Voxel-based Registration Methods in in vivo Imaging

Size: px
Start display at page:

Download "Voxel-based Registration Methods in in vivo Imaging"

Transcription

1 Vladimír Ulman Laboratory of Optical Microscopy, FI MU 14th April, 2005 Informatics seminar, FI MU

2 Outline Introduction to bioinformatics Introduction to in vivo imaging Point-based registration Optical flow registration using MHI Expectations, future work

3 Introduction to bioinformatics Introduction to in vivo imaging Bioinformatics relatively new scientific field biologists and computer scientists work together

4 Introduction to bioinformatics Introduction to in vivo imaging Bioinformatics relatively new scientific field biologists and computer scientists work together typical situation in bioinformatics: biologists generate tasks/problems/challenges computer scientists solve them (if they re able to) computer scientists provide useful feedback to biologists

5 Introduction to bioinformatics Introduction to in vivo imaging Laboratory of Optical Microscopy bioinformatics group located at FI MU collaboration with Institute of Biophysics (Academy of Sciences) as well as with several other medical centers (clinical research) 15 members, including 4 PhD students

6 Introduction to bioinformatics Introduction to in vivo imaging Laboratory of Optical Microscopy bioinformatics group located at FI MU collaboration with Institute of Biophysics (Academy of Sciences) as well as with several other medical centers (clinical research) 15 members, including 4 PhD students chromatin organization in human cell nuclei study of mechanisms of induction, diagnostics and prevention of deleterious human diseases

7 Introduction to bioinformatics Introduction to in vivo imaging Laboratory of Optical Microscopy bioinformatics group located at FI MU collaboration with Institute of Biophysics (Academy of Sciences) as well as with several other medical centers (clinical research) 15 members, including 4 PhD students chromatin organization in human cell nuclei study of mechanisms of induction, diagnostics and prevention of deleterious human diseases microarrays and in vivo imaging, statistics and visualization

8 Introduction to bioinformatics Introduction to in vivo imaging in vivo imaging biologists point of view: observation of live cells and their content during time period cells evolve, move, divide, join intracellular objects change their structure, intensity, positions

9 Introduction to bioinformatics Introduction to in vivo imaging in vivo imaging computer scientists point of view: sequence of time-lapse 3-D images of region of interest 3-D image stack of 2-D images 2-D image size: 1300px 1030px, 8bits per pixel voxel size: 0.124µm 0.124µm 0.3µm number of samples in z dimension: number of samples in λ dimension: 2 3 number of time steps:

10 Introduction to bioinformatics Introduction to in vivo imaging Analyzing in vivo images to process two consequent images means to: register images and get alignment find correspondence of objects and get mapping

11 Introduction to bioinformatics Introduction to in vivo imaging Analyzing in vivo images to process two consequent images means to: register images and get alignment find correspondence of objects and get mapping point-based registration methods } optical flow method voxel-based registration methods methods based on MHI all are designed to solve registration and correspondence simultaneously

12 Introduction to bioinformatics Introduction to in vivo imaging Illustration of alignment and mapping in 2-D alignment: blue objects in time t black objects in t + rotated 20 o clockwise, translated 20px to the right

13 Introduction to bioinformatics Introduction to in vivo imaging Illustration of alignment and mapping in 2-D alignment: blue objects in time t black objects in t + mapping: time t time t + rotated 20 o clockwise, translated 20px to the right blue lines visualize part of mapping

14 Point-based registration Optical flow registration using MHI Point-based methods images contain small objects object can be easily represented by its center of mass (point) additional characteristics can be used (volume, roundness, axis orientation)

15 Point-based registration Optical flow registration using MHI Point-based methods images contain small objects object can be easily represented by its center of mass (point) additional characteristics can be used (volume, roundness, axis orientation) image preprocessing labeling, we get sets of points graph theory

16 Point-based registration Optical flow registration using MHI Example of preprocessing original thresholded filtered centers original image was first inverted from acquired image and then cropped prior to preprocessing text file describing objects is created text files representing time t and t + is processed in order to find mapping

17 Point-based registration Optical flow registration using MHI Optical flow method optical flow is a distribution of apparent movement velocities of brightness patterns in an image this distribution is described by the flow field

18 Point-based registration Optical flow registration using MHI Optical flow method optical flow is a distribution of apparent movement velocities of brightness patterns in an image this distribution is described by the flow field images contain small or reasonably large objects constant brightness of the same object during the time period

19 Point-based registration Optical flow registration using MHI Optical flow method optical flow is a distribution of apparent movement velocities of brightness patterns in an image this distribution is described by the flow field images contain small or reasonably large objects constant brightness of the same object during the time period less or no preprocessing required implementations are rather specialized

20 Point-based registration Optical flow registration using MHI Insight into optical flow method velocity (u, v) at pixel coordinates (x, y): moving object gives rise to a moving constant brightness pattern: I (x, y, t) = I (x + dx, y + dy, t + dt) equivalently: ɛ a = (I x, I y ) (u, v) + I t 0, u = dx dt, v = dy dt

