A Clustering Algorithm Solution to the Collaborative Filtering

Save this PDF as:

Size: px
Start display at page:

Download "A Clustering Algorithm Solution to the Collaborative Filtering"

Transcription

1 Internatonal Journal of Scence Vol.4 No ISSN: A Clusterng Algorthm Soluton to the Collaboratve Flterng Yongl Yang 1, a, Fe Xue, b, Yongquan Ca 1, c Zhenhu Nng 1, d,* Hafeng Lu 3, e 1 Faculty of Informaton Technology, Bejng Unversty of Technology, Bejng 10014, Chna; School of Informaton, Bejng Wuz Unversty, Bejng , Chna; 3 Scence Technology on Informaton Systems, Engneerng Laboratory, Bejng Insttute of Control Electronc Technology, Bejng , Chna. a b c d Abstract e The recommendaton system s wdely used as a means of makng effectve use of large data s wdely followed by the people. Collaboratve flterng recommendaton algorthm cannot avod the bottleneck of computng performance problems n the recommendaton process. In ths paper, we propose a collaboratve flterng recommendaton algorthm RLPSO_KM_CF. Frstly, the RLPSO (Reverse-learnng local-learnng PSO) algorthm s used to fnd the optmal soluton of partcle swarm output the optmzed clusterng center. Then, the RLPSO_KM algorthm s used to cluster the user nformaton. Fnally, gve the target user an effectve recommendaton by combnng the tradtonal user-based collaboratve flterng algorthm wth the RLPSO_KM clusterng algorthm. The expermental results show that the RLPSO_KM_CF algorthm has a sgnfcant mprovement n the recommendaton accuracy has a hgher stablty. Keywords Collaboratve Flterng Recommendaton Algorthm;RLPSO Algorthm;K-means Algorthm. 1. Introducton The recommendaton system played an mportant role n the vdeo, news, socal network, musc, books, electrcty busness other felds as a way to make effectve use of large data wth the rapd development of nformaton technology [1]. In terms of collaboratve flterng, t can be dvded nto user-based tem-based recommendatons. Machne Learnng Model that concluded LFM, ALS, Lmted Boltzmann Machne[] a seres of model-based recommendaton algorthm s also ncreasng n the development of artfcal ntellgence today[3]. However, despte the recommendaton system have attracted much attenton n the enterprse the Internet,there are other ssues lke cold start, sparseness for ZB-level data on how to quckly deal wth n the recommendaton process. The user project nformaton are clustered to form several user-project subgroups the experment shows that the accuracy of the proposed algorthm s mproved compared wth the orgnal algorthm [4,5]. The authors n [6] propose the algorthm whch accurately dentfes the user's personal nterest effectvely mproves the recommendaton accuracy based on the combnaton of temporal behavor probablty matrx decomposton. The herarchcal weghted smlarty s ntroduced to measure the smlarty of users at dfferent levels n order to select the neghborng users of the target that can sgnfcantly mprove the scorng effect [7]. The authors n [8] proposes the calculaton of the smlarty of moble users across the project usng the dstance of pushng machne the algorthm allevates the nfluence of scorng data sparse on the collaboratve flterng algorthm mproves the recommendaton accuracy.faced wth these problems that processng of data n the recommendaton system the bottleneck problem of computng speed, the collaboratve flterng recommendaton algorthm user's neghbor refers to all 91

2 Internatonal Journal of Scence Vol.4 No ISSN: users. However, users wth hgher smlarty are clearly more valuable than other users. So ths paper proposes RLPSO_KM_CF collaboratve flterng recommendaton algorthm.. Related Works.1 Tradtonal User-based Collaboratve Flterng Algorthm The tradtonal User-CF collaboratve flterng algorthm uses the target user's preference nformaton to compute the neghborhood user set smlar to the target user then recommend the vald tem to the target user [11]. Ths paper uses the Person correlaton coeffcent to calculate the correlaton between users. The user smlarty formula s as follows: formula 1, c to user u formula, r u r u r sm( u, u ) j ru,, r c u r, r ci j c ru,, r c u r r c ci, j c I, j are the average ratngs to user u 9, r u, c. Defne the predcton ratngs formula as follows: r neghborhood collecton to user R( u, ) r u ujnu are descrbed n formula 1, u. sm( u, u )( r r ) ujnu r, j, sm( u, u ) j r uj, c s ratngs for tem (1) are the ratngs for tem to user. RLPSO Optmzaton Algorthm The RLPSO algorthm s an mproved PSO algorthm [9]. The algorthm performs local search by the dfference of the hstorcal poston of the partcle swarm. At the same tme, the algorthm ntroduces the nverse learnng sub-partcle swarm n order to avod the premature convergence [10]..3 K-means Algorthm Clusterng algorthms are followed n the feld of data mnng artfcal ntellgence, K-means algorthm s also popular, whch the nput value s the number of clusterng k n data objects used, the output value s k clusterng Datasets[11]. 3. RLPSO_KM_CF Algorthm Ths secton wll descrbe the RLPSO_KM_CF algorthm n detal. Frstly, t descrbes how to mprove the K-means clusterng algorthm. Then, the applcaton of RLPSO_KM algorthm n collaboratve flterng algorthm s expounded. 3.1 RLPSO_KM Algorthm Based On RLPSO RLPSO_KM algorthm s descrbed as follows: Input: the Datasets D, the cluster number k, the partcle swarm sze N, the reverse learnng partcle swarm sze n, the partcle swarm learnng factors c 1 c, the reverse learnng factors c 3 c 4, the maxmum teraton number of the partcle swarm, the reverse learnng teraton tmes L tmes, the maxmum nerta weght ω max, the mnmum nerta weght ω mn, the dsturbance coeffcent d 0, the tme factor H 0, the maxmum partcle flyng velocty v max. Output: Optmzed k clusterng centers. Step 1: Intalze the partcle swarm. From the Datasets D romly selected k data tems as the partcle poston velocty of each dmenson of the ntal value loop ths process N tmes; Step : Intalze the partcle swarm optmal poston suboptmal poston. Calculate the ftness value of each partcle n the partcle group by usng ftness formula to select the ntal value of the optmal suboptmal poston of the partcle populaton;, N u () s

