Learning the Kernel Parameters in Kernel Minimum Distance Classifier

Size: px
Start display at page:

Download "Learning the Kernel Parameters in Kernel Minimum Distance Classifier"

Transcription

1 Learnng the Kernel Parameters n Kernel Mnmum Dstance Classfer Daoqang Zhang 1,, Songcan Chen and Zh-Hua Zhou 1* 1 Natonal Laboratory for Novel Software Technology Nanjng Unversty, Nanjng 193, Chna Department of Computer Scence and Engneerng Nanjng Unversty of Aeronautcs and Astronautcs, Nanjng 116, Chna Abstract Choosng approprate values for kernel parameters s one of the key problems n many kernel-based methods because the values of these parameters have sgnfcant mpact on the performances of these methods. In ths paper, a novel approach s proposed to learn the kernel parameters n kernel mnmum dstance (KMD) classfer, where the values of the kernel parameters are computed through optmzng an objectve functon desgned for measurng the classfcaton relablty of KMD. Experments on both artfcal and real-world datasets show that the proposed approach works well on learnng kernel parameters of KMD. Keywords: Kernel mnmum dstance; kernel parameter optmzaton; kernel selecton 1. Introducton Mnmum dstance (MD) and nearest neghbor (NN) are smple but popular technques n pattern recognton. Recently, both methods have been extended to kernel versons,.e. the kernel mnmum dstance (KMD) and kernel nearest neghbor (KNN), for classfyng complex and nonlnear patterns such as faces [1], []. However, lke other kernel-based methods, the performance of KMD and KNN s greatly affected by the selecton of kernel parameters values. In ths paper, we focus on optmzng the kernel parameters for KMD. In the lterature, there are two wdely used approaches n choosng the values of kernel parameters n kernel-based methods [1], [3], [4]. The frst approach emprcally chooses a seres of canddate values for the kernel parameter, executes the concerned method under these values agan * Correspondng author. Emal: zhouzh@nju.edu.cn, Tel.: , Fax:

2 and agan, and selects the one correspondng to the best performance as the fnal kernel parameter value. However, ths approach suffers from the fact that only a very lmted canddate values are consdered, therefore the performance of the kernel-based methods may not be optmzed. The second approach s the well-known cross-valdaton, whch s also wdely used n model selecton. Compared wth the frst approach, cross-valdaton often yelds better performance because t searches the optmal value for kernel parameter n a much wder range. However, performng cross-valdaton s often tme-consumng and hence t cannot be used to adjust the kernel parameters n real tme [3]. Furthermore, when there are only a lmted number of tranng examples, the cross-valdaton approach can hardly ensure robust estmaton. In ths paper, a novel approach s proposed to learn the kernel parameters n KMD. At frst an objectve functon s defned to measure the classfcaton relablty of KMD wth dfferent kernel parameters. Then, the optmal values of the kernel parameters are chosen through optmzng the above defned objectve functon. Experments on both artfcal and real-world datasets show the effect of the proposed approach on learnng kernel parameters n KMD.. Kernel mnmum dstance classfer One of the key ngredents of KMD s the defnton of kernel-nduced dstance measures. Gven a data set S { x x } =,..., 1 l sampled from the nput space X, a kernel K(x,y) and a functon Φ n a feature space satsfy K(x,y) = Φ(x) T Φ(y). An mportant property of the kernel s that t can be drectly constructed n the orgnal nput space wthout knowng the concrete form of Φ. That s, a kernel mplctly defnes a nonlnear mappng functon. There are several typcal kernels, e.g. the Gaussan kernel x y d K( x, y) = exp, the polynomal kernel Kxy (, ) = ( xy T + 1), etc. The kernel-nduced dstance between two ponts defned by a kernel K s shown n Eq. (1). d x y x y K x x K x y K y y (, ) = Φ( ) Φ ( ) = (, ) (, ) + (, ). (1) Suppose the tranng data set S contans c dfferent classes,.e. S1, S,..., Sc, and each class S has l samples, satsfyng under the map Φ, and denote the centre of c l = l. Let ( S ) { ( x ) x } j j = 1 Φ = Φ S be the mage of class Φ ( S ) as S