21 Point-based registration Optical flow registration using MHI Insight into optical flow method velocity (u, v) at pixel coordinates (x, y): moving object gives rise to a moving constant brightness pattern: I (x, y, t) = I (x + dx, y + dy, t + dt) equivalently: ɛ a = (I x, I y ) (u, v) + I t 0, u = dx dt, v = dy dt limit the difference between the flow velocity at a point and the average velocity over local neighborhood which is equivalent to: 2 u + 2 v = 2 u + 2 u + 2 v + 2 v 0 x 2 y 2 x 2 y 2 2 u κ(ū u) and 2 v κ( v v), where κ 3 and ū, v are local averages minimize: ɛ 2 = ɛ 2 a + α 2 (ū u) 2 + α 2 ( v v) 2

22 Point-based registration Optical flow registration using MHI Example of flow field composed images: flow field, illustration: red objects moved (and changed) into blue objects during the time gray dots imply no detected movement while gray lines display velocity vectors, each vector heads from its red end

23 Point-based registration Optical flow registration using MHI MHI method, original idea MHI means Motion History Images computed from several consequent images for every time step

24 Point-based registration Optical flow registration using MHI MHI method, original idea MHI means Motion History Images computed from several consequent images for every time step images can contain small, large or complex objects first detect a type of a movement then its parameters

25 Point-based registration Optical flow registration using MHI MHI method, original idea MHI means Motion History Images computed from several consequent images for every time step images can contain small, large or complex objects first detect a type of a movement then its parameters still parts of image are removed, history image is created history image is classified with moment features moment features are compared to database of known movements for classification

26 Point-based registration Optical flow registration using MHI Example of MHI output MHI: MHI with mapping: MHI(x, y, t) = { fg(i (x, y, t)) 0 min(0, MHI(x, y, t 1) 1) otherwise fg(i (x, y, t)) 0 indicates part of object, size of history window

27 Point-based registration Optical flow registration using MHI Derived MHI method living cells don t fulfill some limitations of original MHI method cells are moving too slow or too fast (due to sparse sampling)

28 Point-based registration Optical flow registration using MHI Derived MHI method living cells don t fulfill some limitations of original MHI method cells are moving too slow or too fast (due to sparse sampling) compute MHI over entire time-lapse sequence with the difference that every pixel in MHI should encode number of frame in which it was present (part of some object) slowly moving and static cells can be detected and removed from MHI

29 Point-based registration Optical flow registration using MHI Derived MHI method living cells don t fulfill some limitations of original MHI method cells are moving too slow or too fast (due to sparse sampling) compute MHI over entire time-lapse sequence with the difference that every pixel in MHI should encode number of frame in which it was present (part of some object) slowly moving and static cells can be detected and removed from MHI graph representation is constructed from resulting MHI labeling of nodes according to special rules

30 Point-based registration Optical flow registration using MHI Example of derived MHI output reduced MHI, graph: green squares denotes initial graph representation, the rest of green edges has to be find out let A, B, C be graph nodes: (e(a, B) v(a) v(b)) e(b, C) = v(b) v(c), e(a, B) indicates edge between A and B, v(a) holds volume of object under A

31 Expectations, future work Expectations and future work point-based methods work well when establishing correspondence of point objects (or representable by point) optical flow should handle larger complex objects but it s constraints parameters should be adjusted before derived MHI is expected to be superior to both of them

32 Expectations, future work Expectations and future work point-based methods work well when establishing correspondence of point objects (or representable by point) optical flow should handle larger complex objects but it s constraints parameters should be adjusted before derived MHI is expected to be superior to both of them for point objects it has capabilities to behave similarly to some point-based technique mappings of larger slower objects should be handled too (domain of optical flow techniques) hopefully, constrained graph labeling will do the rest

33 Expectations, future work Expectations and future work point-based methods work well when establishing correspondence of point objects (or representable by point) optical flow should handle larger complex objects but it s constraints parameters should be adjusted before derived MHI is expected to be superior to both of them for point objects it has capabilities to behave similarly to some point-based technique mappings of larger slower objects should be handled too (domain of optical flow techniques) hopefully, constrained graph labeling will do the rest future work: implementation and testing

34 Expectations, future work a progress in bioinformatics field constantly announces new challenges as new technologies emerge new types of imaging and images result which require new methods to be developed or older to be improved

35 Expectations, future work a progress in bioinformatics field constantly announces new challenges as new technologies emerge new types of imaging and images result which require new methods to be developed or older to be improved principle of point-based registration methods was outlined as well as classical voxel-based technique an optical flow method from video surveillance sort of problems was presented and it s improvement was suggested

36 Expectations, future work Thank You for Your attention. See You next year when presenting encouraging results ;-)

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation Motion Sohaib A Khan 1 Introduction So far, we have dealing with single images of a static scene taken by a fixed camera. Here we will deal with sequence of images taken at different time intervals. Motion

More information

Marcel Worring Intelligent Sensory Information Systems

Marcel Worring Intelligent Sensory Information Systems Marcel Worring worring@science.uva.nl Intelligent Sensory Information Systems University of Amsterdam Information and Communication Technology archives of documentaries, film, or training material, video

More information

Find the Correspondences

Find the Correspondences Advanced Topics in BioImage Analysis - 3. Find the Correspondences from Registration to Motion Estimation CellNetworks Math-Clinic Qi Gao 03.02.2017 Math-Clinic core facility Provide services on bioinformatics

