Optimization III: Constrained Optimization

Size: px
Start display at page:

Download "Optimization III: Constrained Optimization"

Transcription

1 Optimization III: Constrained Optimization CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Optimization III: Constrained Optimization 1 / 28

2 Announcements HW6 due today HW7 out HW8 (last homework) out next Thursday CS 205A: Mathematical Methods Optimization III: Constrained Optimization 2 / 28

3 Constrained Problems minimize f( x) such that g( x) = 0 h( x) 0 CS 205A: Mathematical Methods Optimization III: Constrained Optimization 3 / 28

4 Really Difficult! Simultaneously: Minimizing f Finding roots of g Finding feasible points of h CS 205A: Mathematical Methods Optimization III: Constrained Optimization 4 / 28

5 Implicit Projection Implicit surface: g( x) = 0 CS 205A: Mathematical Methods Optimization III: Constrained Optimization 5 / 28

6 Implicit Projection Implicit surface: g( x) = 0 Example: Closest point on surface minimize x x x 0 2 such that g( x) = 0 CS 205A: Mathematical Methods Optimization III: Constrained Optimization 5 / 28

7 Nonnegative Least-Squares minimize x A x b 2 2 such that x 0 CS 205A: Mathematical Methods Optimization III: Constrained Optimization 6 / 28

8 Manufacturing m materials s i units of material i in stock n products p j profit for product j Product j uses c ij units of material i CS 205A: Mathematical Methods Optimization III: Constrained Optimization 7 / 28

9 Manufacturing Linear programming problem: maximize x j p jx j such that x j 0 j j c ijx j s i i Maximize profits where you make a positive amount of each product and use limited material. CS 205A: Mathematical Methods Optimization III: Constrained Optimization 8 / 28

10 Bundle Adjustment min yj,p i ij P i y j x ij 2 2 s.t. P i orthogonal i Applications: Bundler Building Rome in a Day CS 205A: Mathematical Methods Optimization III: Constrained Optimization 9 / 28

11 Constrained Problems minimize f( x) such that g( x) = 0 h( x) 0 CS 205A: Mathematical Methods Optimization III: Constrained Optimization 10 / 28

12 Basic Definitions Feasible point and feasible set A feasible point is any point x satisfying g( x) = 0 and h( x) 0. The feasible set is the set of all points x satisfying these constraints. CS 205A: Mathematical Methods Optimization III: Constrained Optimization 11 / 28

13 Basic Definitions Feasible point and feasible set A feasible point is any point x satisfying g( x) = 0 and h( x) 0. The feasible set is the set of all points x satisfying these constraints. Critical point of constrained optimization A critical point is one satisfying the constraints that also is a local maximum, minimum, or saddle point of f within the feasible set. CS 205A: Mathematical Methods Optimization III: Constrained Optimization 11 / 28

14 Differential Optimality Without h: Λ( x, λ) f( x) λ g( x) Lagrange Multipliers CS 205A: Mathematical Methods Optimization III: Constrained Optimization 12 / 28

15 Inequality Constraints at x CS 205A: Mathematical Methods Optimization III: Constrained Optimization 13 / 28

16 Inequality Constraints at x Two cases: Active: h i ( x ) = 0 Optimum might change if constraint is removed Inactive: h i ( x ) > 0 Removing constraint does not change x locally CS 205A: Mathematical Methods Optimization III: Constrained Optimization 14 / 28

17 Idea Remove inactive constraints and make active constraints equality constraints. CS 205A: Mathematical Methods Optimization III: Constrained Optimization 15 / 28

18 Lagrange Multipliers Λ( x, λ, µ) f( x) λ g( x) µ h( x) No longer a critical point! But if we ignore that: 0 = f( x) i λ i g i ( x) j µ j h j ( x) CS 205A: Mathematical Methods Optimization III: Constrained Optimization 16 / 28

19 Lagrange Multipliers Λ( x, λ, µ) f( x) λ g( x) µ h( x) No longer a critical point! But if we ignore that: 0 = f( x) i λ i g i ( x) j µ j h j ( x) µ j h j ( x) = 0 Zero out inactive constraints! CS 205A: Mathematical Methods Optimization III: Constrained Optimization 16 / 28

20 Inequality Direction So far: Have not distinguished between h j ( x) 0 and h j ( x) 0 CS 205A: Mathematical Methods Optimization III: Constrained Optimization 17 / 28

21 Inequality Direction So far: Have not distinguished between h j ( x) 0 and h j ( x) 0 Direction to decrease f: f( x ) Direction to decrease h j : h j ( x ) CS 205A: Mathematical Methods Optimization III: Constrained Optimization 17 / 28