3 Internatonal Journal of Scence Vol.4 No ISSN: Step 3: Intalze the worst partcle swarm W; Step 4: Iterate search for partcles; Whle (t< tmax ρ<10e-6) A. Adjust ω accordng to the weght adjustment formula; B. Update the partcle poston velocty under the poston speed update formula; C. Calculate f(x) for each partcle n the lght of the ftness formula; D. Update the optmal partcle value; E. Update Pg1 Pg; F. Local search under the search formula ; G. Adjust d0 n lne wth the perturbaton coeffcent formula; H. If meet the reverse learnng condtons (the algorthm local convergences or reaches the thresholds) adjust the vmax; H1. Update the speed poston of the reverse learnng partcle accordng to the reverse learnng speed poston formula; H.Update the poston velocty of the remanng partcles n reverse learnng accordng to the poston speed update formula of the reverse learnng; End If I. Calculate ρ accordng to convergence functon ; J. f (ρ> thresholds) break; K.t ++; End Whle Step 5: Output the optmal soluton of the partcle swarm; Step 6: Run the K-means clusterng algorthm output the optmzed clusterng centers; End 3. RLPSO_KM_CF Algorthm Based On RLPSO_KM Users wth hgher smlarty to the target user have a more valuable reference than other users. The RLPSO_KM clusterng algorthm s used to cluster the user nformaton then the target user s effectvely recommended by usng the tradtonal user-based collaboratve flterng algorthm each cluster. And recommend the most popular tems to the new target users. The formula of the tem popularty s as follows: ItemPop 93 U U (3) I RLPSO_KM_CF algorthm s descrbed below: Input:cluster number k, teraton tmes m. ratngs nformaton, recommended number of the tems N. Output: Top-N recommendaton. Begn Step 1:If(Whether the target user s a new user) A.Calculate ItemPop under the formula 3 to form the collecton W; B. Descendng Sort W to form Wnew; C. Select the top N popularty from the Wnew to form Target; D. Recommend tem to the target user;

4 Internatonal Journal of Scence Vol.4 No ISSN: End If Step : Calculate the cluster center under RLPSO_KM algorthm; Step 3: Calculate the cluster to whch the target user belongs by the formula 1; Step 4: Usng the tradtonal collaboratve flterng algorthm for the target user to recommend n the cluster; Step 5: Output Top-N Recommended Lst; End 4. Experments 4.1 Expermental Envronment The expermental use the centos7.0 devce system server, whch contans seven work nodes a master node. Spark verson s.0, Hadoop verson s.7. Ths paper uses the Unversty of Mnnesota Move Lens as expermental data. In ths paper, three methods are selected as the contrast algorthm: the tradtonal UserCF collaboratve flterng recommendaton algorthm, the mproved Top-N clusterng collaboratve flterng recommendaton algorthm KCF, the RLPSO_KM_CF algorthm. 4. Expermental Results In ths paper, we use the recall rate MAE to evaluate the expermental results. In Fg 1, the MAE curve s drawn under the MoveLens1M datasets. It can be clearly seen that the MAE value of the RLPSO_KM_CF algorthm s the fastest when the clusterng factor ncreases at the begnnng of the experment. When the clusterng factor s 4, the RLPSO_KM_CF MAE value s the smallest the result s best. The MAE value tends to ncrease frst then decrease when the clusterng factor ncreases. Fg.1 Based on the MovesLens1M Datasets Fg. Recall Rate (Dfferent teratons) Fg s the recall rate of the RLPSO_KM_CF algorthm under dfferent teratons. The abscssa represents the number of teratons of the clusterng algorthm the ordnate ndcates the recall rate of the recommended results. When the teratons are about 5, the recall rate bascally has acheved the maxmum. When the clusterng factor k s 4 the teratons are about 15, the algorthm s obvously convergent, the recall rate s Compared wth the tradtonal collaboratve flterng algorthm, RLPSO_KM_CF algorthm s mproved by 3.%, whch s 1.1% hgher than the KCF algorthm. It also confrms that the target user's neghborhood set s relatvely small the recommendaton accuracy wll be reduced wth the clusterng factor ncreasng. 94

5 Internatonal Journal of Scence Vol.4 No ISSN: Concluson In the tradtonal collaboratve flterng recommendaton algorthm user's neghbor refers to all users. However, users wth hgher smlarty are clearly more valuable than other users. Ths paper proposes a collaboratve flterng algorthm RLPSO_KM_CF.The RLPSO_KM algorthm s used to cluster the user nformaton, the tradtonal collaboratve flterng algorthm s combned wth the RLPSO_KM cluster to effectvely recommend the target user. We can consder choosng some clusterng algorthms sutable for sparse matrx n the future research. Acknowledgements We would lke to express sncerely our thanks to the teachers students who have gven support advce on the work of ths paper. References [1] Rcc F, Rokach L, Shapra B. Introducton to Recommender Systems Hbook[M]// Recommender Systems Hbook. Sprnger US, 011:1-35. [] Salakhutdnov R, Mnh A, Hnton G. Restrcted Boltzmann machnes for collaboratve flterng[c]// Internatonal Conference on Machne Learnng. ACM, 007: [3] Zhen hua HUANG, Ja wen ZHANG, Chunq TIAN, et al.study on recommendaton algorthm based on sortng learnng [J].Journal of Software, 016, 7(3): [4] Xu B, Bu J, Chen C, et al. An exploraton of mprovng collaboratve recommender systems va user-tem subgroups[c]// 01:1-30. [5] Chen Z, Ca D, Han J, et al. Locally Dscrmnatve Coclusterng[J]. IEEE Transactons on Knowledge & Data Engneerng, 01, 4(6): [6] Guangfu SUN, Le WU, Q LIU, et al. Cooperatve flterng recommendaton algorthm Based on tmng behavor [J].Journal of Software, 013(11): [7] Wenqang L,HongJ Xu,Mngyang J,Zhengzheng Xu,Hateng Fang.A Herachy Weghtng Smlarty Measure to Improve User-Based Collaboratve Flterng Algorthm[C].016 nd IEEE Internatonal Conference on Computer Communcatons.016: [8] Xun Hu,Xangwu Meng,Yuje Zhang,et al. A Recommendaton Algorthm for Convertng Project Characterstcs Moble User Trust Relatonshp [J].Journal of Software, 014 (8): [9] Kenndy J,Eberhart R C,Partcle swarm optmzaton//proceedngs of the IEEE Internatonal Conference on Neural Networks.Pscataway,USA,1995,4: [10] Xuewen XIA, Jngnan LIU, Kefu GAO, et al.partcle swarm optmzaton wth reverse learnng local learnng ablty [J].Journal of Computers, 015(7): [11] JaWe Han Mchelne Kamber Jan Pe.Data Mnng Concepts Technques Thrd Edton[M].Machnery Industry Press,01:

Recommended Items Rating Prediction based on RBF Neural Network Optimized by PSO Algorithm

Recommended Items Rating Prediction based on RBF Neural Network Optimized by PSO Algorithm Recommended Items Ratng Predcton based on RBF Neural Network Optmzed by PSO Algorthm Chengfang Tan, Cayn Wang, Yuln L and Xx Q Abstract In order to mtgate the data sparsty and cold-start problems of recommendaton