More information

Optical Flow. Adriana Bocoi and Elena Pelican. 1. Introduction

Optical Flow. Adriana Bocoi and Elena Pelican. 1. Introduction Proceedings of the Fifth Workshop on Mathematical Modelling of Environmental and Life Sciences Problems Constanţa, Romania, September, 200, pp. 5 5 Optical Flow Adriana Bocoi and Elena Pelican This paper

More information

Visual Tracking (1) Feature Point Tracking and Block Matching

Visual Tracking (1) Feature Point Tracking and Block Matching Intelligent Control Systems Visual Tracking (1) Feature Point Tracking and Block Matching Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Medical Image Registration by Maximization of Mutual Information

Medical Image Registration by Maximization of Mutual Information Medical Image Registration by Maximization of Mutual Information EE 591 Introduction to Information Theory Instructor Dr. Donald Adjeroh Submitted by Senthil.P.Ramamurthy Damodaraswamy, Umamaheswari Introduction

More information

Detection of Moving Objects in Colour based and Graph s axis Change method

Detection of Moving Objects in Colour based and Graph s axis Change method Detection of Moving Objects in Colour based and Graph s axis Change method Gagandeep Kaur1 Student of Master of Technology, Department of Computer Engineering, YCOE, GuruKashi Campus, Punjabi university,

More information

Manual for Microfilament Analyzer

Manual for Microfilament Analyzer Manual for Microfilament Analyzer Eveline Jacques & Jan Buytaert, Michał Lewandowski, Joris Dirckx, Jean-Pierre Verbelen, Kris Vissenberg University of Antwerp 1 Image data 2 image files are needed: a

More information

CPSC 425: Computer Vision

CPSC 425: Computer Vision 1 / 49 CPSC 425: Computer Vision Instructor: Fred Tung ftung@cs.ubc.ca Department of Computer Science University of British Columbia Lecture Notes 2015/2016 Term 2 2 / 49 Menu March 10, 2016 Topics: Motion

More information

Dense Image-based Motion Estimation Algorithms & Optical Flow

Dense Image-based Motion Estimation Algorithms & Optical Flow Dense mage-based Motion Estimation Algorithms & Optical Flow Video A video is a sequence of frames captured at different times The video data is a function of v time (t) v space (x,y) ntroduction to motion

More information

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov

CS 378: Autonomous Intelligent Robotics. Instructor: Jivko Sinapov CS 378: Autonomous Intelligent Robotics Instructor: Jivko Sinapov http://www.cs.utexas.edu/~jsinapov/teaching/cs378/ Visual Registration and Recognition Announcements Homework 6 is out, due 4/5 4/7 Installing

More information

MULTI-REGION SEGMENTATION

MULTI-REGION SEGMENTATION MULTI-REGION SEGMENTATION USING GRAPH-CUTS Johannes Ulén Abstract This project deals with multi-region segmenation using graph-cuts and is mainly based on a paper by Delong and Boykov [1]. The difference

More information

Digital Volume Correlation for Materials Characterization

Digital Volume Correlation for Materials Characterization 19 th World Conference on Non-Destructive Testing 2016 Digital Volume Correlation for Materials Characterization Enrico QUINTANA, Phillip REU, Edward JIMENEZ, Kyle THOMPSON, Sharlotte KRAMER Sandia National

More information

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects

Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Intelligent Control Systems Visual Tracking (1) Tracking of Feature Points and Planar Rigid Objects Shingo Kagami Graduate School of Information Sciences, Tohoku University swk(at)ic.is.tohoku.ac.jp http://www.ic.is.tohoku.ac.jp/ja/swk/

More information

Image Acquisition + Histograms

Image Acquisition + Histograms Image Processing - Lesson 1 Image Acquisition + Histograms Image Characteristics Image Acquisition Image Digitization Sampling Quantization Histograms Histogram Equalization What is an Image? An image

More information

Midterm Exam Solutions

Midterm Exam Solutions Midterm Exam Solutions Computer Vision (J. Košecká) October 27, 2009 HONOR SYSTEM: This examination is strictly individual. You are not allowed to talk, discuss, exchange solutions, etc., with other fellow

More information

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE COMPUTER VISION 2017-2018 > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE OUTLINE Optical flow Lucas-Kanade Horn-Schunck Applications of optical flow Optical flow tracking Histograms of oriented flow Assignment

More information

Motion Analysis. Motion analysis. Now we will talk about. Differential Motion Analysis. Motion analysis. Difference Pictures

Motion Analysis. Motion analysis. Now we will talk about. Differential Motion Analysis. Motion analysis. Difference Pictures Now we will talk about Motion Analysis Motion analysis Motion analysis is dealing with three main groups of motionrelated problems: Motion detection Moving object detection and location. Derivation of

More information

Creating an Automated Blood Vessel. Diameter Tracking Tool

Creating an Automated Blood Vessel. Diameter Tracking Tool Medical Biophysics 3970Z 6 Week Project: Creating an Automated Blood Vessel Diameter Tracking Tool Peter McLachlan - 250068036 April 2, 2013 Introduction In order to meet the demands of tissues the body