22 Inequality Direction So far: Have not distinguished between h j ( x) 0 and h j ( x) 0 Direction to decrease f: f( x ) Direction to decrease h j : h j ( x ) f( x ) h j ( x ) 0 CS 205A: Mathematical Methods Optimization III: Constrained Optimization 17 / 28

23 Dual Feasibility µ j 0 CS 205A: Mathematical Methods Optimization III: Constrained Optimization 18 / 28

24 KKT Conditions Theorem (Karush-Kuhn-Tucker (KKT) conditions) x R n is a critical point when there exist λ R m and µ R p such that: 0 = f( x ) i λ i g i ( x ) j µ j h j ( x ) ( stationarity ) g( x ) = 0 and h( x) 0 ( primal feasibility ) µ j h j ( x ) = 0 for all j ( complementary slackness ) µ j 0 for all j ( dual feasibility ) CS 205A: Mathematical Methods Optimization III: Constrained Optimization 19 / 28

25 KKT Example from Book CS 205A: Mathematical Methods Optimization III: Constrained Optimization 20 / 28

26 KKT Example from Book CS 205A: Mathematical Methods Optimization III: Constrained Optimization 21 / 28

27 Physical Illustration of KKT Example: Minimal gravitational-potential-energy position x = (x 1, x 2 ) T of a particle attached to inextensible rod (of length l), and above a hard surface. minimize x x 2 (Minimize gravitational potential energy) such that x c 2 l = 0 (rod of length l attached at c) x 2 0 (height 0) Physical interpretation of f, g, h, λ and µ? Physical interpretation of stationarity, primal feasibility, complementary slackness and dual feasibility? CS 205A: Mathematical Methods Optimization III: Constrained Optimization 22 / 28

28 Sequential Quadratic Programming (SQP) x k+1 x k + arg min d [ ] 1 d 2 H f ( x k ) d + f( x k ) d such that g i ( x k ) + g i ( x k ) d = 0 h i ( x k ) + h i ( x k ) d 0 CS 205A: Mathematical Methods Optimization III: Constrained Optimization 23 / 28

29 Equality Constraints Only ( Hf ( x k ) [Dg( x k )] Dg( x k ) 0 ) ( d λ ) = ( f( xk ) g( x k ) ) Can approximate H f Can limit distance along d CS 205A: Mathematical Methods Optimization III: Constrained Optimization 24 / 28

30 Inequality Constraints Active set methods: Keep track of active constraints and enforce as equality, update based on gradient CS 205A: Mathematical Methods Optimization III: Constrained Optimization 25 / 28

31 Barrier Methods: Equality Case f ρ ( x) f( x) + ρ g( x) 2 2 Unconstrained optimization, crank up ρ until g( x) 0 Caveat: H fρ becomes poorly conditioned CS 205A: Mathematical Methods Optimization III: Constrained Optimization 26 / 28

32 Barrier Methods: Inequality Case 1 Inverse barrier: h i ( x) Logarithmic barrier: log h i ( x) CS 205A: Mathematical Methods Optimization III: Constrained Optimization 27 / 28

33 To Read: Convex Programming A ray of hope: Minimizing convex functions with convex constraints Next CS 205A: Mathematical Methods Optimization III: Constrained Optimization 28 / 28

Introduction to Constrained Optimization

Introduction to Constrained Optimization Introduction to Constrained Optimization Duality and KKT Conditions Pratik Shah {pratik.shah [at] lnmiit.ac.in} The LNM Institute of Information Technology www.lnmiit.ac.in February 13, 2013 LNMIIT MLPR

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

Demo 1: KKT conditions with inequality constraints

Demo 1: KKT conditions with inequality constraints MS-C5 Introduction to Optimization Solutions 9 Ehtamo Demo : KKT conditions with inequality constraints Using the Karush-Kuhn-Tucker conditions, see if the points x (x, x ) (, 4) or x (x, x ) (6, ) are

More information

A Short SVM (Support Vector Machine) Tutorial

A Short SVM (Support Vector Machine) Tutorial A Short SVM (Support Vector Machine) Tutorial j.p.lewis CGIT Lab / IMSC U. Southern California version 0.zz dec 004 This tutorial assumes you are familiar with linear algebra and equality-constrained optimization/lagrange

More information

Linear methods for supervised learning

Linear methods for supervised learning Linear methods for supervised learning LDA Logistic regression Naïve Bayes PLA Maximum margin hyperplanes Soft-margin hyperplanes Least squares resgression Ridge regression Nonlinear feature maps Sometimes