More information

Learning the Kernel Parameters in Kernel Minimum Distance Classifier

Learning the Kernel Parameters in Kernel Minimum Distance Classifier Learnng the Kernel Parameters n Kernel Mnmum Dstance Classfer Daoqang Zhang 1,, Songcan Chen and Zh-Hua Zhou 1* 1 Natonal Laboratory for Novel Software Technology Nanjng Unversty, Nanjng 193, Chna Department

More information

The Research of Support Vector Machine in Agricultural Data Classification

The Research of Support Vector Machine in Agricultural Data Classification The Research of Support Vector Machne n Agrcultural Data Classfcaton Le Sh, Qguo Duan, Xnmng Ma, Me Weng College of Informaton and Management Scence, HeNan Agrcultural Unversty, Zhengzhou 45000 Chna Zhengzhou

More information

Content Based Image Retrieval Using 2-D Discrete Wavelet with Texture Feature with Different Classifiers

Content Based Image Retrieval Using 2-D Discrete Wavelet with Texture Feature with Different Classifiers IOSR Journal of Electroncs and Communcaton Engneerng (IOSR-JECE) e-issn: 78-834,p- ISSN: 78-8735.Volume 9, Issue, Ver. IV (Mar - Apr. 04), PP 0-07 Content Based Image Retreval Usng -D Dscrete Wavelet wth

More information

Parallelism for Nested Loops with Non-uniform and Flow Dependences

Parallelism for Nested Loops with Non-uniform and Flow Dependences Parallelsm for Nested Loops wth Non-unform and Flow Dependences Sam-Jn Jeong Dept. of Informaton & Communcaton Engneerng, Cheonan Unversty, 5, Anseo-dong, Cheonan, Chungnam, 330-80, Korea. seong@cheonan.ac.kr

More information

Clustering Algorithm Combining CPSO with K-Means Chunqin Gu 1, a, Qian Tao 2, b

Clustering Algorithm Combining CPSO with K-Means Chunqin Gu 1, a, Qian Tao 2, b Internatonal Conference on Advances n Mechancal Engneerng and Industral Informatcs (AMEII 05) Clusterng Algorthm Combnng CPSO wth K-Means Chunqn Gu, a, Qan Tao, b Department of Informaton Scence, Zhongka

More information

Network Intrusion Detection Based on PSO-SVM

Network Intrusion Detection Based on PSO-SVM TELKOMNIKA Indonesan Journal of Electrcal Engneerng Vol.1, No., February 014, pp. 150 ~ 1508 DOI: http://dx.do.org/10.11591/telkomnka.v1.386 150 Network Intruson Detecton Based on PSO-SVM Changsheng Xang*

More information

Cluster Analysis of Electrical Behavior

Cluster Analysis of Electrical Behavior Journal of Computer and Communcatons, 205, 3, 88-93 Publshed Onlne May 205 n ScRes. http://www.scrp.org/ournal/cc http://dx.do.org/0.4236/cc.205.350 Cluster Analyss of Electrcal Behavor Ln Lu Ln Lu, School

More information

An Image Fusion Approach Based on Segmentation Region

An Image Fusion Approach Based on Segmentation Region Rong Wang, L-Qun Gao, Shu Yang, Yu-Hua Cha, and Yan-Chun Lu An Image Fuson Approach Based On Segmentaton Regon An Image Fuson Approach Based on Segmentaton Regon Rong Wang, L-Qun Gao, Shu Yang 3, Yu-Hua

More information

Complexity Analysis of Problem-Dimension Using PSO

Complexity Analysis of Problem-Dimension Using PSO Proceedngs of the 7th WSEAS Internatonal Conference on Evolutonary Computng, Cavtat, Croata, June -4, 6 (pp45-5) Complexty Analyss of Problem-Dmenson Usng PSO BUTHAINAH S. AL-KAZEMI AND SAMI J. HABIB,

More information

THE PATH PLANNING ALGORITHM AND SIMULATION FOR MOBILE ROBOT

THE PATH PLANNING ALGORITHM AND SIMULATION FOR MOBILE ROBOT Journal of Theoretcal and Appled Informaton Technology 30 th Aprl 013. Vol. 50 No.3 005-013 JATIT & LLS. All rghts reserved. ISSN: 199-8645 www.jatt.org E-ISSN: 1817-3195 THE PATH PLANNING ALGORITHM AND

More information

A fast algorithm for color image segmentation

A fast algorithm for color image segmentation Unersty of Wollongong Research Onlne Faculty of Informatcs - Papers (Arche) Faculty of Engneerng and Informaton Scences 006 A fast algorthm for color mage segmentaton L. Dong Unersty of Wollongong, lju@uow.edu.au

More information

Application of Improved Fish Swarm Algorithm in Cloud Computing Resource Scheduling

Application of Improved Fish Swarm Algorithm in Cloud Computing Resource Scheduling , pp.40-45 http://dx.do.org/10.14257/astl.2017.143.08 Applcaton of Improved Fsh Swarm Algorthm n Cloud Computng Resource Schedulng Yu Lu, Fangtao Lu School of Informaton Engneerng, Chongqng Vocatonal Insttute

More information

Virtual Machine Migration based on Trust Measurement of Computer Node

Virtual Machine Migration based on Trust Measurement of Computer Node Appled Mechancs and Materals Onlne: 2014-04-04 ISSN: 1662-7482, Vols. 536-537, pp 678-682 do:10.4028/www.scentfc.net/amm.536-537.678 2014 Trans Tech Publcatons, Swtzerland Vrtual Machne Mgraton based on

More information

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points;

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points; Subspace clusterng Clusterng Fundamental to all clusterng technques s the choce of dstance measure between data ponts; D q ( ) ( ) 2 x x = x x, j k = 1 k jk Squared Eucldean dstance Assumpton: All features

More information

A Binarization Algorithm specialized on Document Images and Photos

A Binarization Algorithm specialized on Document Images and Photos A Bnarzaton Algorthm specalzed on Document mages and Photos Ergna Kavalleratou Dept. of nformaton and Communcaton Systems Engneerng Unversty of the Aegean kavalleratou@aegean.gr Abstract n ths paper, a

More information

Journal of Chemical and Pharmaceutical Research, 2014, 6(6): Research Article. A selective ensemble classification method on microarray data

Journal of Chemical and Pharmaceutical Research, 2014, 6(6): Research Article. A selective ensemble classification method on microarray data Avalable onlne www.ocpr.com Journal of Chemcal and Pharmaceutcal Research, 2014, 6(6):2860-2866 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCPRC5 A selectve ensemble classfcaton method on mcroarray

More information

Research of Neural Network Classifier Based on FCM and PSO for Breast Cancer Classification

Research of Neural Network Classifier Based on FCM and PSO for Breast Cancer Classification Research of Neural Network Classfer Based on FCM and PSO for Breast Cancer Classfcaton Le Zhang 1, Ln Wang 1, Xujewen Wang 2, Keke Lu 2, and Ajth Abraham 3 1 Shandong Provncal Key Laboratory of Network