More information

Searching for Handedness in Large Data

Searching for Handedness in Large Data Searching for Handedness in Large Data Summer project Mark Jenei, UCL [4] Supervisors: Prof. Ian Robinson, Chritopher Lynch Summer of 2015 1 Abstract Many biological systems have a well-defined chirality

More information

EE 584 MACHINE VISION

EE 584 MACHINE VISION EE 584 MACHINE VISION Binary Images Analysis Geometrical & Topological Properties Connectedness Binary Algorithms Morphology Binary Images Binary (two-valued; black/white) images gives better efficiency

More information

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation

Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation. Range Imaging Through Triangulation Obviously, this is a very slow process and not suitable for dynamic scenes. To speed things up, we can use a laser that projects a vertical line of light onto the scene. This laser rotates around its vertical

More information

Spacecraft Actuation Using CMGs and VSCMGs

Spacecraft Actuation Using CMGs and VSCMGs Spacecraft Actuation Using CMGs and VSCMGs Arjun Narayanan and Ravi N Banavar (ravi.banavar@gmail.com) 1 1 Systems and Control Engineering, IIT Bombay, India Research Symposium, ISRO-IISc Space Technology

More information

doi: /

doi: / Yiting Xie ; Anthony P. Reeves; Single 3D cell segmentation from optical CT microscope images. Proc. SPIE 934, Medical Imaging 214: Image Processing, 9343B (March 21, 214); doi:1.1117/12.243852. (214)

More information

Scientific Visualization. CSC 7443: Scientific Information Visualization

Scientific Visualization. CSC 7443: Scientific Information Visualization Scientific Visualization Scientific Datasets Gaining insight into scientific data by representing the data by computer graphics Scientific data sources Computation Real material simulation/modeling (e.g.,

More information

Algorithm User Guide:

Algorithm User Guide: Algorithm User Guide: Membrane Quantification Use the Aperio algorithms to adjust (tune) the parameters until the quantitative results are sufficiently accurate for the purpose for which you intend to

More information

SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS.

SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS. SUPPLEMENTARY FILE S1: 3D AIRWAY TUBE RECONSTRUCTION AND CELL-BASED MECHANICAL MODEL. RELATED TO FIGURE 1, FIGURE 7, AND STAR METHODS. 1. 3D AIRWAY TUBE RECONSTRUCTION. RELATED TO FIGURE 1 AND STAR METHODS

More information

Colin Paul Updated 14 November Preparation of publication-quality videos using ImageJ

Colin Paul Updated 14 November Preparation of publication-quality videos using ImageJ Preparation of publication-quality videos using ImageJ Statements made in scientific papers are often much easier to understand if they are supplemented by representative videos. In the best case, these

More information

Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska. Krzysztof Krawiec IDSS

Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska. Krzysztof Krawiec IDSS Ruch (Motion) Rozpoznawanie Obrazów Krzysztof Krawiec Instytut Informatyki, Politechnika Poznańska 1 Krzysztof Krawiec IDSS 2 The importance of visual motion Adds entirely new (temporal) dimension to visual

More information

Corner Detection. Harvey Rhody Chester F. Carlson Center for Imaging Science Rochester Institute of Technology

Corner Detection. Harvey Rhody Chester F. Carlson Center for Imaging Science Rochester Institute of Technology Corner Detection Harvey Rhody Chester F. Carlson Center for Imaging Science Rochester Institute of Technology rhody@cis.rit.edu April 11, 2006 Abstract Corners and edges are two of the most important geometrical

More information

Introduction to Medical Imaging (5XSA0) Module 5

Introduction to Medical Imaging (5XSA0) Module 5 Introduction to Medical Imaging (5XSA0) Module 5 Segmentation Jungong Han, Dirk Farin, Sveta Zinger ( s.zinger@tue.nl ) 1 Outline Introduction Color Segmentation region-growing region-merging watershed

More information

Camera Calibration for Video See-Through Head-Mounted Display. Abstract. 1.0 Introduction. Mike Bajura July 7, 1993

Camera Calibration for Video See-Through Head-Mounted Display. Abstract. 1.0 Introduction. Mike Bajura July 7, 1993 Camera Calibration for Video See-Through Head-Mounted Display Mike Bajura July 7, 1993 Abstract This report describes a method for computing the parameters needed to model a television camera for video

More information

Tracking of Virus Particles in Time-Lapse Fluorescence Microscopy Image Sequences

Tracking of Virus Particles in Time-Lapse Fluorescence Microscopy Image Sequences Tracking of Virus Particles in Time-Lapse Fluorescence Microscopy Image Sequences W. J. Godinez 1, M. Lampe 2, S. Wörz 1, B. Müller 2, R. Eils 1 and K. Rohr 1 1 University of Heidelberg, IPMB, and DKFZ

More information

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology

Sparse sampling in MRI: From basic theory to clinical application. R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Sparse sampling in MRI: From basic theory to clinical application R. Marc Lebel, PhD Department of Electrical Engineering Department of Radiology Objective Provide an intuitive overview of compressed sensing

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 4

GEOG 4110/5100 Advanced Remote Sensing Lecture 4 GEOG 4110/5100 Advanced Remote Sensing Lecture 4 Geometric Distortion Relevant Reading: Richards, Sections 2.11-2.17 Geometric Distortion Geometric Distortion: Errors in image geometry, (location, dimensions,