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Constrained Optimization Marc Toussaint U Stuttgart Constrained Optimization General constrained optimization problem: Let R n, f : R n R, g : R n R m, h : R n R l find min

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach

LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION. 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach LECTURE 13: SOLUTION METHODS FOR CONSTRAINED OPTIMIZATION 1. Primal approach 2. Penalty and barrier methods 3. Dual approach 4. Primal-dual approach Basic approaches I. Primal Approach - Feasible Direction

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming SECOND EDITION Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book Information and Orders http://world.std.com/~athenasc/index.html Athena Scientific, Belmont,

More information

Kernel Methods & Support Vector Machines

Kernel Methods & Support Vector Machines & Support Vector Machines & Support Vector Machines Arvind Visvanathan CSCE 970 Pattern Recognition 1 & Support Vector Machines Question? Draw a single line to separate two classes? 2 & Support Vector

More information

Constrained Optimization and Lagrange Multipliers

Constrained Optimization and Lagrange Multipliers Constrained Optimization and Lagrange Multipliers MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Constrained Optimization In the previous section we found the local or absolute

More information

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods

Unconstrained Optimization Principles of Unconstrained Optimization Search Methods 1 Nonlinear Programming Types of Nonlinear Programs (NLP) Convexity and Convex Programs NLP Solutions Unconstrained Optimization Principles of Unconstrained Optimization Search Methods Constrained Optimization

More information

Convex Programs. COMPSCI 371D Machine Learning. COMPSCI 371D Machine Learning Convex Programs 1 / 21

Convex Programs. COMPSCI 371D Machine Learning. COMPSCI 371D Machine Learning Convex Programs 1 / 21 Convex Programs COMPSCI 371D Machine Learning COMPSCI 371D Machine Learning Convex Programs 1 / 21 Logistic Regression! Support Vector Machines Support Vector Machines (SVMs) and Convex Programs SVMs are

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 2. Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 2 Convex Optimization Shiqian Ma, MAT-258A: Numerical Optimization 2 2.1. Convex Optimization General optimization problem: min f 0 (x) s.t., f i

More information

Convex Optimization. Lijun Zhang Modification of

Convex Optimization. Lijun Zhang   Modification of Convex Optimization Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf Outline Introduction Convex Sets & Functions Convex Optimization

More information

Gate Sizing by Lagrangian Relaxation Revisited

Gate Sizing by Lagrangian Relaxation Revisited Gate Sizing by Lagrangian Relaxation Revisited Jia Wang, Debasish Das, and Hai Zhou Electrical Engineering and Computer Science Northwestern University Evanston, Illinois, United States October 17, 2007

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Maximum Margin Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574

More information

Kernels and Constrained Optimization

Kernels and Constrained Optimization Machine Learning 1 WS2014 Module IN2064 Sheet 8 Page 1 Machine Learning Worksheet 8 Kernels and Constrained Optimization 1 Kernelized k-nearest neighbours To classify the point x the k-nearest neighbours

More information

Local and Global Minimum

Local and Global Minimum Local and Global Minimum Stationary Point. From elementary calculus, a single variable function has a stationary point at if the derivative vanishes at, i.e., 0. Graphically, the slope of the function

More information

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function.

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function. 1 The Lagrange multipliers is a mathematical method for performing constrained optimization of differentiable functions. Recall unconstrained optimization of differentiable functions, in which we want

More information

Constrained Optimization COS 323

Constrained Optimization COS 323 Constrained Optimization COS 323 Last time Introduction to optimization objective function, variables, [constraints] 1-dimensional methods Golden section, discussion of error Newton s method Multi-dimensional

More information

Lecture 7: Support Vector Machine

Lecture 7: Support Vector Machine Lecture 7: Support Vector Machine Hien Van Nguyen University of Houston 9/28/2017 Separating hyperplane Red and green dots can be separated by a separating hyperplane Two classes are separable, i.e., each

More information

Computational Methods. Constrained Optimization

Computational Methods. Constrained Optimization Computational Methods Constrained Optimization Manfred Huber 2010 1 Constrained Optimization Unconstrained Optimization finds a minimum of a function under the assumption that the parameters can take on

More information

Applied Lagrange Duality for Constrained Optimization

Applied Lagrange Duality for Constrained Optimization Applied Lagrange Duality for Constrained Optimization Robert M. Freund February 10, 2004 c 2004 Massachusetts Institute of Technology. 1 1 Overview The Practical Importance of Duality Review of Convexity