More information

Meta-heuristics for Multidimensional Knapsack Problems

Meta-heuristics for Multidimensional Knapsack Problems 2012 4th Internatonal Conference on Computer Research and Development IPCSIT vol.39 (2012) (2012) IACSIT Press, Sngapore Meta-heurstcs for Multdmensonal Knapsack Problems Zhbao Man + Computer Scence Department,

More information

Using Particle Swarm Optimization for Enhancing the Hierarchical Cell Relay Routing Protocol

Using Particle Swarm Optimization for Enhancing the Hierarchical Cell Relay Routing Protocol 2012 Thrd Internatonal Conference on Networkng and Computng Usng Partcle Swarm Optmzaton for Enhancng the Herarchcal Cell Relay Routng Protocol Hung-Y Ch Department of Electrcal Engneerng Natonal Sun Yat-Sen

More information

Improvement of Spatial Resolution Using BlockMatching Based Motion Estimation and Frame. Integration

Improvement of Spatial Resolution Using BlockMatching Based Motion Estimation and Frame. Integration Improvement of Spatal Resoluton Usng BlockMatchng Based Moton Estmaton and Frame Integraton Danya Suga and Takayuk Hamamoto Graduate School of Engneerng, Tokyo Unversty of Scence, 6-3-1, Nuku, Katsuska-ku,

More information

Outline. Self-Organizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like:

Outline. Self-Organizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like: Self-Organzng Maps (SOM) Turgay İBRİKÇİ, PhD. Outlne Introducton Structures of SOM SOM Archtecture Neghborhoods SOM Algorthm Examples Summary 1 2 Unsupervsed Hebban Learnng US Hebban Learnng, Cntd 3 A

More information

Overview. Basic Setup [9] Motivation and Tasks. Modularization 2008/2/20 IMPROVED COVERAGE CONTROL USING ONLY LOCAL INFORMATION

Overview. Basic Setup [9] Motivation and Tasks. Modularization 2008/2/20 IMPROVED COVERAGE CONTROL USING ONLY LOCAL INFORMATION Overvew 2 IMPROVED COVERAGE CONTROL USING ONLY LOCAL INFORMATION Introducton Mult- Smulator MASIM Theoretcal Work and Smulaton Results Concluson Jay Wagenpfel, Adran Trachte Motvaton and Tasks Basc Setup

More information

A Fast Visual Tracking Algorithm Based on Circle Pixels Matching

A Fast Visual Tracking Algorithm Based on Circle Pixels Matching A Fast Vsual Trackng Algorthm Based on Crcle Pxels Matchng Zhqang Hou hou_zhq@sohu.com Chongzhao Han czhan@mal.xjtu.edu.cn Ln Zheng Abstract: A fast vsual trackng algorthm based on crcle pxels matchng

More information

Available online at Available online at Advanced in Control Engineering and Information Science

Available online at   Available online at   Advanced in Control Engineering and Information Science Avalable onlne at wwwscencedrectcom Avalable onlne at wwwscencedrectcom Proceda Proceda Engneerng Engneerng 00 (2011) 15000 000 (2011) 1642 1646 Proceda Engneerng wwwelsevercom/locate/proceda Advanced

More information

Determining the Optimal Bandwidth Based on Multi-criterion Fusion

Determining the Optimal Bandwidth Based on Multi-criterion Fusion Proceedngs of 01 4th Internatonal Conference on Machne Learnng and Computng IPCSIT vol. 5 (01) (01) IACSIT Press, Sngapore Determnng the Optmal Bandwdth Based on Mult-crteron Fuson Ha-L Lang 1+, Xan-Mn

More information

BioTechnology. An Indian Journal FULL PAPER. Trade Science Inc.

BioTechnology. An Indian Journal FULL PAPER. Trade Science Inc. [Type text] [Type text] [Type text] ISSN : 0974-74 Volume 0 Issue BoTechnology 04 An Indan Journal FULL PAPER BTAIJ 0() 04 [684-689] Revew on Chna s sports ndustry fnancng market based on market -orented

More information

A Fast Content-Based Multimedia Retrieval Technique Using Compressed Data

A Fast Content-Based Multimedia Retrieval Technique Using Compressed Data A Fast Content-Based Multmeda Retreval Technque Usng Compressed Data Borko Furht and Pornvt Saksobhavvat NSF Multmeda Laboratory Florda Atlantc Unversty, Boca Raton, Florda 3343 ABSTRACT In ths paper,

More information

Design of Structure Optimization with APDL

Design of Structure Optimization with APDL Desgn of Structure Optmzaton wth APDL Yanyun School of Cvl Engneerng and Archtecture, East Chna Jaotong Unversty Nanchang 330013 Chna Abstract In ths paper, the desgn process of structure optmzaton wth

More information

K-means Optimization Clustering Algorithm Based on Hybrid PSO/GA Optimization and CS validity index

K-means Optimization Clustering Algorithm Based on Hybrid PSO/GA Optimization and CS validity index Orgnal Artcle Prnt ISSN: 3-6379 Onlne ISSN: 3-595X DOI: 0.7354/jss/07/33 K-means Optmzaton Clusterng Algorthm Based on Hybrd PSO/GA Optmzaton and CS valdty ndex K Jahanbn *, F Rahmanan, H Rezae 3, Y Farhang

More information

BIN XIA et al: AN IMPROVED K-MEANS ALGORITHM BASED ON CLOUD PLATFORM FOR DATA MINING

BIN XIA et al: AN IMPROVED K-MEANS ALGORITHM BASED ON CLOUD PLATFORM FOR DATA MINING An Improved K-means Algorthm based on Cloud Platform for Data Mnng Bn Xa *, Yan Lu 2. School of nformaton and management scence, Henan Agrcultural Unversty, Zhengzhou, Henan 450002, P.R. Chna 2. College

More information

A Time-driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing

A Time-driven Data Placement Strategy for a Scientific Workflow Combining Edge Computing and Cloud Computing > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 A Tme-drven Data Placement Strategy for a Scentfc Workflow Combnng Edge Computng and Cloud Computng Bng Ln, Fangnng

More information

Term Weighting Classification System Using the Chi-square Statistic for the Classification Subtask at NTCIR-6 Patent Retrieval Task

Term Weighting Classification System Using the Chi-square Statistic for the Classification Subtask at NTCIR-6 Patent Retrieval Task Proceedngs of NTCIR-6 Workshop Meetng, May 15-18, 2007, Tokyo, Japan Term Weghtng Classfcaton System Usng the Ch-square Statstc for the Classfcaton Subtask at NTCIR-6 Patent Retreval Task Kotaro Hashmoto

