Kernels and Constrained Optimization

Size: px
Start display at page:

Download "Kernels and Constrained Optimization"

Transcription

1 Machine Learning 1 WS2014 Module IN2064 Sheet 8 Page 1 Machine Learning Worksheet 8 Kernels and Constrained Optimization 1 Kernelized k-nearest neighbours To classify the point x the k-nearest neighbours finds the k training samples N = {x (s 1), x (s 2),..., x (s k) } that have the shortest distance x x (s i) 2 to x. Then the label that is mostly represented in the neighbour set N is assigned to x. Problem 1: Formulate the k-nearest neighbours algorithm in feature space by introducing the feature map φ(x). Then rewrite the k-nearest neighbours algorithm so that it only depends on the scalar product in feature space K(φ(x), φ(y)) = φ(x) T φ(y). The distance to a training sample in feature space is given by φ(x) φ(x (s i) ) 2. We can replace this by the squared distance because this will not change which points are nearest to x. Thus we have φ(x) φ(x (s i) ) 2 2 = (φ(x) φ(x (s i) )) T (φ(x) φ(x (s i) )) = φ(x) T φ(x) 2φ(x) T φ(x (s i) ) + φ(x (s i) ) T φ(x (s i) ). The first term is a constant when searching for the k training samples that minimize this function. Hence we can drop the first term and must find the k training samples x (s i) that minimize φ(x (s i) ) T φ(x (s i) ) 2φ(x) T φ(x (s i) ) = K(x (s i), x (s i) ) 2K(x, x (s i) ). 2 Convex functions Problem 2: Given two convex functions f(x) and g(x) show that the sum h(x) = f(x) + g(x) and the scaled function u(x) = cf(x) with c 0 are convex. We have for arbitrary x, y and 0 α 1: h((1 α)x + αy) = f((1 α)x + αy) + g((1 α)x + αy) (1 α)f(x) + αf(y) + (1 α)g(x) + αg(y) = (1 α)h(x) + αh(y)

2 Machine Learning 1 WS2014 Module IN2064 Sheet 8 Page 2 and u((1 α)x + αy) = cf((1 α)x + αy) c[(1 α)f(x) + αf(y)] = (1 α)u(x) + αu(y) Problem 3: Consider the family of convex functions f (x), that is for every R the function f (x) is convex. Prove that the pointwise maximum g(x) = max f (x) is convex. By definition of convexity for every we have for arbitrary x, y and 0 α 1 By definition of the maximum we have (1 α) max f ((1 α)x + αy) (1 α)f (x) + αf (y). f (x) + α max f (y) (1 α)f (x) + αf (y) for any. We choose to be the maximizer of f ((1 α)x + αy) w.r.t.. Thus we have (1 α) max f (x) + α max f (y) (1 α)f (x) + αf (y) f ((1 α)x + αy) = max f ((1 α)x + αy). Problem 4: Show that the Lagrange dual function g(α) = min x L(x, α) is concave. (A function f(x) is concave if and only if f(x) is convex.) The Lagrangian is given by L(x, α) = f 0 (x) + i α i f i (x). This can also be interpreted as a family of functions L x (α) = L(x, α), that means we interpret x as fixed. Thus L x (α) has the form L x (α) = C 0,x + i C i,x α i, where the Cs are constants. By applying the definition of a convex function we see immediately that L x (α) is convex for any Cs. The Lagrange dual function is given by the pointwise minimum of this family of functions, g(α) = min x L(x, α) = min L x (α) = max ( L x x(α)). x

3 Machine Learning 1 WS2014 Module IN2064 Sheet 8 Page 3 The negative Lagragian L x (α) is also convex because the negation only changes the sign of the constants C 0,x and C i,x. Thus as shown in the previous exercise g(α) is convex and g(α) is concave. Note that g(α) is concave even when the objective function and/or the constraints are not. 3 A simple constrained optimization problem Consider the simple optimization problem minimize f 0 (x) = x subject to f 1 (x) = (x 2)(x 4) 0. Problem 5: Plot the objective f 0 (x) and the constraint f 1 (x) versus x in one plot. Show the feasible points. Use this plot to directly give the solution of the optimization problem The objective f 0 (x) is in blue, the constraint f 1 (x) in red. The feasible region [2, 4] is marked in pink. As f 0 (x) is increasing with x the minimizer x is at the smallest x that is in the feasible region. Thus x = 2 minimizes the optimization problem with the minimal value f 0 (2) = 5. Problem 6: Derive the Lagrangian L(x, α) and use a computer program to plot it for α {0, 0.5, 1, 1.5, 2, 3, 4, 5, 8}. For which regions is the value of the Lagrangian larger than the objective function? For which regions is the value of the Lagrangian smaller than the objective function? Which points are unaffected? What is the upper bound of min x L(x, α) for all α 0? The Lagrangian is given by L(x, α) = f 0 (x) + αf 1 (x) = x α(x 2)(x 4).