More information

Training Algorithms for Robust Face Recognition using a Template-matching Approach

Training Algorithms for Robust Face Recognition using a Template-matching Approach Training Algorithms for Robust Face Recognition using a Template-matching Approach Xiaoyan Mu, Mehmet Artiklar, Metin Artiklar, and Mohamad H. Hassoun Department of Electrical and Computer Engineering

More information

Iterative Estimation of 3D Transformations for Object Alignment

Iterative Estimation of 3D Transformations for Object Alignment Iterative Estimation of 3D Transformations for Object Alignment Tao Wang and Anup Basu Department of Computing Science, Univ. of Alberta, Edmonton, AB T6G 2E8, Canada Abstract. An Iterative Estimation

More information

ND Processing Tools in NIS-Elements

ND Processing Tools in NIS-Elements ND Processing Tools in NIS-Elements Overview This technical note describes basic uses of the ND processing tools available in NIS-Elements. These tools are specifically designed for arithmetic functions

More information

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1 Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition Motion Tracking CS4243 Motion Tracking 1 Changes are everywhere! CS4243 Motion Tracking 2 Illumination change CS4243 Motion Tracking 3 Shape

More information

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný Serial Manipulator Statics Robotics Serial Manipulator Statics Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics (CIIRC) Czech Technical University

More information

Cell-Sensitive Microscopy Imaging for Cell Image Segmentation

Cell-Sensitive Microscopy Imaging for Cell Image Segmentation Cell-Sensitive Microscopy Imaging for Cell Image Segmentation Zhaozheng Yin 1, Hang Su 2, Elmer Ker 3, Mingzhong Li 1, and Haohan Li 1 1 Department of Computer Science, Missouri University of Science and

More information

Rasterization: Geometric Primitives

Rasterization: Geometric Primitives Rasterization: Geometric Primitives Outline Rasterizing lines Rasterizing polygons 1 Rasterization: What is it? How to go from real numbers of geometric primitives vertices to integer coordinates of pixels

More information

Parallelization and optimization of the neuromorphic simulation code. Application on the MNIST problem

Parallelization and optimization of the neuromorphic simulation code. Application on the MNIST problem Parallelization and optimization of the neuromorphic simulation code. Application on the MNIST problem Raphaël Couturier, Michel Salomon FEMTO-ST - DISC Department - AND Team November 2 & 3, 2015 / Besançon

More information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information

Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Hybrid Spline-based Multimodal Registration using a Local Measure for Mutual Information Andreas Biesdorf 1, Stefan Wörz 1, Hans-Jürgen Kaiser 2, Karl Rohr 1 1 University of Heidelberg, BIOQUANT, IPMB,

More information

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT Anand P Santhanam Assistant Professor, Department of Radiation Oncology OUTLINE Adaptive radiotherapy for head and

More information

VC 11/12 T11 Optical Flow

VC 11/12 T11 Optical Flow VC 11/12 T11 Optical Flow Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Miguel Tavares Coimbra Outline Optical Flow Constraint Equation Aperture

More information

QIBA PET Amyloid BC March 11, Agenda

QIBA PET Amyloid BC March 11, Agenda QIBA PET Amyloid BC March 11, 2016 - Agenda 1. QIBA Round 6 Funding a. Deadlines b. What projects can be funded, what cannot c. Discussion of projects Mechanical phantom and DRO Paul & John? Any Profile

More information

Module 7 VIDEO CODING AND MOTION ESTIMATION

Module 7 VIDEO CODING AND MOTION ESTIMATION Module 7 VIDEO CODING AND MOTION ESTIMATION Lesson 20 Basic Building Blocks & Temporal Redundancy Instructional Objectives At the end of this lesson, the students should be able to: 1. Name at least five

More information

SYSTEM FOR VIDEOMETRIC MEASUREMENT OF THE VERGENCE AND ACCOMMODATION

SYSTEM FOR VIDEOMETRIC MEASUREMENT OF THE VERGENCE AND ACCOMMODATION SYSTEM FOR VIDEOMETRIC MEASUREMENT OF THE VERGENCE AND ACCOMMODATION T. Jindra, J. Dušek, M. Kubačák, L. Dibdiak, K. Dušek Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University

More information

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary)

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary) Towards image analysis Goal: Describe the contents of an image, distinguishing meaningful information from irrelevant one. Perform suitable transformations of images so as to make explicit particular shape

More information

(Refer Slide Time 00:17) Welcome to the course on Digital Image Processing. (Refer Slide Time 00:22)

(Refer Slide Time 00:17) Welcome to the course on Digital Image Processing. (Refer Slide Time 00:22) Digital Image Processing Prof. P. K. Biswas Department of Electronics and Electrical Communications Engineering Indian Institute of Technology, Kharagpur Module Number 01 Lecture Number 02 Application

More information

Non-Rigid Image Registration III

Non-Rigid Image Registration III Non-Rigid Image Registration III CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (CS6240) Non-Rigid Image Registration

More information

2 SELECTING AND ALIGNING

2 SELECTING AND ALIGNING 2 SELECTING AND ALIGNING Lesson overview In this lesson, you ll learn how to do the following: Differentiate between the various selection tools and employ different selection techniques. Recognize Smart

More information

Optic Flow and Basics Towards Horn-Schunck 1

Optic Flow and Basics Towards Horn-Schunck 1 Optic Flow and Basics Towards Horn-Schunck 1 Lecture 7 See Section 4.1 and Beginning of 4.2 in Reinhard Klette: Concise Computer Vision Springer-Verlag, London, 2014 1 See last slide for copyright information.