More information

High-Boost Mesh Filtering for 3-D Shape Enhancement

High-Boost Mesh Filtering for 3-D Shape Enhancement Hgh-Boost Mesh Flterng for 3-D Shape Enhancement Hrokazu Yagou Λ Alexander Belyaev y Damng We z Λ y z ; ; Shape Modelng Laboratory, Unversty of Azu, Azu-Wakamatsu 965-8580 Japan y Computer Graphcs Group,

More information

A Simple Methodology for Database Clustering. Hao Tang 12 Guangdong University of Technology, Guangdong, , China

A Simple Methodology for Database Clustering. Hao Tang 12 Guangdong University of Technology, Guangdong, , China for Database Clusterng Guangdong Unversty of Technology, Guangdong, 0503, Chna E-mal: 6085@qq.com Me Zhang Guangdong Unversty of Technology, Guangdong, 0503, Chna E-mal:64605455@qq.com Database clusterng

More information

An Improved Particle Swarm Optimization for Feature Selection

An Improved Particle Swarm Optimization for Feature Selection Journal of Bonc Engneerng 8 (20)?????? An Improved Partcle Swarm Optmzaton for Feature Selecton Yuannng Lu,2, Gang Wang,2, Hulng Chen,2, Hao Dong,2, Xaodong Zhu,2, Sujng Wang,2 Abstract. College of Computer

More information

Natural Computing. Lecture 13: Particle swarm optimisation INFR /11/2010

Natural Computing. Lecture 13: Particle swarm optimisation INFR /11/2010 Natural Computng Lecture 13: Partcle swarm optmsaton Mchael Herrmann mherrman@nf.ed.ac.uk phone: 0131 6 517177 Informatcs Forum 1.42 INFR09038 5/11/2010 Swarm ntellgence Collectve ntellgence: A super-organsm

More information

Analysis of Particle Swarm Optimization and Genetic Algorithm based on Task Scheduling in Cloud Computing Environment

Analysis of Particle Swarm Optimization and Genetic Algorithm based on Task Scheduling in Cloud Computing Environment Analyss of Partcle Swarm Optmzaton and Genetc Algorthm based on Tas Schedulng n Cloud Computng Envronment Frederc Nzanywayngoma School of Computer and Communcaton Engneerng Unversty of Scence and Technology

More information

Positive Semi-definite Programming Localization in Wireless Sensor Networks

Positive Semi-definite Programming Localization in Wireless Sensor Networks Postve Sem-defnte Programmng Localzaton n Wreless Sensor etworks Shengdong Xe 1,, Jn Wang, Aqun Hu 1, Yunl Gu, Jang Xu, 1 School of Informaton Scence and Engneerng, Southeast Unversty, 10096, anjng Computer

More information

Query Clustering Using a Hybrid Query Similarity Measure

Query Clustering Using a Hybrid Query Similarity Measure Query clusterng usng a hybrd query smlarty measure Fu. L., Goh, D.H., & Foo, S. (2004). WSEAS Transacton on Computers, 3(3), 700-705. Query Clusterng Usng a Hybrd Query Smlarty Measure Ln Fu, Don Hoe-Lan

More information

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning Outlne Artfcal Intellgence and ts applcatons Lecture 8 Unsupervsed Learnng Professor Danel Yeung danyeung@eee.org Dr. Patrck Chan patrckchan@eee.org South Chna Unversty of Technology, Chna Introducton

More information

Chinese Word Segmentation based on the Improved Particle Swarm Optimization Neural Networks

Chinese Word Segmentation based on the Improved Particle Swarm Optimization Neural Networks Chnese Word Segmentaton based on the Improved Partcle Swarm Optmzaton Neural Networks Ja He Computatonal Intellgence Laboratory School of Computer Scence and Engneerng, UESTC Chengdu, Chna Department of

More information

Fingerprint matching based on weighting method and SVM

Fingerprint matching based on weighting method and SVM Fngerprnt matchng based on weghtng method and SVM Ja Ja, Lanhong Ca, Pnyan Lu, Xuhu Lu Key Laboratory of Pervasve Computng (Tsnghua Unversty), Mnstry of Educaton Bejng 100084, P.R.Chna {jaja}@mals.tsnghua.edu.cn

More information

Using Fuzzy Logic to Enhance the Large Size Remote Sensing Images

Using Fuzzy Logic to Enhance the Large Size Remote Sensing Images Internatonal Journal of Informaton and Electroncs Engneerng Vol. 5 No. 6 November 015 Usng Fuzzy Logc to Enhance the Large Sze Remote Sensng Images Trung Nguyen Tu Huy Ngo Hoang and Thoa Vu Van Abstract

More information

Fast Computation of Shortest Path for Visiting Segments in the Plane

Fast Computation of Shortest Path for Visiting Segments in the Plane Send Orders for Reprnts to reprnts@benthamscence.ae 4 The Open Cybernetcs & Systemcs Journal, 04, 8, 4-9 Open Access Fast Computaton of Shortest Path for Vstng Segments n the Plane Ljuan Wang,, Bo Jang

More information

Classifier Selection Based on Data Complexity Measures *

Classifier Selection Based on Data Complexity Measures * Classfer Selecton Based on Data Complexty Measures * Edth Hernández-Reyes, J.A. Carrasco-Ochoa, and J.Fco. Martínez-Trndad Natonal Insttute for Astrophyscs, Optcs and Electroncs, Lus Enrque Erro No.1 Sta.

More information

An Improved Image Segmentation Algorithm Based on the Otsu Method

An Improved Image Segmentation Algorithm Based on the Otsu Method 3th ACIS Internatonal Conference on Software Engneerng, Artfcal Intellgence, Networkng arallel/dstrbuted Computng An Improved Image Segmentaton Algorthm Based on the Otsu Method Mengxng Huang, enjao Yu,

More information

Optimizing Document Scoring for Query Retrieval

Optimizing Document Scoring for Query Retrieval Optmzng Document Scorng for Query Retreval Brent Ellwen baellwe@cs.stanford.edu Abstract The goal of ths project was to automate the process of tunng a document query engne. Specfcally, I used machne learnng

More information

An Internal Clustering Validation Index for Boolean Data

An Internal Clustering Validation Index for Boolean Data BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 6 Specal ssue wth selecton of extended papers from 6th Internatonal Conference on Logstc, Informatcs and Servce Scence

More information

A Self-adaptive Similarity-based Fitness Approximation for Evolutionary Optimization

A Self-adaptive Similarity-based Fitness Approximation for Evolutionary Optimization A Self-adaptve Smlarty-based Ftness Approxmaton for Evolutonary Optmzaton Je Tan Dvson of Industral and System Engneerng, Tayuan Unversty of Scence and Technology, Tayuan, 34 Chna College of Informaton