4 Machine Learning 1 WS2014 Module IN2064 Sheet 8 Page The plot series shows raising α from left to right. The Lagrangian is larger for all regions where the constraint is violated, because then f 1 (x) > 0 and α is positive, and smaller for all regions where the constraint is satisfied. Points for which the constraint is satisfied with equality, f 1 (x) = 0, are unaffected. Thus it penalizes the target function at regions where the constraint is violated. The amount of punishment is controlled by the Lagrange multiplier α. Problem 7: Derive and plot the Lagrange dual function g(α). State the dual problem. We calculate the minimum of L(x, α) w.r.t. x, L x x min (α) = = 2x + α[(x 4) + (x 2)] = (2 + 2α)x 6α = 0 3α α + 1. The Lagrange dual function is given by g(α) = L(x min (α), α) = 10 α α.

5 Machine Learning 1 WS2014 Module IN2064 Sheet 8 Page The dual problem is maximize g(α) = 10 α α subject to α 0. Problem 8: Find the dual optimal value and the dual optimal solution α. The dual function g(α) is concave, thus its maximums are given by dg dα = 1 + 9(1 + α) 2 = 0 (1 + α) 2 = α = ±3 α 1 = 2 α 2 = 4 Only α 1 satisfies the constraint α 0, thus the dual optimal solution is α = 2 and the dual optimal value is g(α ) = 5. Problem 9: Is the dual optimal value also the minimum of the original optimization problem? Yes, it is. f 0 and f 1 are both convex and at the point x = 3 we have f 1 (3) < 0. Thus Slater s constraint qualification applies and the duality gap is zero.

6 Machine Learning 1 WS2014 Module IN2064 Sheet 8 Page 6 Problem 10: Is the constraint f 1 active or inactive? Can you also see this from the plot of the primal problem? What does it mean when a constraint is active, i.e. what is the effect of an active constraint on the solution? The constraint f 1 is active (fullfilled with equality, f 1 (x ) = 0) because the corresponding Lagrange multiplier α = 2 0 is not zero. See the KKT condition Complementary Slackness. We can see this from the plot in exercise 3 because the minimum of the constrained problem is on the edge of the feasible region and the objective function f 0 (x) is not minimal (ignoring the constraints) there. If a constraint is active it means that it limits the solution, that is if the constraint was dropped we could obtain a lower value of the objective function.

Lecture 7: Support Vector Machine

Lecture 7: Support Vector Machine Lecture 7: Support Vector Machine Hien Van Nguyen University of Houston 9/28/2017 Separating hyperplane Red and green dots can be separated by a separating hyperplane Two classes are separable, i.e., each

More information

Introduction to Constrained Optimization

Introduction to Constrained Optimization Introduction to Constrained Optimization Duality and KKT Conditions Pratik Shah {pratik.shah [at] lnmiit.ac.in} The LNM Institute of Information Technology www.lnmiit.ac.in February 13, 2013 LNMIIT MLPR

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

9. Support Vector Machines. The linearly separable case: hard-margin SVMs. The linearly separable case: hard-margin SVMs. Learning objectives

9. Support Vector Machines. The linearly separable case: hard-margin SVMs. The linearly separable case: hard-margin SVMs. Learning objectives Foundations of Machine Learning École Centrale Paris Fall 25 9. Support Vector Machines Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech Learning objectives chloe agathe.azencott@mines

More information

Linear methods for supervised learning

Linear methods for supervised learning Linear methods for supervised learning LDA Logistic regression Naïve Bayes PLA Maximum margin hyperplanes Soft-margin hyperplanes Least squares resgression Ridge regression Nonlinear feature maps Sometimes