More information

1. (10 pts) Order the following three images by how much memory they occupy:

1. (10 pts) Order the following three images by how much memory they occupy: CS 47 Prelim Tuesday, February 25, 2003 Problem : Raster images (5 pts). (0 pts) Order the following three images by how much memory they occupy: A. a 2048 by 2048 binary image B. a 024 by 024 grayscale

More information

Motion and Optical Flow. Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi

Motion and Optical Flow. Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi Motion and Optical Flow Slides from Ce Liu, Steve Seitz, Larry Zitnick, Ali Farhadi We live in a moving world Perceiving, understanding and predicting motion is an important part of our daily lives Motion

More information

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS

SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS SIMULATION AND VISUALIZATION IN THE EDUCATION OF COHERENT OPTICS J. KORNIS, P. PACHER Department of Physics Technical University of Budapest H-1111 Budafoki út 8., Hungary e-mail: kornis@phy.bme.hu, pacher@phy.bme.hu

More information

Automatic Pouring Robot. Akilah Harris-Williams Adam Olmstead Philip Pratt-Szeliga Will Roantree

Automatic Pouring Robot. Akilah Harris-Williams Adam Olmstead Philip Pratt-Szeliga Will Roantree Automatic Pouring Robot Akilah Harris-Williams Adam Olmstead Philip Pratt-Szeliga Will Roantree Overview Objective and Motivation Mechanical System Modeling, Simulation and Verification Tilt Pan Pouring

More information

CS-465 Computer Vision

CS-465 Computer Vision CS-465 Computer Vision Nazar Khan PUCIT 9. Optic Flow Optic Flow Nazar Khan Computer Vision 2 / 25 Optic Flow Nazar Khan Computer Vision 3 / 25 Optic Flow Where does pixel (x, y) in frame z move to in

More information

Finally: Motion and tracking. Motion 4/20/2011. CS 376 Lecture 24 Motion 1. Video. Uses of motion. Motion parallax. Motion field

Finally: Motion and tracking. Motion 4/20/2011. CS 376 Lecture 24 Motion 1. Video. Uses of motion. Motion parallax. Motion field Finally: Motion and tracking Tracking objects, video analysis, low level motion Motion Wed, April 20 Kristen Grauman UT-Austin Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, and S. Lazebnik

More information

Basic relations between pixels (Chapter 2)

Basic relations between pixels (Chapter 2) Basic relations between pixels (Chapter 2) Lecture 3 Basic Relationships Between Pixels Definitions: f(x,y): digital image Pixels: q, p (p,q f) A subset of pixels of f(x,y): S A typology of relations:

More information

SuRVoS Workbench. Super-Region Volume Segmentation. Imanol Luengo

SuRVoS Workbench. Super-Region Volume Segmentation. Imanol Luengo SuRVoS Workbench Super-Region Volume Segmentation Imanol Luengo Index - The project - What is SuRVoS - SuRVoS Overview - What can it do - Overview of the internals - Current state & Limitations - Future

More information

Machine Learning for Medical Image Analysis. A. Criminisi

Machine Learning for Medical Image Analysis. A. Criminisi Machine Learning for Medical Image Analysis A. Criminisi Overview Introduction to machine learning Decision forests Applications in medical image analysis Anatomy localization in CT Scans Spine Detection

More information

Image Shift Correction in Microscopic Time Lapse Sequences

Image Shift Correction in Microscopic Time Lapse Sequences Image Shift Correction in Microscopic Time Lapse Sequences 1. General Information It is of importance to ensure mechanical stability of your live cell imaging set-up during a time lapse experiment. Vibration

More information

CS 5540 Spring 2013 Assignment 3, v1.0 Due: Apr. 24th 11:59PM

CS 5540 Spring 2013 Assignment 3, v1.0 Due: Apr. 24th 11:59PM 1 Introduction In this programming project, we are going to do a simple image segmentation task. Given a grayscale image with a bright object against a dark background and we are going to do a binary decision

More information

Network Support for Data Intensive Science

Network Support for Data Intensive Science Network Support for Data Intensive Science Eli Dart, Network Engineer ESnet Network Engineering Group ARN2 Workshop Washington, DC April 18, 2013 Overview Drivers Sociology Path Forward 4/19/13 2 Exponential

More information

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1 Last update: May 4, 200 Vision CMSC 42: Chapter 24 CMSC 42: Chapter 24 Outline Perception generally Image formation Early vision 2D D Object recognition CMSC 42: Chapter 24 2 Perception generally Stimulus

More information

Robot vision review. Martin Jagersand

Robot vision review. Martin Jagersand Robot vision review Martin Jagersand What is Computer Vision? Computer Graphics Three Related fields Image Processing: Changes 2D images into other 2D images Computer Graphics: Takes 3D models, renders