More information

A Clustering Algorithm for Key Frame Extraction Based on Density Peak

A Clustering Algorithm for Key Frame Extraction Based on Density Peak Journal of Computer and Communcatons, 2018, 6, 118-128 http://www.scrp.org/ournal/cc ISSN Onlne: 2327-5227 ISSN Prnt: 2327-5219 A Clusterng Algorthm for Key Frame Extracton Based on Densty Peak Hong Zhao

More information

Application of Clustering Algorithm in Big Data Sample Set Optimization

Application of Clustering Algorithm in Big Data Sample Set Optimization Applcaton of Clusterng Algorthm n Bg Data Sample Set Optmzaton Yutang Lu 1, Qn Zhang 2 1 Department of Basc Subjects, Henan Insttute of Technology, Xnxang 453002, Chna 2 School of Mathematcs and Informaton

More information

Tsinghua University at TAC 2009: Summarizing Multi-documents by Information Distance

Tsinghua University at TAC 2009: Summarizing Multi-documents by Information Distance Tsnghua Unversty at TAC 2009: Summarzng Mult-documents by Informaton Dstance Chong Long, Mnle Huang, Xaoyan Zhu State Key Laboratory of Intellgent Technology and Systems, Tsnghua Natonal Laboratory for

More information

A new segmentation algorithm for medical volume image based on K-means clustering

A new segmentation algorithm for medical volume image based on K-means clustering Avalable onlne www.jocpr.com Journal of Chemcal and harmaceutcal Research, 2013, 5(12):113-117 Research Artcle ISSN : 0975-7384 CODEN(USA) : JCRC5 A new segmentaton algorthm for medcal volume mage based

More information

An Evolvable Clustering Based Algorithm to Learn Distance Function for Supervised Environment

An Evolvable Clustering Based Algorithm to Learn Distance Function for Supervised Environment IJCSI Internatonal Journal of Computer Scence Issues, Vol. 7, Issue 5, September 2010 ISSN (Onlne): 1694-0814 www.ijcsi.org 374 An Evolvable Clusterng Based Algorthm to Learn Dstance Functon for Supervsed

More information

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique //00 :0 AM Outlne and Readng The Greedy Method The Greedy Method Technque (secton.) Fractonal Knapsack Problem (secton..) Task Schedulng (secton..) Mnmum Spannng Trees (secton.) Change Money Problem Greedy

More information

ARTICLE IN PRESS. Applied Soft Computing xxx (2012) xxx xxx. Contents lists available at SciVerse ScienceDirect. Applied Soft Computing

ARTICLE IN PRESS. Applied Soft Computing xxx (2012) xxx xxx. Contents lists available at SciVerse ScienceDirect. Applied Soft Computing ASOC-11; o. of Pages 1 Appled Soft Computng xxx (1) xxx xxx Contents lsts avalable at ScVerse ScenceDrect Appled Soft Computng j ourna l ho mepage: www.elsever.com/locate/asoc A herarchcal partcle swarm

More information

UB at GeoCLEF Department of Geography Abstract

UB at GeoCLEF Department of Geography   Abstract UB at GeoCLEF 2006 Mguel E. Ruz (1), Stuart Shapro (2), June Abbas (1), Slva B. Southwck (1) and Davd Mark (3) State Unversty of New York at Buffalo (1) Department of Lbrary and Informaton Studes (2) Department

More information

A User Selection Method in Advertising System

A User Selection Method in Advertising System Int. J. Communcatons, etwork and System Scences, 2010, 3, 54-58 do:10.4236/jcns.2010.31007 Publshed Onlne January 2010 (http://www.scrp.org/journal/jcns/). A User Selecton Method n Advertsng System Shy

More information

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur FEATURE EXTRACTION Dr. K.Vjayarekha Assocate Dean School of Electrcal and Electroncs Engneerng SASTRA Unversty, Thanjavur613 41 Jont Intatve of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents

More information

The Shortest Path of Touring Lines given in the Plane

The Shortest Path of Touring Lines given in the Plane Send Orders for Reprnts to reprnts@benthamscence.ae 262 The Open Cybernetcs & Systemcs Journal, 2015, 9, 262-267 The Shortest Path of Tourng Lnes gven n the Plane Open Access Ljuan Wang 1,2, Dandan He

More information

An Optimal Algorithm for Prufer Codes *

An Optimal Algorithm for Prufer Codes * J. Software Engneerng & Applcatons, 2009, 2: 111-115 do:10.4236/jsea.2009.22016 Publshed Onlne July 2009 (www.scrp.org/journal/jsea) An Optmal Algorthm for Prufer Codes * Xaodong Wang 1, 2, Le Wang 3,

More information

NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS

NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS ARPN Journal of Engneerng and Appled Scences 006-017 Asan Research Publshng Network (ARPN). All rghts reserved. NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS Igor Grgoryev, Svetlana

More information

Professional competences training path for an e-commerce major, based on the ISM method

Professional competences training path for an e-commerce major, based on the ISM method World Transactons on Engneerng and Technology Educaton Vol.14, No.4, 2016 2016 WIETE Professonal competences tranng path for an e-commerce maor, based on the ISM method Ru Wang, Pn Peng, L-gang Lu & Lng

More information

BRDPHHC: A Balance RDF Data Partitioning Algorithm based on Hybrid Hierarchical Clustering

BRDPHHC: A Balance RDF Data Partitioning Algorithm based on Hybrid Hierarchical Clustering 015 IEEE 17th Internatonal Conference on Hgh Performance Computng and Communcatons (HPCC), 015 IEEE 7th Internatonal Symposum on Cyberspace Safety and Securty (CSS), and 015 IEEE 1th Internatonal Conf

More information

Kent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT-16. Dynamic Programming

Kent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT-16. Dynamic Programming CS 4/560 Desgn and Analyss of Algorthms Kent State Unversty Dept. of Math & Computer Scence LECT-6 Dynamc Programmng 2 Dynamc Programmng Dynamc Programmng, lke the dvde-and-conquer method, solves problems

More information

A Notable Swarm Approach to Evolve Neural Network for Classification in Data Mining

A Notable Swarm Approach to Evolve Neural Network for Classification in Data Mining A Notable Swarm Approach to Evolve Neural Network for Classfcaton n Data Mnng Satchdananda Dehur 1, Bjan Bhar Mshra 2 and Sung-Bae Cho 1 1 Soft Computng Laboratory, Department of Computer Scence, Yonse

More information

ApproxMGMSP: A Scalable Method of Mining Approximate Multidimensional Sequential Patterns on Distributed System

ApproxMGMSP: A Scalable Method of Mining Approximate Multidimensional Sequential Patterns on Distributed System ApproxMGMSP: A Scalable Method of Mnng Approxmate Multdmensonal Sequental Patterns on Dstrbuted System Changha Zhang, Kongfa Hu, Zhux Chen, Lng Chen Department of Computer Scence and Engneerng, Yangzhou