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007,

More information

Convex Optimization and Machine Learning

Convex Optimization and Machine Learning Convex Optimization and Machine Learning Mengliu Zhao Machine Learning Reading Group School of Computing Science Simon Fraser University March 12, 2014 Mengliu Zhao SFU-MLRG March 12, 2014 1 / 25 Introduction

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods 1 Nonlinear Programming Types of Nonlinear Programs (NLP) Convexity and Convex Programs NLP Solutions Unconstrained Optimization Principles of Unconstrained Optimization Search Methods Constrained Optimization

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Maximum Margin Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

A Short SVM (Support Vector Machine) Tutorial

A Short SVM (Support Vector Machine) Tutorial A Short SVM (Support Vector Machine) Tutorial j.p.lewis CGIT Lab / IMSC U. Southern California version 0.zz dec 004 This tutorial assumes you are familiar with linear algebra and equality-constrained optimization/lagrange

More information

Kernel Methods & Support Vector Machines

Kernel Methods & Support Vector Machines & Support Vector Machines & Support Vector Machines Arvind Visvanathan CSCE 970 Pattern Recognition 1 & Support Vector Machines Question? Draw a single line to separate two classes? 2 & Support Vector

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

Demo 1: KKT conditions with inequality constraints

Demo 1: KKT conditions with inequality constraints MS-C5 Introduction to Optimization Solutions 9 Ehtamo Demo : KKT conditions with inequality constraints Using the Karush-Kuhn-Tucker conditions, see if the points x (x, x ) (, 4) or x (x, x ) (6, ) are

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

COMS 4771 Support Vector Machines. Nakul Verma

COMS 4771 Support Vector Machines. Nakul Verma COMS 4771 Support Vector Machines Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake bound for the perceptron

More information

Support Vector Machines. James McInerney Adapted from slides by Nakul Verma

Support Vector Machines. James McInerney Adapted from slides by Nakul Verma Support Vector Machines James McInerney Adapted from slides by Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake

More information

Optimization III: Constrained Optimization

Optimization III: Constrained Optimization Optimization III: Constrained Optimization CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization III: Constrained Optimization

More information

Lecture 15: Log Barrier Method

Lecture 15: Log Barrier Method 10-725/36-725: Convex Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 15: Log Barrier Method Scribes: Pradeep Dasigi, Mohammad Gowayyed Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

LECTURE 5: DUAL PROBLEMS AND KERNELS. * Most of the slides in this lecture are from

LECTURE 5: DUAL PROBLEMS AND KERNELS. * Most of the slides in this lecture are from LECTURE 5: DUAL PROBLEMS AND KERNELS * Most of the slides in this lecture are from http://www.robots.ox.ac.uk/~az/lectures/ml Optimization Loss function Loss functions SVM review PRIMAL-DUAL PROBLEM Max-min

More information

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs)

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs) Data Mining: Concepts and Techniques Chapter 9 Classification: Support Vector Machines 1 Support Vector Machines (SVMs) SVMs are a set of related supervised learning methods used for classification Based

More information

Solution Methods Numerical Algorithms

Solution Methods Numerical Algorithms Solution Methods Numerical Algorithms Evelien van der Hurk DTU Managment Engineering Class Exercises From Last Time 2 DTU Management Engineering 42111: Static and Dynamic Optimization (6) 09/10/2017 Class

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview 1. Overview of SVMs 2. Margin Geometry 3. SVM Optimization 4. Overlapping Distributions 5. Relationship to Logistic Regression 6. Dealing

More information

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING KELLER VANDEBOGERT AND CHARLES LANNING 1. Introduction Interior point methods are, put simply, a technique of optimization where, given a problem

More information

Chapter II. Linear Programming

Chapter II. Linear Programming 1 Chapter II Linear Programming 1. Introduction 2. Simplex Method 3. Duality Theory 4. Optimality Conditions 5. Applications (QP & SLP) 6. Sensitivity Analysis 7. Interior Point Methods 1 INTRODUCTION

More information

Perceptron Learning Algorithm

Perceptron Learning Algorithm Perceptron Learning Algorithm An iterative learning algorithm that can find linear threshold function to partition linearly separable set of points. Assume zero threshold value. 1) w(0) = arbitrary, j=1,

