmic Methods 25/10/2010 Lecture Notes 2: The Simplex Algorithm Professor: Yossi Azar Scribe:Kiril Solovey 1 Introduction In this lecture we will present the Simplex algorithm, finish some unresolved

More information

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example).

However, this is not always true! For example, this fails if both A and B are closed and unbounded (find an example). 98 CHAPTER 3. PROPERTIES OF CONVEX SETS: A GLIMPSE 3.2 Separation Theorems It seems intuitively rather obvious that if A and B are two nonempty disjoint convex sets in A 2, then there is a line, H, separating

More information

Combinatorial Geometry & Topology arising in Game Theory and Optimization

Combinatorial Geometry & Topology arising in Game Theory and Optimization Combinatorial Geometry & Topology arising in Game Theory and Optimization Jesús A. De Loera University of California, Davis LAST EPISODE... We discuss the content of the course... Convex Sets A set is

More information

Lecture Linear Support Vector Machines

Lecture Linear Support Vector Machines Lecture 8 In this lecture we return to the task of classification. As seen earlier, examples include spam filters, letter recognition, or text classification. In this lecture we introduce a popular method

More information

Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem

Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem IE 5: Integer Programming, Spring 29 24 Jan, 29 Lecture 4: Rational IPs, Polyhedron, Decomposition Theorem Lecturer: Karthik Chandrasekaran Scribe: Setareh Taki Disclaimer: These notes have not been subjected

More information

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2

(1) Given the following system of linear equations, which depends on a parameter a R, 3x y + 5z = 2 4x + y + (a 2 14)z = a + 2 (1 Given the following system of linear equations, which depends on a parameter a R, x + 2y 3z = 4 3x y + 5z = 2 4x + y + (a 2 14z = a + 2 (a Classify the system of equations depending on the values of

More information

A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM. 1.

A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM. 1. ACTA MATHEMATICA VIETNAMICA Volume 21, Number 1, 1996, pp. 59 67 59 A PARAMETRIC SIMPLEX METHOD FOR OPTIMIZING A LINEAR FUNCTION OVER THE EFFICIENT SET OF A BICRITERIA LINEAR PROBLEM NGUYEN DINH DAN AND

More information

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1

Section 5 Convex Optimisation 1. W. Dai (IC) EE4.66 Data Proc. Convex Optimisation page 5-1 Section 5 Convex Optimisation 1 W. Dai (IC) EE4.66 Data Proc. Convex Optimisation 1 2018 page 5-1 Convex Combination Denition 5.1 A convex combination is a linear combination of points where all coecients

More information

Convex Optimization / Homework 2, due Oct 3

Convex Optimization / Homework 2, due Oct 3 Convex Optimization 0-725/36-725 Homework 2, due Oct 3 Instructions: You must complete Problems 3 and either Problem 4 or Problem 5 (your choice between the two) When you submit the homework, upload a

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Ellipsoid Methods Barnabás Póczos & Ryan Tibshirani Outline Linear programs Simplex algorithm Running time: Polynomial or Exponential? Cutting planes & Ellipsoid methods for

More information

Alternating Projections

Alternating Projections Alternating Projections Stephen Boyd and Jon Dattorro EE392o, Stanford University Autumn, 2003 1 Alternating projection algorithm Alternating projections is a very simple algorithm for computing a point

More information

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics 1. Introduction EE 546, Univ of Washington, Spring 2016 performance of numerical methods complexity bounds structural convex optimization course goals and topics 1 1 Some course info Welcome to EE 546!

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form

Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form Distance-to-Solution Estimates for Optimization Problems with Constraints in Standard Form Philip E. Gill Vyacheslav Kungurtsev Daniel P. Robinson UCSD Center for Computational Mathematics Technical Report

More information

Clustering. SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic

Clustering. SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic Clustering SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic Clustering is one of the fundamental and ubiquitous tasks in exploratory data analysis a first intuition about the

More information

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini

DM545 Linear and Integer Programming. Lecture 2. The Simplex Method. Marco Chiarandini DM545 Linear and Integer Programming Lecture 2 The Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. 2. 3. 4. Standard Form Basic Feasible Solutions

More information

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS Linear Programming Larry Blume Cornell University & The Santa Fe Institute & IHS Linear Programs The general linear program is a constrained optimization problem where objectives and constraints are all

More information

Convexity. 1 X i is convex. = b is a hyperplane in R n, and is denoted H(p, b) i.e.,

Convexity. 1 X i is convex. = b is a hyperplane in R n, and is denoted H(p, b) i.e., Convexity We ll assume throughout, without always saying so, that we re in the finite-dimensional Euclidean vector space R n, although sometimes, for statements that hold in any vector space, we ll say

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Two common formulations of linear programming (LP) problems are: min Subject to: 1,,, 1,2,,;, max Subject to: 1,,, 1,2,,;, Linear Programming Problems The standard LP problem

More information

Kernel Methods. Chapter 9 of A Course in Machine Learning by Hal Daumé III. Conversion to beamer by Fabrizio Riguzzi

Kernel Methods. Chapter 9 of A Course in Machine Learning by Hal Daumé III.   Conversion to beamer by Fabrizio Riguzzi Kernel Methods Chapter 9 of A Course in Machine Learning by Hal Daumé III http://ciml.info Conversion to beamer by Fabrizio Riguzzi Kernel Methods 1 / 66 Kernel Methods Linear models are great because

More information

Lecture 18: March 23

Lecture 18: March 23 0-725/36-725: Convex Optimization Spring 205 Lecturer: Ryan Tibshirani Lecture 8: March 23 Scribes: James Duyck Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm Instructor: Shaddin Dughmi Algorithms for Convex Optimization We will look at 2 algorithms in detail: Simplex and Ellipsoid.

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information