More information

Study of Data Stream Clustering Based on Bio-inspired Model

Study of Data Stream Clustering Based on Bio-inspired Model , pp.412-418 http://dx.do.org/10.14257/astl.2014.53.86 Study of Data Stream lusterng Based on Bo-nspred Model Yngme L, Mn L, Jngbo Shao, Gaoyang Wang ollege of omputer Scence and Informaton Engneerng,

More information

Load-Balanced Anycast Routing

Load-Balanced Anycast Routing Load-Balanced Anycast Routng Chng-Yu Ln, Jung-Hua Lo, and Sy-Yen Kuo Department of Electrcal Engneerng atonal Tawan Unversty, Tape, Tawan sykuo@cc.ee.ntu.edu.tw Abstract For fault-tolerance and load-balance

More information

Collaboratively Regularized Nearest Points for Set Based Recognition

Collaboratively Regularized Nearest Points for Set Based Recognition Academc Center for Computng and Meda Studes, Kyoto Unversty Collaboratvely Regularzed Nearest Ponts for Set Based Recognton Yang Wu, Mchhko Mnoh, Masayuk Mukunok Kyoto Unversty 9/1/013 BMVC 013 @ Brstol,

More information

Research of Dynamic Access to Cloud Database Based on Improved Pheromone Algorithm

Research of Dynamic Access to Cloud Database Based on Improved Pheromone Algorithm , pp.197-202 http://dx.do.org/10.14257/dta.2016.9.5.20 Research of Dynamc Access to Cloud Database Based on Improved Pheromone Algorthm Yongqang L 1 and Jn Pan 2 1 (Software Technology Vocatonal College,

More information

Load Balancing for Hex-Cell Interconnection Network

Load Balancing for Hex-Cell Interconnection Network Int. J. Communcatons, Network and System Scences,,, - Publshed Onlne Aprl n ScRes. http://www.scrp.org/journal/jcns http://dx.do.org/./jcns.. Load Balancng for Hex-Cell Interconnecton Network Saher Manaseer,

More information

Learning-Based Top-N Selection Query Evaluation over Relational Databases

Learning-Based Top-N Selection Query Evaluation over Relational Databases Learnng-Based Top-N Selecton Query Evaluaton over Relatonal Databases Lang Zhu *, Wey Meng ** * School of Mathematcs and Computer Scence, Hebe Unversty, Baodng, Hebe 071002, Chna, zhu@mal.hbu.edu.cn **

More information

A Novel Distributed Collaborative Filtering Algorithm and Its Implementation on P2P Overlay Network*

A Novel Distributed Collaborative Filtering Algorithm and Its Implementation on P2P Overlay Network* A Novel Dstrbuted Collaboratve Flterng Algorthm and Its Implementaton on P2P Overlay Network* Peng Han, Bo Xe, Fan Yang, Jajun Wang, and Rumn Shen Department of Computer Scence and Engneerng, Shangha Jao

More information

CHAPTER 2 PROPOSED IMPROVED PARTICLE SWARM OPTIMIZATION

CHAPTER 2 PROPOSED IMPROVED PARTICLE SWARM OPTIMIZATION 24 CHAPTER 2 PROPOSED IMPROVED PARTICLE SWARM OPTIMIZATION The present chapter proposes an IPSO approach for multprocessor task schedulng problem wth two classfcatons, namely, statc ndependent tasks and

More information

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier

Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted from Hennessy & Patterson / 2003 Elsevier Some materal adapted from Mohamed Youns, UMBC CMSC 611 Spr 2003 course sldes Some materal adapted from Hennessy & Patterson / 2003 Elsever Scence Performance = 1 Executon tme Speedup = Performance (B)

More information

Speech enhancement is a challenging problem

Speech enhancement is a challenging problem Journal of Advances n Computer Engneerng and Technology, () 5 A New Shuffled Sub-swarm Partcle Swarm Optmzaton Algorthm for Speech Enhancement Masoud Geravanchzadeh, Sna Ghalam Osgoue Receved (-9-) Accepted

More information

Discrete Cosine Transform Optimization in Image Compression Based on Genetic Algorithm

Discrete Cosine Transform Optimization in Image Compression Based on Genetic Algorithm 015 8th Internatonal Congress on Image and Sgnal Processng (CISP 015) Dscrete Cosne Transform Optmzaton n Image Compresson Based on Genetc Algorthm LIU Yuan-yuan 1 CHE He-xn 1 College of Communcaton Engneerng,

More information

A Two-Stage Algorithm for Data Clustering

A Two-Stage Algorithm for Data Clustering A Two-Stage Algorthm for Data Clusterng Abdolreza Hatamlou 1 and Salwan Abdullah 2 1 Islamc Azad Unversty, Khoy Branch, Iran 2 Data Mnng and Optmsaton Research Group, Center for Artfcal Intellgence Technology,

More information

Training ANFIS Structure with Modified PSO Algorithm

Training ANFIS Structure with Modified PSO Algorithm Proceedngs of the 5th Medterranean Conference on Control & Automaton, July 7-9, 007, Athens - Greece T4-003 Tranng ANFIS Structure wth Modfed PSO Algorthm V.Seyd Ghomsheh *, M. Alyar Shoorehdel **, M.

More information

A Unified Framework for Semantics and Feature Based Relevance Feedback in Image Retrieval Systems

A Unified Framework for Semantics and Feature Based Relevance Feedback in Image Retrieval Systems A Unfed Framework for Semantcs and Feature Based Relevance Feedback n Image Retreval Systems Ye Lu *, Chunhu Hu 2, Xngquan Zhu 3*, HongJang Zhang 2, Qang Yang * School of Computng Scence Smon Fraser Unversty

More information

COMPARISON OF TWO MODELS FOR HUMAN EVACUATING SIMULATION IN LARGE BUILDING SPACES. University, Beijing , China

COMPARISON OF TWO MODELS FOR HUMAN EVACUATING SIMULATION IN LARGE BUILDING SPACES. University, Beijing , China COMPARISON OF TWO MODELS FOR HUMAN EVACUATING SIMULATION IN LARGE BUILDING SPACES Bn Zhao 1, 2, He Xao 1, Yue Wang 1, Yuebao Wang 1 1 Department of Buldng Scence and Technology, Tsnghua Unversty, Bejng

More information

Predator-Prey Pigeon-Inspired Optimization for UAV Three-Dimensional Path Planning

Predator-Prey Pigeon-Inspired Optimization for UAV Three-Dimensional Path Planning Predator-Prey Pgeon-Inspred Optmzaton for UAV Three-Dmensonal Path Plannng Bo Zhang 1 and Habn Duan 1,2,* 1 Scence and Technology on Arcraft Control Laboratory, School of Automaton Scence and Electrcal