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

Computational Methods. Constrained Optimization

Computational Methods. Constrained Optimization Computational Methods Constrained Optimization Manfred Huber 2010 1 Constrained Optimization Unconstrained Optimization finds a minimum of a function under the assumption that the parameters can take on

More information

Constrained optimization

Constrained optimization Constrained optimization A general constrained optimization problem has the form where The Lagrangian function is given by Primal and dual optimization problems Primal: Dual: Weak duality: Strong duality:

More information

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS Linear Programming Larry Blume Cornell University & The Santa Fe Institute & IHS Linear Programs The general linear program is a constrained optimization problem where objectives and constraints are all

More information

Local and Global Minimum

Local and Global Minimum Local and Global Minimum Stationary Point. From elementary calculus, a single variable function has a stationary point at if the derivative vanishes at, i.e., 0. Graphically, the slope of the function

More information

QEM Optimization, WS 2017/18 Part 4. Constrained optimization

QEM Optimization, WS 2017/18 Part 4. Constrained optimization QEM Optimization, WS 2017/18 Part 4 Constrained optimization (about 4 Lectures) Supporting Literature: Angel de la Fuente, Mathematical Methods and Models for Economists, Chapter 7 Contents 4 Constrained

More information

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know learn the proximal

More information

Assignment 5. Machine Learning, Summer term 2014, Ulrike von Luxburg To be discussed in exercise groups on May 19-21

Assignment 5. Machine Learning, Summer term 2014, Ulrike von Luxburg To be discussed in exercise groups on May 19-21 Assignment 5 Machine Learning, Summer term 204, Ulrike von Luxburg To be discussed in exercise groups on May 9-2 Exercise (Primal hard margin SVM problem, +3 points) Given training data (X i, Y i ) i=,...,n

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 013 Lecture 1: Introduction to Optimization Instructor: Shaddin Dughmi Outline 1 Course Overview Administrivia 3 Linear Programming Outline 1 Course Overview

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Constrained Optimization Marc Toussaint U Stuttgart Constrained Optimization General constrained optimization problem: Let R n, f : R n R, g : R n R m, h : R n R l find min

More information

Parallel and Distributed Graph Cuts by Dual Decomposition

Parallel and Distributed Graph Cuts by Dual Decomposition Parallel and Distributed Graph Cuts by Dual Decomposition Presented by Varun Gulshan 06 July, 2010 What is Dual Decomposition? What is Dual Decomposition? It is a technique for optimization: usually used

More information

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES SUPPORT VECTOR MACHINES Today Reading AIMA 18.9 Goals (Naïve Bayes classifiers) Support vector machines 1 Support Vector Machines (SVMs) SVMs are probably the most popular off-the-shelf classifier! Software

More information

Optimal Separating Hyperplane and the Support Vector Machine. Volker Tresp Summer 2018

Optimal Separating Hyperplane and the Support Vector Machine. Volker Tresp Summer 2018 Optimal Separating Hyperplane and the Support Vector Machine Volker Tresp Summer 2018 1 (Vapnik s) Optimal Separating Hyperplane Let s consider a linear classifier with y i { 1, 1} If classes are linearly

More information

Constrained Optimization

Constrained Optimization Constrained Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Constrained Optimization 1 / 46 EC2040 Topic 5 - Constrained Optimization Reading 1 Chapters 12.1-12.3

More information

All lecture slides will be available at CSC2515_Winter15.html

All lecture slides will be available at  CSC2515_Winter15.html CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 9: Support Vector Machines All lecture slides will be available at http://www.cs.toronto.edu/~urtasun/courses/csc2515/ CSC2515_Winter15.html Many

More information

Lagrangian Relaxation: An overview

Lagrangian Relaxation: An overview Discrete Math for Bioinformatics WS 11/12:, by A. Bockmayr/K. Reinert, 22. Januar 2013, 13:27 4001 Lagrangian Relaxation: An overview Sources for this lecture: D. Bertsimas and J. Tsitsiklis: Introduction

More information

Support Vector Machines

Support Vector Machines Support Vector Machines . Importance of SVM SVM is a discriminative method that brings together:. computational learning theory. previously known methods in linear discriminant functions 3. optimization

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Math 5593 Linear Programming Lecture Notes

Math 5593 Linear Programming Lecture Notes Math 5593 Linear Programming Lecture Notes Unit II: Theory & Foundations (Convex Analysis) University of Colorado Denver, Fall 2013 Topics 1 Convex Sets 1 1.1 Basic Properties (Luenberger-Ye Appendix B.1).........................