More information

Carmen Alonso Montes 23rd-27th November 2015

Carmen Alonso Montes 23rd-27th November 2015 Practical Computer Vision: Theory & Applications 23rd-27th November 2015 Wrap up Today, we are here 2 Learned concepts Hough Transform Distance mapping Watershed Active contours 3 Contents Wrap up Object

More information

Medical Image Processing using MATLAB

Medical Image Processing using MATLAB Medical Image Processing using MATLAB Brett Shoelson, PhD Bill Wass Adam Rogers Principal Application Engineer Senior Account Manager 2015 The MathWorks, Inc. 1 Session Agenda: Medical Image Processing

More information

A New Feature Local Binary Patterns (FLBP) Method

A New Feature Local Binary Patterns (FLBP) Method A New Feature Local Binary Patterns (FLBP) Method Jiayu Gu and Chengjun Liu The Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA Abstract - This paper presents

More information

Handling and Processing Big Data for Biomedical Discovery with MATLAB

Handling and Processing Big Data for Biomedical Discovery with MATLAB Handling and Processing Big Data for Biomedical Discovery with MATLAB Raphaël Thierry, PhD Image processing and analysis Software development Facility for Advanced Microscopy and Imaging 23 th June 2016

More information

OCT Segmentation Manual Jens Kowal, Pascal Dufour This manual gives a quick introduction into the OCT Segmentation application in particular it

OCT Segmentation Manual Jens Kowal, Pascal Dufour This manual gives a quick introduction into the OCT Segmentation application in particular it OCT Segmentation Manual Jens Kowal, Pascal Dufour This manual gives a quick introduction into the OCT Segmentation application in particular it explains how to prepare the OCT data in order to be loaded

More information

Video Alignment. Final Report. Spring 2005 Prof. Brian Evans Multidimensional Digital Signal Processing Project The University of Texas at Austin

Video Alignment. Final Report. Spring 2005 Prof. Brian Evans Multidimensional Digital Signal Processing Project The University of Texas at Austin Final Report Spring 2005 Prof. Brian Evans Multidimensional Digital Signal Processing Project The University of Texas at Austin Omer Shakil Abstract This report describes a method to align two videos.

More information

Plotting Graphs. Error Bars

Plotting Graphs. Error Bars E Plotting Graphs Construct your graphs in Excel using the method outlined in the Graphing and Error Analysis lab (in the Phys 124/144/130 laboratory manual). Always choose the x-y scatter plot. Number

More information

Color Content Based Image Classification

Color Content Based Image Classification Color Content Based Image Classification Szabolcs Sergyán Budapest Tech sergyan.szabolcs@nik.bmf.hu Abstract: In content based image retrieval systems the most efficient and simple searches are the color

More information

Confocal Application Notes April 2010

Confocal Application Notes April 2010 April 2010 Motorized Stage Applications Mark & Find Prepared by Louise Bertrand Applications and Technical Support Group, Leica Microsystems, Inc In this issue of Leica Confocal Application Notes, we describe

More information

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University CS443: Digital Imaging and Multimedia Binary Image Analysis Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines A Simple Machine Vision System Image segmentation by thresholding

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 02 130124 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Basics Image Formation Image Processing 3 Intelligent

More information

Lecture 20: Tracking. Tuesday, Nov 27

Lecture 20: Tracking. Tuesday, Nov 27 Lecture 20: Tracking Tuesday, Nov 27 Paper reviews Thorough summary in your own words Main contribution Strengths? Weaknesses? How convincing are the experiments? Suggestions to improve them? Extensions?

More information

Avigilon Control Center Web Client User Guide

Avigilon Control Center Web Client User Guide Avigilon Control Center Web Client User Guide Version: 4.12 Standard PDF-WEBCLIENT-S-E-Rev2 Copyright 2013 Avigilon. All rights reserved. The information presented is subject to change without notice.

More information

Mariya Zhariy. Uttendorf Introduction to Optical Flow. Mariya Zhariy. Introduction. Determining. Optical Flow. Results. Motivation Definition

Mariya Zhariy. Uttendorf Introduction to Optical Flow. Mariya Zhariy. Introduction. Determining. Optical Flow. Results. Motivation Definition to Constraint to Uttendorf 2005 Contents to Constraint 1 Contents to Constraint 1 2 Constraint Contents to Constraint 1 2 Constraint 3 Visual cranial reflex(vcr)(?) to Constraint Rapidly changing scene

More information

CS 4495 Computer Vision Motion and Optic Flow

CS 4495 Computer Vision Motion and Optic Flow CS 4495 Computer Vision Aaron Bobick School of Interactive Computing Administrivia PS4 is out, due Sunday Oct 27 th. All relevant lectures posted Details about Problem Set: You may *not* use built in Harris

More information

PROJECTILE MOTION PURPOSE

PROJECTILE MOTION PURPOSE PURPOSE The purpose of this experiment is to study the motion of an object in two dimensions. The motion of the projectile is analyzed using Newton's laws of motion. During the motion of the projectile,

More information

COURSE WEBPAGE. Peter Orbanz Applied Data Mining

COURSE WEBPAGE.   Peter Orbanz Applied Data Mining INTRODUCTION COURSE WEBPAGE http://stat.columbia.edu/~porbanz/un3106s18.html iii THIS CLASS What to expect This class is an introduction to machine learning. Topics: Classification; learning ; basic neural