More information

Characterizing Improving Directions Unconstrained Optimization

Characterizing Improving Directions Unconstrained Optimization Final Review IE417 In the Beginning... In the beginning, Weierstrass's theorem said that a continuous function achieves a minimum on a compact set. Using this, we showed that for a convex set S and y not

More information

Support Vector Machines. James McInerney Adapted from slides by Nakul Verma

Support Vector Machines. James McInerney Adapted from slides by Nakul Verma Support Vector Machines James McInerney Adapted from slides by Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview 1. Overview of SVMs 2. Margin Geometry 3. SVM Optimization 4. Overlapping Distributions 5. Relationship to Logistic Regression 6. Dealing

More information

Optimal Control Techniques for Dynamic Walking

Optimal Control Techniques for Dynamic Walking Optimal Control Techniques for Dynamic Walking Optimization in Robotics & Biomechanics IWR, University of Heidelberg Presentation partly based on slides by Sebastian Sager, Moritz Diehl and Peter Riede

More information

Optimization Methods. Final Examination. 1. There are 5 problems each w i t h 20 p o i n ts for a maximum of 100 points.

Optimization Methods. Final Examination. 1. There are 5 problems each w i t h 20 p o i n ts for a maximum of 100 points. 5.93 Optimization Methods Final Examination Instructions:. There are 5 problems each w i t h 2 p o i n ts for a maximum of points. 2. You are allowed to use class notes, your homeworks, solutions to homework

More information

Constrained optimization

Constrained optimization Constrained optimization A general constrained optimization problem has the form where The Lagrangian function is given by Primal and dual optimization problems Primal: Dual: Weak duality: Strong duality:

More information

COMS 4771 Support Vector Machines. Nakul Verma

COMS 4771 Support Vector Machines. Nakul Verma COMS 4771 Support Vector Machines Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake bound for the perceptron

More information

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP):

Department of Mathematics Oleg Burdakov of 30 October Consider the following linear programming problem (LP): Linköping University Optimization TAOP3(0) Department of Mathematics Examination Oleg Burdakov of 30 October 03 Assignment Consider the following linear programming problem (LP): max z = x + x s.t. x x

More information

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 2 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 2 Review Dr. Ted Ralphs IE316 Quiz 2 Review 1 Reading for The Quiz Material covered in detail in lecture Bertsimas 4.1-4.5, 4.8, 5.1-5.5, 6.1-6.3 Material

More information

Lecture 2 Optimization with equality constraints

Lecture 2 Optimization with equality constraints Lecture 2 Optimization with equality constraints Constrained optimization The idea of constrained optimisation is that the choice of one variable often affects the amount of another variable that can be

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Second Order Optimization Methods Marc Toussaint U Stuttgart Planned Outline Gradient-based optimization (1st order methods) plain grad., steepest descent, conjugate grad.,

More information

QEM Optimization, WS 2017/18 Part 4. Constrained optimization

QEM Optimization, WS 2017/18 Part 4. Constrained optimization QEM Optimization, WS 2017/18 Part 4 Constrained optimization (about 4 Lectures) Supporting Literature: Angel de la Fuente, Mathematical Methods and Models for Economists, Chapter 7 Contents 4 Constrained

More information

Lecture 15: Log Barrier Method

Lecture 15: Log Barrier Method 10-725/36-725: Convex Optimization Spring 2015 Lecturer: Ryan Tibshirani Lecture 15: Log Barrier Method Scribes: Pradeep Dasigi, Mohammad Gowayyed Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Optimization under uncertainty: modeling and solution methods

Optimization under uncertainty: modeling and solution methods Optimization under uncertainty: modeling and solution methods Paolo Brandimarte Dipartimento di Scienze Matematiche Politecnico di Torino e-mail: paolo.brandimarte@polito.it URL: http://staff.polito.it/paolo.brandimarte

More information

Lecture Notes: Constraint Optimization

Lecture Notes: Constraint Optimization Lecture Notes: Constraint Optimization Gerhard Neumann January 6, 2015 1 Constraint Optimization Problems In constraint optimization we want to maximize a function f(x) under the constraints that g i (x)

More information

Introduction to Modern Control Systems

Introduction to Modern Control Systems Introduction to Modern Control Systems Convex Optimization, Duality and Linear Matrix Inequalities Kostas Margellos University of Oxford AIMS CDT 2016-17 Introduction to Modern Control Systems November

More information

5 Day 5: Maxima and minima for n variables.

5 Day 5: Maxima and minima for n variables. UNIVERSITAT POMPEU FABRA INTERNATIONAL BUSINESS ECONOMICS MATHEMATICS III. Pelegrí Viader. 2012-201 Updated May 14, 201 5 Day 5: Maxima and minima for n variables. The same kind of first-order and second-order