3 1 Φ S = ( x ) Φ j. () l xj S Then, the dstance between the mage of a new pont x and the centre of class Φ S can be computed as d ( Φ( x), Φ ) = Φ( x) Φ S S T T T =Φ ( x) Φ ( x) +Φ Φ Φ ( x) Φ S S S 1 = K( xx, ) + Kx (, x) Kxx (, ) j k j l xj, xk S l xj S (3) Accordng to Eq. (3), the classfcaton rule n KMD s to assgn the new pont x to the class wth the smallest dstance: 1 c { } hx ( ) = argmn d ( Φ( x), Φ ) (4) S 3. The proposed method The followng objectve functon s defned to measure the classfcaton relablty of KMD wth dfferent kernel parameters: J d ( Φ( x ), Φ ) π ( ) (5) ( d Φ x ΦS ) j l S ( θ ) = exp = 1 mn ( ( ), ) 1 j c j π () Here θ denotes the kernel parameters, and π () denotes the class label of x. The ntuton behnd Eq. (5) s to make the dstance between the mage of a sample and the centre of ts correspondng class as small as possble, whle to make the dstance between the mage of the sample to other classes as large as possble. The smaller the value of the objectve functon, the hgher the classfcaton relablty. Here the exponental functon s used for speedng up the convergence of optmzaton. Note that when d ( ( x), S ) mn ( d ( ( x ), )) π ( ) S Φ Φ < Φ Φ j, the sample x s correctly classfed. 1 j c j π () Equaton (5) specfes that the optmal value for a kernel parameter should not only correctly classfy the tranng data, but also make the classfcaton relablty as hgh as possble. In the extreme case where d ( Φ ( x ), Φ ) = Sπ and mn ( d ) ( Φ( x ), ) () Φ S j = for each x, the hghest classfcaton relablty s obtaned. 1 j c j π () 3

4 The optmal values of the kernel parameters can be obtaned through mnmzng Eq. (5),.e. In ths paper, an teratve algorthm s employed to generate * θ = arg mn J ( θ ). (6) θ * θ. Accordng to the general gradent method, the updatng equaton for mnmzng the objectve functon J s gven by Where η s the learnng rate and ( n+ 1) ( n) J θ = θ + η θ n s the teraton step. (7) The proposed method KMD-opt s summarzed as follows: Step 1. Set the learnng rateη and the maxmum teraton number N, and set ε to a very small postve number. Step. Intalze the kernel parameters θ () = θ and set the teraton step n =. Step 3. Update the kernel parameters ( n) θ usng Eq. (7). Step 4. If ( n+ 1) ( n) θ θ < ε or n N, stop. Otherwse, set n= n+ 1, goto Step Experments Ths secton evaluates the effectveness of the proposed KMD-opt method. For comparson, the MD and KMD are also tested. An artfcal data set Crcles, as shown n Fg. 1, and two real-world data sets Bupa and Pd from UCI Machne Learnng Repostory [5] are used. For each data set, half of data are used as the tranng data set, whle the remanng data are used as the test data set. The kernel used n the experments s the Gaussan kernel x y K( x, y) = exp, where s the kernel parameter that should be optmzed. In ths paper, f wthout explct explanatons, the ntal value for the kernel parameter s set to l 1 x j 1 j x = = c l, where x s the centrod of the total l tranng data. Specfcally, the values for Crcles, Bupa and Pd are.33, 17.6 and respectvely. The learnng rate η s set to.5 and ε s set to.1 wthout extra explanatons. Table 1 shows the test accuraces of MD, KMD and KMD-opt. The values are also presented. Table 1 shows that n most cases KMD obtans better test accuracy than MD, but when the kernel parameter s not chosen approprately ts performance deterorates greatly. In all cases, 4