More information

Parameters Optimization of SVM Based on Improved FOA and Its Application in Fault Diagnosis

Parameters Optimization of SVM Based on Improved FOA and Its Application in Fault Diagnosis Parameters Optmzaton of SVM Based on Improved FOA and Its Applcaton n Fault Dagnoss Qantu Zhang1*, Lqng Fang1, Sca Su, Yan Lv1 1 Frst Department, Mechancal Engneerng College, Shjazhuang, Hebe Provnce,

More information

Module Management Tool in Software Development Organizations

Module Management Tool in Software Development Organizations Journal of Computer Scence (5): 8-, 7 ISSN 59-66 7 Scence Publcatons Management Tool n Software Development Organzatons Ahmad A. Al-Rababah and Mohammad A. Al-Rababah Faculty of IT, Al-Ahlyyah Amman Unversty,

More information

Research Article A High-Order CFS Algorithm for Clustering Big Data

Research Article A High-Order CFS Algorithm for Clustering Big Data Moble Informaton Systems Volume 26, Artcle ID 435627, 8 pages http://dx.do.org/.55/26/435627 Research Artcle A Hgh-Order Algorthm for Clusterng Bg Data Fanyu Bu,,2 Zhku Chen, Peng L, Tong Tang, 3 andyngzhang

More information

Optimizing SVR using Local Best PSO for Software Effort Estimation

Optimizing SVR using Local Best PSO for Software Effort Estimation Journal of Informaton Technology and Computer Scence Volume 1, Number 1, 2016, pp. 28 37 Journal Homepage: www.jtecs.ub.ac.d Optmzng SVR usng Local Best PSO for Software Effort Estmaton Dnda Novtasar 1,

More information

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour 6.854 Advanced Algorthms Petar Maymounkov Problem Set 11 (November 23, 2005) Wth: Benjamn Rossman, Oren Wemann, and Pouya Kheradpour Problem 1. We reduce vertex cover to MAX-SAT wth weghts, such that the

More information

Unsupervised Learning

Unsupervised Learning Pattern Recognton Lecture 8 Outlne Introducton Unsupervsed Learnng Parametrc VS Non-Parametrc Approach Mxture of Denstes Maxmum-Lkelhood Estmates Clusterng Prof. Danel Yeung School of Computer Scence and

More information

Maximum Variance Combined with Adaptive Genetic Algorithm for Infrared Image Segmentation

Maximum Variance Combined with Adaptive Genetic Algorithm for Infrared Image Segmentation Internatonal Conference on Logstcs Engneerng, Management and Computer Scence (LEMCS 5) Maxmum Varance Combned wth Adaptve Genetc Algorthm for Infrared Image Segmentaton Huxuan Fu College of Automaton Harbn

More information

Research and Application of Fingerprint Recognition Based on MATLAB

Research and Application of Fingerprint Recognition Based on MATLAB Send Orders for Reprnts to reprnts@benthamscence.ae The Open Automaton and Control Systems Journal, 205, 7, 07-07 Open Access Research and Applcaton of Fngerprnt Recognton Based on MATLAB Nng Lu* Department

More information

Quality Improvement Algorithm for Tetrahedral Mesh Based on Optimal Delaunay Triangulation

Quality Improvement Algorithm for Tetrahedral Mesh Based on Optimal Delaunay Triangulation Intellgent Informaton Management, 013, 5, 191-195 Publshed Onlne November 013 (http://www.scrp.org/journal/m) http://dx.do.org/10.36/m.013.5601 Qualty Improvement Algorthm for Tetrahedral Mesh Based on

More information

Image Segmentation of Thermal Waving Inspection based on Particle Swarm Optimization Fuzzy Clustering Algorithm

Image Segmentation of Thermal Waving Inspection based on Particle Swarm Optimization Fuzzy Clustering Algorithm 0.478/v0048-0-004-6 Image Segmentaton of Thermal Wavng Inspecton based on Partcle Swarm Optmzaton Fuzzy Clusterng Algorthm Jn Guofeng, Zhang We, Yang Zhengwe, Huang Zhyong, Song Yuanja, Wang Dongdong,

More information

An Approach for Recommender System by Combining Collaborative Filtering with User Demographics and Items Genres

An Approach for Recommender System by Combining Collaborative Filtering with User Demographics and Items Genres Volume 18 No.13, October 015 An Approach for Recommender System by Combnng Collaboratve Flterng wth User Demographcs and Items Genres Saurabh Kumar Twar Department of Informaton Technology Samrat Ashok

More information

A Load-balancing and Energy-aware Clustering Algorithm in Wireless Ad-hoc Networks

A Load-balancing and Energy-aware Clustering Algorithm in Wireless Ad-hoc Networks A Load-balancng and Energy-aware Clusterng Algorthm n Wreless Ad-hoc Networks Wang Jn, Shu Le, Jnsung Cho, Young-Koo Lee, Sungyoung Lee, Yonl Zhong Department of Computer Engneerng Kyung Hee Unversty,

More information

Keywords - Wep page classification; bag of words model; topic model; hierarchical classification; Support Vector Machines

Keywords - Wep page classification; bag of words model; topic model; hierarchical classification; Support Vector Machines (IJCSIS) Internatonal Journal of Computer Scence and Informaton Securty, Herarchcal Web Page Classfcaton Based on a Topc Model and Neghborng Pages Integraton Wongkot Srura Phayung Meesad Choochart Haruechayasak

More information

HCMX: AN EFFICIENT HYBRID CLUSTERING APPROACH FOR MULTI-VERSION XML DOCUMENTS

HCMX: AN EFFICIENT HYBRID CLUSTERING APPROACH FOR MULTI-VERSION XML DOCUMENTS HCMX: AN EFFICIENT HYBRID CLUSTERING APPROACH FOR MULTI-VERSION XML DOCUMENTS VIJAY SONAWANE 1, D.RAJESWARA.RAO 2 1 Research Scholar, Department of CSE, K.L.Unversty, Green Felds, Guntur, Andhra Pradesh

More information

HU Sheng-neng* Resources and Electric Power,Zhengzhou ,China

HU Sheng-neng* Resources and Electric Power,Zhengzhou ,China do:10.21311/002.31.6.09 Applcaton of new neural network technology n traffc volume predcton Abstract HU Sheng-neng* 1 School of Cvl Engneerng &Communcaton, North Chna Unversty of Water Resources and Electrc

More information

CS 534: Computer Vision Model Fitting

CS 534: Computer Vision Model Fitting CS 534: Computer Vson Model Fttng Sprng 004 Ahmed Elgammal Dept of Computer Scence CS 534 Model Fttng - 1 Outlnes Model fttng s mportant Least-squares fttng Maxmum lkelhood estmaton MAP estmaton Robust

More information