More information

Lecture 10: SVM Lecture Overview Support Vector Machines The binary classification problem

Lecture 10: SVM Lecture Overview Support Vector Machines The binary classification problem Computational Learning Theory Fall Semester, 2012/13 Lecture 10: SVM Lecturer: Yishay Mansour Scribe: Gitit Kehat, Yogev Vaknin and Ezra Levin 1 10.1 Lecture Overview In this lecture we present in detail

More information

Augmented Lagrangian Methods

Augmented Lagrangian Methods Augmented Lagrangian Methods Mário A. T. Figueiredo 1 and Stephen J. Wright 2 1 Instituto de Telecomunicações, Instituto Superior Técnico, Lisboa, Portugal 2 Computer Sciences Department, University of

More information

Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions 1. Module - 2 Lecture Notes 5. Kuhn-Tucker Conditions

Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions 1. Module - 2 Lecture Notes 5. Kuhn-Tucker Conditions Optimization Methods: Optimization using Calculus Kuhn-Tucker Conditions Module - Lecture Notes 5 Kuhn-Tucker Conditions Introduction In the previous lecture the optimization of functions of multiple variables

More information

Least-Squares Minimization Under Constraints EPFL Technical Report #

Least-Squares Minimization Under Constraints EPFL Technical Report # Least-Squares Minimization Under Constraints EPFL Technical Report # 150790 P. Fua A. Varol R. Urtasun M. Salzmann IC-CVLab, EPFL IC-CVLab, EPFL TTI Chicago TTI Chicago Unconstrained Least-Squares minimization

More information

Perceptron Learning Algorithm

Perceptron Learning Algorithm Perceptron Learning Algorithm An iterative learning algorithm that can find linear threshold function to partition linearly separable set of points. Assume zero threshold value. 1) w(0) = arbitrary, j=1,

More information

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING

INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING INTRODUCTION TO LINEAR AND NONLINEAR PROGRAMMING DAVID G. LUENBERGER Stanford University TT ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California London Don Mills, Ontario CONTENTS

More information

1. Show that the rectangle of maximum area that has a given perimeter p is a square.

1. Show that the rectangle of maximum area that has a given perimeter p is a square. Constrained Optimization - Examples - 1 Unit #23 : Goals: Lagrange Multipliers To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition).

More information

A FACTOR GRAPH APPROACH TO CONSTRAINED OPTIMIZATION. A Thesis Presented to The Academic Faculty. Ivan Dario Jimenez

A FACTOR GRAPH APPROACH TO CONSTRAINED OPTIMIZATION. A Thesis Presented to The Academic Faculty. Ivan Dario Jimenez A FACTOR GRAPH APPROACH TO CONSTRAINED OPTIMIZATION A Thesis Presented to The Academic Faculty By Ivan Dario Jimenez In Partial Fulfillment of the Requirements for the Degree B.S. in Computer Science with

More information

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming

Linear Programming. Linear Programming. Linear Programming. Example: Profit Maximization (1/4) Iris Hui-Ru Jiang Fall Linear programming Linear Programming 3 describes a broad class of optimization tasks in which both the optimization criterion and the constraints are linear functions. Linear Programming consists of three parts: A set of

More information

AMS : Combinatorial Optimization Homework Problems - Week V

AMS : Combinatorial Optimization Homework Problems - Week V AMS 553.766: Combinatorial Optimization Homework Problems - Week V For the following problems, A R m n will be m n matrices, and b R m. An affine subspace is the set of solutions to a a system of linear

More information

Convex Optimization and Machine Learning

Convex Optimization and Machine Learning Convex Optimization and Machine Learning Mengliu Zhao Machine Learning Reading Group School of Computing Science Simon Fraser University March 12, 2014 Mengliu Zhao SFU-MLRG March 12, 2014 1 / 25 Introduction

More information

Lec 11 Rate-Distortion Optimization (RDO) in Video Coding-I

Lec 11 Rate-Distortion Optimization (RDO) in Video Coding-I CS/EE 5590 / ENG 401 Special Topics (17804, 17815, 17803) Lec 11 Rate-Distortion Optimization (RDO) in Video Coding-I Zhu Li Course Web: http://l.web.umkc.edu/lizhu/teaching/2016sp.video-communication/main.html

More information

Augmented Lagrangian Methods

Augmented Lagrangian Methods Augmented Lagrangian Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. IMA, August 2016 Stephen Wright (UW-Madison) Augmented Lagrangian IMA, August 2016 1 /