5 KMD-opt acheves the best test accuracy. What s more, from Table 1, t can be found the KMD-opt method s qute robust because on every data set, the fnal s t produced are almost wth the same value although the method s wth dfferent ntalzatons. As an example, the left part of Fg. plots the test accuracy of KMD under a seres of values on Bupa. It verfes the clam that a good performance of KMD greatly depends on the selecton of kernel parameters. The rght part of Fg. plots the objectve functon n Eq. (5) under a seres of values on Bupa. It can be seen from Fg. that the objectve functon reaches ts mnmum at smlar values as those at whch KMD acheves ts hghest accuracy. 5. Conclusons In ths paper, a novel approach for learnng the kernel parameters s proposed and successfully appled to the kernel mnmum dstance (KMD) classfer. An objectve functon s defned to measure the classfcaton relablty of KMD wth dfferent kernel parameters, and then the optmal values of the kernel parameters are obtaned by optmzng the objectve functon. Experments show the effect of the proposed approach on learnng kernel parameters n KMD. In future works, the proposed approach wll be extended for other kernel-based learnng methods such as support vector machne (SVM) and kernel fsher dscrmnate (KFD). References [1] J. Peng, D.R. Hesterkamp, H.K. Da, Adaptve quasconformal kernel nearest neghbor classfcaton, IEEE Trans. PAMI 6 (5) (4) [] J. Shawe-Taylor, N. Crstann, Kernel methods for pattern analyss, Cambrdge Unversty Press, 4. [3] L. Wang, K.L. Chan, Learnng kernel parameters by usng class separablty measure, NIPS Workshop on Kernel Machnes, Canada,. [4] D.Q. Zhang, S.C. Chen, Clusterng ncomplete data usng kernel-based fuzzy c-means algorthm, Neural Processng Letters 18(3) (3) [5] C. Blake, E. Keogh, and C.J. Merz, UCI repostory of machne learnng databases [ Department of Informaton and Computer Scence, Unversty of Calforna, Irvne, CA,

6 Fg. 1. The Crcles data set Fg.. Test accuracy (left) and objectve functon values (rght) under a seres of values on Bupa. Table 1. Comparsons of test accuracy (%) of MD, KMD and KMD-opt (the values n the brackets denote the values at convergence). Data sets MD KMD KMD-opt 3 / /3 3 / /3 Crcles (3.43) 1(3.43) 1(3.43) 1(3.43) 1(3.43) Bupa (16.55) 69.14(16.55) 69.14(16.55) 69.14(16.54) 69.14(16.54) Pd (41.45) 65.63(41.45) 65.63(41.45) 65.63(41.45) 65.63(41.45) 6

Classifier Selection Based on Data Complexity Measures *

Classifier Selection Based on Data Complexity Measures * Classfer Selecton Based on Data Complexty Measures * Edth Hernández-Reyes, J.A. Carrasco-Ochoa, and J.Fco. Martínez-Trndad Natonal Insttute for Astrophyscs, Optcs and Electroncs, Lus Enrque Erro No.1 Sta.

More information

The Research of Support Vector Machine in Agricultural Data Classification

The Research of Support Vector Machine in Agricultural Data Classification The Research of Support Vector Machne n Agrcultural Data Classfcaton Le Sh, Qguo Duan, Xnmng Ma, Me Weng College of Informaton and Management Scence, HeNan Agrcultural Unversty, Zhengzhou 45000 Chna Zhengzhou

More information

Support Vector Machines

Support Vector Machines /9/207 MIST.6060 Busness Intellgence and Data Mnng What are Support Vector Machnes? Support Vector Machnes Support Vector Machnes (SVMs) are supervsed learnng technques that analyze data and recognze patterns.

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Decson surface s a hyperplane (lne n 2D) n feature space (smlar to the Perceptron) Arguably, the most mportant recent dscovery n machne learnng In a nutshell: map the data to a predetermned

More information

A Binarization Algorithm specialized on Document Images and Photos

A Binarization Algorithm specialized on Document Images and Photos A Bnarzaton Algorthm specalzed on Document mages and Photos Ergna Kavalleratou Dept. of nformaton and Communcaton Systems Engneerng Unversty of the Aegean kavalleratou@aegean.gr Abstract n ths paper, a

More information

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning Outlne Artfcal Intellgence and ts applcatons Lecture 8 Unsupervsed Learnng Professor Danel Yeung danyeung@eee.org Dr. Patrck Chan patrckchan@eee.org South Chna Unversty of Technology, Chna Introducton

More information

Hermite Splines in Lie Groups as Products of Geodesics

Hermite Splines in Lie Groups as Products of Geodesics Hermte Splnes n Le Groups as Products of Geodescs Ethan Eade Updated May 28, 2017 1 Introducton 1.1 Goal Ths document defnes a curve n the Le group G parametrzed by tme and by structural parameters n the