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

12 Classification using Support Vector Machines

12 Classification using Support Vector Machines 160 Bioinformatics I, WS 14/15, D. Huson, January 28, 2015 12 Classification using Support Vector Machines This lecture is based on the following sources, which are all recommended reading: F. Markowetz.

More information

10. Support Vector Machines

10. Support Vector Machines Foundations of Machine Learning CentraleSupélec Fall 2017 10. Support Vector Machines Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe-agathe.azencott@mines-paristech.fr Learning

More information

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007

College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 College of Computer & Information Science Fall 2007 Northeastern University 14 September 2007 CS G399: Algorithmic Power Tools I Scribe: Eric Robinson Lecture Outline: Linear Programming: Vertex Definitions

More information

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES SUPPORT VECTOR MACHINES Today Reading AIMA 8.9 (SVMs) Goals Finish Backpropagation Support vector machines Backpropagation. Begin with randomly initialized weights 2. Apply the neural network to each training

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview. Importance of SVMs. Overview of Mathematical Techniques Employed 3. Margin Geometry 4. SVM Training Methodology 5. Overlapping Distributions

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Lecture 10: SVM Lecture Overview Support Vector Machines The binary classification problem

Lecture 10: SVM Lecture Overview Support Vector Machines The binary classification problem Computational Learning Theory Fall Semester, 2012/13 Lecture 10: SVM Lecturer: Yishay Mansour Scribe: Gitit Kehat, Yogev Vaknin and Ezra Levin 1 10.1 Lecture Overview In this lecture we present in detail

More information

ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints

ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints Instructor: Kevin Ross Scribe: Pritam Roy May 0, 2005 Outline of topics for the lecture We will discuss

More information

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity

Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Discrete Optimization 2010 Lecture 5 Min-Cost Flows & Total Unimodularity Marc Uetz University of Twente m.uetz@utwente.nl Lecture 5: sheet 1 / 26 Marc Uetz Discrete Optimization Outline 1 Min-Cost Flows

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

EXERCISES SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM. 1 Applications and Modelling

EXERCISES SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM. 1 Applications and Modelling SHORTEST PATHS: APPLICATIONS, OPTIMIZATION, VARIATIONS, AND SOLVING THE CONSTRAINED SHORTEST PATH PROBLEM EXERCISES Prepared by Natashia Boland 1 and Irina Dumitrescu 2 1 Applications and Modelling 1.1

More information

5 Day 5: Maxima and minima for n variables.

5 Day 5: Maxima and minima for n variables. UNIVERSITAT POMPEU FABRA INTERNATIONAL BUSINESS ECONOMICS MATHEMATICS III. Pelegrí Viader. 2012-201 Updated May 14, 201 5 Day 5: Maxima and minima for n variables. The same kind of first-order and second-order

More information

Data Analysis 3. Support Vector Machines. Jan Platoš October 30, 2017

Data Analysis 3. Support Vector Machines. Jan Platoš October 30, 2017 Data Analysis 3 Support Vector Machines Jan Platoš October 30, 2017 Department of Computer Science Faculty of Electrical Engineering and Computer Science VŠB - Technical University of Ostrava Table of

More information

Lab 2: Support vector machines

Lab 2: Support vector machines Artificial neural networks, advanced course, 2D1433 Lab 2: Support vector machines Martin Rehn For the course given in 2006 All files referenced below may be found in the following directory: /info/annfk06/labs/lab2

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

Convex Optimization. Lijun Zhang Modification of

Convex Optimization. Lijun Zhang   Modification of Convex Optimization Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf Outline Introduction Convex Sets & Functions Convex Optimization

More information

Convex Optimization. Erick Delage, and Ashutosh Saxena. October 20, (a) (b) (c)

Convex Optimization. Erick Delage, and Ashutosh Saxena. October 20, (a) (b) (c) Convex Optimization (for CS229) Erick Delage, and Ashutosh Saxena October 20, 2006 1 Convex Sets Definition: A set G R n is convex if every pair of point (x, y) G, the segment beteen x and y is in A. More

More information

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function.