More information

Programs. Introduction

Programs. Introduction 16 Interior Point I: Linear Programs Lab Objective: For decades after its invention, the Simplex algorithm was the only competitive method for linear programming. The past 30 years, however, have seen

More information

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction

PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING. 1. Introduction PRIMAL-DUAL INTERIOR POINT METHOD FOR LINEAR PROGRAMMING KELLER VANDEBOGERT AND CHARLES LANNING 1. Introduction Interior point methods are, put simply, a technique of optimization where, given a problem

More information

Convex Optimization. Erick Delage, and Ashutosh Saxena. October 20, (a) (b) (c)

Convex Optimization. Erick Delage, and Ashutosh Saxena. October 20, (a) (b) (c) Convex Optimization (for CS229) Erick Delage, and Ashutosh Saxena October 20, 2006 1 Convex Sets Definition: A set G R n is convex if every pair of point (x, y) G, the segment beteen x and y is in A. More

More information

Theoretical Concepts of Machine Learning

Theoretical Concepts of Machine Learning Theoretical Concepts of Machine Learning Part 2 Institute of Bioinformatics Johannes Kepler University, Linz, Austria Outline 1 Introduction 2 Generalization Error 3 Maximum Likelihood 4 Noise Models 5

More information

Computational Optimization. Constrained Optimization Algorithms

Computational Optimization. Constrained Optimization Algorithms Computational Optimization Constrained Optimization Algorithms Same basic algorithms Repeat Determine descent direction Determine step size Take a step Until Optimal But now must consider feasibility,

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

Linear Programming Problems

Linear Programming Problems Linear Programming Problems Two common formulations of linear programming (LP) problems are: min Subject to: 1,,, 1,2,,;, max Subject to: 1,,, 1,2,,;, Linear Programming Problems The standard LP problem

More information

Chapter II. Linear Programming

Chapter II. Linear Programming 1 Chapter II Linear Programming 1. Introduction 2. Simplex Method 3. Duality Theory 4. Optimality Conditions 5. Applications (QP & SLP) 6. Sensitivity Analysis 7. Interior Point Methods 1 INTRODUCTION

More information

Mathematical Programming and Research Methods (Part II)

Mathematical Programming and Research Methods (Part II) Mathematical Programming and Research Methods (Part II) 4. Convexity and Optimization Massimiliano Pontil (based on previous lecture by Andreas Argyriou) 1 Today s Plan Convex sets and functions Types

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS

Linear Programming. Larry Blume. Cornell University & The Santa Fe Institute & IHS Linear Programming Larry Blume Cornell University & The Santa Fe Institute & IHS Linear Programs The general linear program is a constrained optimization problem where objectives and constraints are all

More information

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014

Outline. CS38 Introduction to Algorithms. Linear programming 5/21/2014. Linear programming. Lecture 15 May 20, 2014 5/2/24 Outline CS38 Introduction to Algorithms Lecture 5 May 2, 24 Linear programming simplex algorithm LP duality ellipsoid algorithm * slides from Kevin Wayne May 2, 24 CS38 Lecture 5 May 2, 24 CS38

More information

An augmented Lagrangian method for equality constrained optimization with fast infeasibility detection

An augmented Lagrangian method for equality constrained optimization with fast infeasibility detection An augmented Lagrangian method for equality constrained optimization with fast infeasibility detection Paul Armand 1 Ngoc Nguyen Tran 2 Institut de Recherche XLIM Université de Limoges Journées annuelles

More information

TMA946/MAN280 APPLIED OPTIMIZATION. Exam instructions

TMA946/MAN280 APPLIED OPTIMIZATION. Exam instructions Chalmers/GU Mathematics EXAM TMA946/MAN280 APPLIED OPTIMIZATION Date: 03 05 28 Time: House V, morning Aids: Text memory-less calculator Number of questions: 7; passed on one question requires 2 points

More information

A primal-dual framework for mixtures of regularizers

A primal-dual framework for mixtures of regularizers A primal-dual framework for mixtures of regularizers Baran Gözcü baran.goezcue@epfl.ch Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

More information

CME307/MS&E311 Theory Summary

CME307/MS&E311 Theory Summary CME307/MS&E311 Theory Summary Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/~yyye http://www.stanford.edu/class/msande311/

More information

Finding optimal configurations Adversarial search

Finding optimal configurations Adversarial search CS 171 Introduction to AI Lecture 10 Finding optimal configurations Adversarial search Milos Hauskrecht milos@cs.pitt.edu 39 Sennott Square Announcements Homework assignment is out Due on Thursday next