More information

Brightness and geometric transformations

Brightness and geometric transformations Brightness and geometric transformations Václav Hlaváč Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 166 36 Prague 6, Jugoslávských partyzánů 1580/3, Czech

More information

Notes 9: Optical Flow

Notes 9: Optical Flow Course 049064: Variational Methods in Image Processing Notes 9: Optical Flow Guy Gilboa 1 Basic Model 1.1 Background Optical flow is a fundamental problem in computer vision. The general goal is to find

More information

Lecture 19: Motion. Effect of window size 11/20/2007. Sources of error in correspondences. Review Problem set 3. Tuesday, Nov 20

Lecture 19: Motion. Effect of window size 11/20/2007. Sources of error in correspondences. Review Problem set 3. Tuesday, Nov 20 Lecture 19: Motion Review Problem set 3 Dense stereo matching Sparse stereo matching Indexing scenes Tuesda, Nov 0 Effect of window size W = 3 W = 0 Want window large enough to have sufficient intensit

More information

Representing Moving Images with Layers. J. Y. Wang and E. H. Adelson MIT Media Lab

Representing Moving Images with Layers. J. Y. Wang and E. H. Adelson MIT Media Lab Representing Moving Images with Layers J. Y. Wang and E. H. Adelson MIT Media Lab Goal Represent moving images with sets of overlapping layers Layers are ordered in depth and occlude each other Velocity

More information

INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1. Modifications for P551 Fall 2013 Medical Physics Laboratory

INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1. Modifications for P551 Fall 2013 Medical Physics Laboratory INTRODUCTION TO MEDICAL IMAGING- 3D LOCALIZATION LAB MANUAL 1 Modifications for P551 Fall 2013 Medical Physics Laboratory Introduction Following the introductory lab 0, this lab exercise the student through

More information

Colocalization Algorithm. User s Guide

Colocalization Algorithm. User s Guide Colocalization Algorithm User s Guide Copyright 2008 Aperio Technologies, Inc. Part Number/Revision: MAN 0082, Revision A Date: March 7, 2008 This document applies to software versions Release 9.0 and

More information

Supplemental Information. On the Quantification of Cellular Velocity Fields. Dhruv K. Vig, Alex E. Hamby, and Charles W. Wolgemuth

Supplemental Information. On the Quantification of Cellular Velocity Fields. Dhruv K. Vig, Alex E. Hamby, and Charles W. Wolgemuth Biophysical Journal, Volume 110 Supplemental Information On the Quantification of Cellular Velocity Fields Dhruv K. Vig, Alex E. Hamby, and Charles W. Wolgemuth Biophysical Journal Supporting Material

More information

Measurements using three-dimensional product imaging

Measurements using three-dimensional product imaging ARCHIVES of FOUNDRY ENGINEERING Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences ISSN (1897-3310) Volume 10 Special Issue 3/2010 41 46 7/3 Measurements using

More information

CPSC 695. Geometric Algorithms in Biometrics. Dr. Marina L. Gavrilova

CPSC 695. Geometric Algorithms in Biometrics. Dr. Marina L. Gavrilova CPSC 695 Geometric Algorithms in Biometrics Dr. Marina L. Gavrilova Biometric goals Verify users Identify users Synthesis - recently Biometric identifiers Courtesy of Bromba GmbH Classification of identifiers

More information

ACCEPT MANUAL. Version beta

ACCEPT MANUAL. Version beta ACCEPT MANUAL Version 1.0.0 beta 1 ACCEPT Software 1.1.0 beta Manual The ACCEPT Software developed within the EU Cancer-ID project is an open source image analysis package for the Automated CTC Classification,

More information

2D Vessel Segmentation Using Local Adaptive Contrast Enhancement

2D Vessel Segmentation Using Local Adaptive Contrast Enhancement 2D Vessel Segmentation Using Local Adaptive Contrast Enhancement Dominik Schuldhaus 1,2, Martin Spiegel 1,2,3,4, Thomas Redel 3, Maria Polyanskaya 1,3, Tobias Struffert 2, Joachim Hornegger 1,4, Arnd Doerfler

More information

Determination of a Vessel Tree Topology by Different Skeletonizing Algorithms

Determination of a Vessel Tree Topology by Different Skeletonizing Algorithms Determination of a Vessel Tree Topology by Different Skeletonizing Algorithms Andre Siegfried Prochiner 1, Heinrich Martin Overhoff 2 1 Carinthia University of Applied Sciences, Klagenfurt, Austria 2 University

More information

Fluorescence Tomography Source Reconstruction and Analysis

Fluorescence Tomography Source Reconstruction and Analysis TECHNICAL NOTE Pre-clinical in vivo imaging Fluorescence Tomography Source Reconstruction and Analysis Note: This Technical Note is part of a series for Fluorescence Imaging Tomography (FLIT). The user

More information

A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation

A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation A Low Power, High Throughput, Fully Event-Based Stereo System: Supplementary Documentation Alexander Andreopoulos, Hirak J. Kashyap, Tapan K. Nayak, Arnon Amir, Myron D. Flickner IBM Research March 25,

More information