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function. 1 The Lagrange multipliers is a mathematical method for performing constrained optimization of differentiable functions. Recall unconstrained optimization of differentiable functions, in which we want

More information

Lecture 5: Duality Theory

Lecture 5: Duality Theory Lecture 5: Duality Theory Rajat Mittal IIT Kanpur The objective of this lecture note will be to learn duality theory of linear programming. We are planning to answer following questions. What are hyperplane

More information

California Institute of Technology Crash-Course on Convex Optimization Fall Ec 133 Guilherme Freitas

California Institute of Technology Crash-Course on Convex Optimization Fall Ec 133 Guilherme Freitas California Institute of Technology HSS Division Crash-Course on Convex Optimization Fall 2011-12 Ec 133 Guilherme Freitas In this text, we will study the following basic problem: maximize x C f(x) subject

More information

CME307/MS&E311 Theory Summary

CME307/MS&E311 Theory Summary CME307/MS&E311 Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007 : Convex Non-Smooth Optimization April 2, 2007 Outline Lecture 19 Convex non-smooth problems Examples Subgradients and subdifferentials Subgradient properties Operations with subgradients and subdifferentials

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Support Vector Machines

Support Vector Machines Support Vector Machines SVM Discussion Overview. Importance of SVMs. Overview of Mathematical Techniques Employed 3. Margin Geometry 4. SVM Training Methodology 5. Overlapping Distributions 6. Dealing

More information

Support vector machines

Support vector machines Support vector machines When the data is linearly separable, which of the many possible solutions should we prefer? SVM criterion: maximize the margin, or distance between the hyperplane and the closest

More information

Approximation Algorithms: The Primal-Dual Method. My T. Thai

Approximation Algorithms: The Primal-Dual Method. My T. Thai Approximation Algorithms: The Primal-Dual Method My T. Thai 1 Overview of the Primal-Dual Method Consider the following primal program, called P: min st n c j x j j=1 n a ij x j b i j=1 x j 0 Then the

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Group Members: 1. Geng Xue (A0095628R) 2. Cai Jingli (A0095623B) 3. Xing Zhe (A0095644W) 4. Zhu Xiaolu (A0109657W) 5. Wang Zixiao (A0095670X) 6. Jiao Qing (A0095637R) 7. Zhang

More information

Machine Learning for Signal Processing Lecture 4: Optimization

Machine Learning for Signal Processing Lecture 4: Optimization Machine Learning for Signal Processing Lecture 4: Optimization 13 Sep 2015 Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU) 11-755/18-797 1 Index 1. The problem of optimization 2. Direct optimization

More information

Support Vector Machines (a brief introduction) Adrian Bevan.

Support Vector Machines (a brief introduction) Adrian Bevan. Support Vector Machines (a brief introduction) Adrian Bevan email: a.j.bevan@qmul.ac.uk Outline! Overview:! Introduce the problem and review the various aspects that underpin the SVM concept.! Hard margin

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Classification III Dan Klein UC Berkeley 1 Classification 2 Linear Models: Perceptron The perceptron algorithm Iteratively processes the training set, reacting to training errors

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

Convex Programs. COMPSCI 371D Machine Learning. COMPSCI 371D Machine Learning Convex Programs 1 / 21

Convex Programs. COMPSCI 371D Machine Learning. COMPSCI 371D Machine Learning Convex Programs 1 / 21 Convex Programs COMPSCI 371D Machine Learning COMPSCI 371D Machine Learning Convex Programs 1 / 21 Logistic Regression! Support Vector Machines Support Vector Machines (SVMs) and Convex Programs SVMs are

More information

Perceptron Learning Algorithm (PLA)

Perceptron Learning Algorithm (PLA) Review: Lecture 4 Perceptron Learning Algorithm (PLA) Learning algorithm for linear threshold functions (LTF) (iterative) Energy function: PLA implements a stochastic gradient algorithm Novikoff s theorem

More information

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 20 Dr. Ted Ralphs IE406 Lecture 20 1 Reading for This Lecture Bertsimas Sections 10.1, 11.4 IE406 Lecture 20 2 Integer Linear Programming An integer