More information

Convexity Theory and Gradient Methods

Convexity Theory and Gradient Methods Convexity Theory and Gradient Methods Angelia Nedić angelia@illinois.edu ISE Department and Coordinated Science Laboratory University of Illinois at Urbana-Champaign Outline Convex Functions Optimality

More information

arxiv: v2 [math.oc] 12 Feb 2019

arxiv: v2 [math.oc] 12 Feb 2019 A CENTRAL PATH FOLLOWING METHOD USING THE NORMALIZED GRADIENTS Long Chen 1, Wenyi Chen 2, and Kai-Uwe Bletzinger 1 arxiv:1902.04040v2 [math.oc] 12 Feb 2019 1 Chair of Structural Analysis, Technical University

More information

Linear programming and duality theory

Linear programming and duality theory Linear programming and duality theory Complements of Operations Research Giovanni Righini Linear Programming (LP) A linear program is defined by linear constraints, a linear objective function. Its variables

More information

Delay-Constrained Optimized Packet Aggregation in High-Speed Wireless Networks

Delay-Constrained Optimized Packet Aggregation in High-Speed Wireless Networks Teymoori P, Yazdani N. Delay-constrained optimized packet aggregation in high-speed wireless networks. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 28(3): 525 539 May 2013. DOI 10.1007/s11390-013-1353-1

More information

California Institute of Technology Crash-Course on Convex Optimization Fall Ec 133 Guilherme Freitas

California Institute of Technology Crash-Course on Convex Optimization Fall Ec 133 Guilherme Freitas California Institute of Technology HSS Division Crash-Course on Convex Optimization Fall 2011-12 Ec 133 Guilherme Freitas In this text, we will study the following basic problem: maximize x C f(x) subject

More information

Perceptron Learning Algorithm (PLA)

Perceptron Learning Algorithm (PLA) Review: Lecture 4 Perceptron Learning Algorithm (PLA) Learning algorithm for linear threshold functions (LTF) (iterative) Energy function: PLA implements a stochastic gradient algorithm Novikoff s theorem

More information

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia Lagrange multipliers From Wikipedia, the free encyclopedia In mathematical optimization problems, Lagrange multipliers, named after Joseph Louis Lagrange, is a method for finding the local extrema of a

More information

Inverse KKT Motion Optimization: A Newton Method to Efficiently Extract Task Spaces and Cost Parameters from Demonstrations

Inverse KKT Motion Optimization: A Newton Method to Efficiently Extract Task Spaces and Cost Parameters from Demonstrations Inverse KKT Motion Optimization: A Newton Method to Efficiently Extract Task Spaces and Cost Parameters from Demonstrations Peter Englert Machine Learning and Robotics Lab Universität Stuttgart Germany

More information

21-256: Lagrange multipliers

21-256: Lagrange multipliers 21-256: Lagrange multipliers Clive Newstead, Thursday 12th June 2014 Lagrange multipliers give us a means of optimizing multivariate functions subject to a number of constraints on their variables. Problems

More information

Finite Math Linear Programming 1 May / 7

Finite Math Linear Programming 1 May / 7 Linear Programming Finite Math 1 May 2017 Finite Math Linear Programming 1 May 2017 1 / 7 General Description of Linear Programming Finite Math Linear Programming 1 May 2017 2 / 7 General Description of

More information

Virtual Manikin Controller Calculating the movement of a human model Master s thesis in Complex Adaptive Systems DANIEL GLEESON

Virtual Manikin Controller Calculating the movement of a human model Master s thesis in Complex Adaptive Systems DANIEL GLEESON Virtual Manikin Controller Calculating the movement of a human model Master s thesis in Complex Adaptive Systems DANIEL GLEESON Department of Applied Mechanics Division of Vehicle Engineering and Autonomous

More information

Solution Methods Numerical Algorithms

Solution Methods Numerical Algorithms Solution Methods Numerical Algorithms Evelien van der Hurk DTU Managment Engineering Class Exercises From Last Time 2 DTU Management Engineering 42111: Static and Dynamic Optimization (6) 09/10/2017 Class

More information

Kernel Methods. Chapter 9 of A Course in Machine Learning by Hal Daumé III. Conversion to beamer by Fabrizio Riguzzi

Kernel Methods. Chapter 9 of A Course in Machine Learning by Hal Daumé III.   Conversion to beamer by Fabrizio Riguzzi Kernel Methods Chapter 9 of A Course in Machine Learning by Hal Daumé III http://ciml.info Conversion to beamer by Fabrizio Riguzzi Kernel Methods 1 / 66 Kernel Methods Linear models are great because

More information

ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints

ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints ISM206 Lecture, April 26, 2005 Optimization of Nonlinear Objectives, with Non-Linear Constraints Instructor: Kevin Ross Scribe: Pritam Roy May 0, 2005 Outline of topics for the lecture We will discuss

More information

Mathematical and Algorithmic Foundations Linear Programming and Matchings

Mathematical and Algorithmic Foundations Linear Programming and Matchings Adavnced Algorithms Lectures Mathematical and Algorithmic Foundations Linear Programming and Matchings Paul G. Spirakis Department of Computer Science University of Patras and Liverpool Paul G. Spirakis

More information

New Directions in Linear Programming

New Directions in Linear Programming New Directions in Linear Programming Robert Vanderbei November 5, 2001 INFORMS Miami Beach NOTE: This is a talk mostly on pedagogy. There will be some new results. It is not a talk on state-of-the-art

More information

EC5555 Economics Masters Refresher Course in Mathematics September Lecture 6 Optimization with equality constraints Francesco Feri

EC5555 Economics Masters Refresher Course in Mathematics September Lecture 6 Optimization with equality constraints Francesco Feri EC5555 Economics Masters Refresher Course in Mathematics September 2013 Lecture 6 Optimization with equality constraints Francesco Feri Constrained optimization The idea of constrained optimisation is

More information

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007

Lecture 19: Convex Non-Smooth Optimization. April 2, 2007 : Convex Non-Smooth Optimization April 2, 2007 Outline Lecture 19 Convex non-smooth problems Examples Subgradients and subdifferentials Subgradient properties Operations with subgradients and subdifferentials

More information

APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING

APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING Second Edition P. Venkataraman Rochester Institute of Technology WILEY JOHN WILEY & SONS, INC. CONTENTS PREFACE xiii 1 Introduction 1 1.1. Optimization Fundamentals

More information

Optimal Separating Hyperplane and the Support Vector Machine. Volker Tresp Summer 2018

Optimal Separating Hyperplane and the Support Vector Machine. Volker Tresp Summer 2018 Optimal Separating Hyperplane and the Support Vector Machine Volker Tresp Summer 2018 1 (Vapnik s) Optimal Separating Hyperplane Let s consider a linear classifier with y i { 1, 1} If classes are linearly

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY

5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5. DUAL LP, SOLUTION INTERPRETATION, AND POST-OPTIMALITY 5.1 DUALITY Associated with every linear programming problem (the primal) is another linear programming problem called its dual. If the primal involves

More information

CONLIN & MMA solvers. Pierre DUYSINX LTAS Automotive Engineering Academic year

CONLIN & MMA solvers. Pierre DUYSINX LTAS Automotive Engineering Academic year CONLIN & MMA solvers Pierre DUYSINX LTAS Automotive Engineering Academic year 2018-2019 1 CONLIN METHOD 2 LAY-OUT CONLIN SUBPROBLEMS DUAL METHOD APPROACH FOR CONLIN SUBPROBLEMS SEQUENTIAL QUADRATIC PROGRAMMING

More information

COLUMN GENERATION IN LINEAR PROGRAMMING

COLUMN GENERATION IN LINEAR PROGRAMMING COLUMN GENERATION IN LINEAR PROGRAMMING EXAMPLE: THE CUTTING STOCK PROBLEM A certain material (e.g. lumber) is stocked in lengths of 9, 4, and 6 feet, with respective costs of $5, $9, and $. An order for

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 1: Introduction to Optimization. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 013 Lecture 1: Introduction to Optimization Instructor: Shaddin Dughmi Outline 1 Course Overview Administrivia 3 Linear Programming Outline 1 Course Overview

More information

Lecture 9: Linear Programming

Lecture 9: Linear Programming Lecture 9: Linear Programming A common optimization problem involves finding the maximum of a linear function of N variables N Z = a i x i i= 1 (the objective function ) where the x i are all non-negative

More information

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS GRADO EN A.D.E. GRADO EN ECONOMÍA GRADO EN F.Y.C. ACADEMIC YEAR 2011-12 INDEX UNIT 1.- AN INTRODUCCTION TO OPTIMIZATION 2 UNIT 2.- NONLINEAR PROGRAMMING

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Combinatorial Optimization G. Guérard Department of Nouvelles Energies Ecole Supérieur d Ingénieurs Léonard de Vinci Lecture 1 GG A.I. 1/34 Outline 1 Motivation 2 Geometric resolution

More information