More information

Lec 11 Rate-Distortion Optimization (RDO) in Video Coding-I

Lec 11 Rate-Distortion Optimization (RDO) in Video Coding-I CS/EE 5590 / ENG 401 Special Topics (17804, 17815, 17803) Lec 11 Rate-Distortion Optimization (RDO) in Video Coding-I Zhu Li Course Web: http://l.web.umkc.edu/lizhu/teaching/2016sp.video-communication/main.html

More information

minimise f(x) subject to g(x) = b, x X. inf f(x) = inf L(x,

minimise f(x) subject to g(x) = b, x X. inf f(x) = inf L(x, Optimisation Lecture 3 - Easter 2017 Michael Tehranchi Lagrangian necessity Consider the problem Let minimise f(x) subject to g(x) = b, x X. L(x, λ) = f(x) + λ (b g(x)) be the Lagrangian. Notice that for

More information

Lagrangean relaxation - exercises

Lagrangean relaxation - exercises Lagrangean relaxation - exercises Giovanni Righini Set covering We start from the following Set Covering Problem instance: min z = x + 2x 2 + x + 2x 4 + x 5 x + x 2 + x 4 x 2 + x x 2 + x 4 + x 5 x + x

More information

Lecture Linear Support Vector Machines

Lecture Linear Support Vector Machines Lecture 8 In this lecture we return to the task of classification. As seen earlier, examples include spam filters, letter recognition, or text classification. In this lecture we introduce a popular method

More information

CME307/MS&E311 Optimization Theory Summary

CME307/MS&E311 Optimization Theory Summary CME307/MS&E311 Optimization Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS GRADO EN A.D.E. GRADO EN ECONOMÍA GRADO EN F.Y.C. ACADEMIC YEAR 2011-12 INDEX UNIT 1.- AN INTRODUCCTION TO OPTIMIZATION 2 UNIT 2.- NONLINEAR PROGRAMMING

More information

Delay-Constrained Optimized Packet Aggregation in High-Speed Wireless Networks

Delay-Constrained Optimized Packet Aggregation in High-Speed Wireless Networks Teymoori P, Yazdani N. Delay-constrained optimized packet aggregation in high-speed wireless networks. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 28(3): 525 539 May 2013. DOI 10.1007/s11390-013-1353-1

More information

x ji = s i, i N, (1.1)

x ji = s i, i N, (1.1) Dual Ascent Methods. DUAL ASCENT In this chapter we focus on the minimum cost flow problem minimize subject to (i,j) A {j (i,j) A} a ij x ij x ij {j (j,i) A} (MCF) x ji = s i, i N, (.) b ij x ij c ij,

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Two common formulations of linear programming (LP) problems are: min Subject to: 1,,, 1,2,,;, max Subject to: 1,,, 1,2,,;, Linear Programming Problems The standard LP problem

More information

Lecture Notes: Constraint Optimization

Lecture Notes: Constraint Optimization Lecture Notes: Constraint Optimization Gerhard Neumann January 6, 2015 1 Constraint Optimization Problems In constraint optimization we want to maximize a function f(x) under the constraints that g i (x)

More information

Repetition: Primal Dual for Set Cover

Repetition: Primal Dual for Set Cover Repetition: Primal Dual for Set Cover Primal Relaxation: k min i=1 w ix i s.t. u U i:u S i x i 1 i {1,..., k} x i 0 Dual Formulation: max u U y u s.t. i {1,..., k} u:u S i y u w i y u 0 Harald Räcke 428

More information

LECTURES 3 and 4: Flows and Matchings

LECTURES 3 and 4: Flows and Matchings LECTURES 3 and 4: Flows and Matchings 1 Max Flow MAX FLOW (SP). Instance: Directed graph N = (V,A), two nodes s,t V, and capacities on the arcs c : A R +. A flow is a set of numbers on the arcs such that

More information

Gate Sizing by Lagrangian Relaxation Revisited

Gate Sizing by Lagrangian Relaxation Revisited Gate Sizing by Lagrangian Relaxation Revisited Jia Wang, Debasish Das, and Hai Zhou Electrical Engineering and Computer Science Northwestern University Evanston, Illinois, United States October 17, 2007

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information