More information

Machine Learning 9. week

Machine Learning 9. week Machne Learnng 9. week Mappng Concept Radal Bass Functons (RBF) RBF Networks 1 Mappng It s probably the best scenaro for the classfcaton of two dataset s to separate them lnearly. As you see n the below

More information

Network Intrusion Detection Based on PSO-SVM

Network Intrusion Detection Based on PSO-SVM TELKOMNIKA Indonesan Journal of Electrcal Engneerng Vol.1, No., February 014, pp. 150 ~ 1508 DOI: http://dx.do.org/10.11591/telkomnka.v1.386 150 Network Intruson Detecton Based on PSO-SVM Changsheng Xang*

More information

Unsupervised Learning

Unsupervised Learning Pattern Recognton Lecture 8 Outlne Introducton Unsupervsed Learnng Parametrc VS Non-Parametrc Approach Mxture of Denstes Maxmum-Lkelhood Estmates Clusterng Prof. Danel Yeung School of Computer Scence and

More information

BOOSTING CLASSIFICATION ACCURACY WITH SAMPLES CHOSEN FROM A VALIDATION SET

BOOSTING CLASSIFICATION ACCURACY WITH SAMPLES CHOSEN FROM A VALIDATION SET 1 BOOSTING CLASSIFICATION ACCURACY WITH SAMPLES CHOSEN FROM A VALIDATION SET TZU-CHENG CHUANG School of Electrcal and Computer Engneerng, Purdue Unversty, West Lafayette, Indana 47907 SAUL B. GELFAND School

More information

Determining the Optimal Bandwidth Based on Multi-criterion Fusion

Determining the Optimal Bandwidth Based on Multi-criterion Fusion Proceedngs of 01 4th Internatonal Conference on Machne Learnng and Computng IPCSIT vol. 5 (01) (01) IACSIT Press, Sngapore Determnng the Optmal Bandwdth Based on Mult-crteron Fuson Ha-L Lang 1+, Xan-Mn

More information

12/2/2009. Announcements. Parametric / Non-parametric. Case-Based Reasoning. Nearest-Neighbor on Images. Nearest-Neighbor Classification

12/2/2009. Announcements. Parametric / Non-parametric. Case-Based Reasoning. Nearest-Neighbor on Images. Nearest-Neighbor Classification Introducton to Artfcal Intellgence V22.0472-001 Fall 2009 Lecture 24: Nearest-Neghbors & Support Vector Machnes Rob Fergus Dept of Computer Scence, Courant Insttute, NYU Sldes from Danel Yeung, John DeNero

More information

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique //00 :0 AM Outlne and Readng The Greedy Method The Greedy Method Technque (secton.) Fractonal Knapsack Problem (secton..) Task Schedulng (secton..) Mnmum Spannng Trees (secton.) Change Money Problem Greedy

More information

Learning a Class-Specific Dictionary for Facial Expression Recognition

Learning a Class-Specific Dictionary for Facial Expression Recognition BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 4 Sofa 016 Prnt ISSN: 1311-970; Onlne ISSN: 1314-4081 DOI: 10.1515/cat-016-0067 Learnng a Class-Specfc Dctonary for

More information

Outline. Discriminative classifiers for image recognition. Where in the World? A nearest neighbor recognition example 4/14/2011. CS 376 Lecture 22 1

Outline. Discriminative classifiers for image recognition. Where in the World? A nearest neighbor recognition example 4/14/2011. CS 376 Lecture 22 1 4/14/011 Outlne Dscrmnatve classfers for mage recognton Wednesday, Aprl 13 Krsten Grauman UT-Austn Last tme: wndow-based generc obect detecton basc ppelne face detecton wth boostng as case study Today:

More information

Term Weighting Classification System Using the Chi-square Statistic for the Classification Subtask at NTCIR-6 Patent Retrieval Task

Term Weighting Classification System Using the Chi-square Statistic for the Classification Subtask at NTCIR-6 Patent Retrieval Task Proceedngs of NTCIR-6 Workshop Meetng, May 15-18, 2007, Tokyo, Japan Term Weghtng Classfcaton System Usng the Ch-square Statstc for the Classfcaton Subtask at NTCIR-6 Patent Retreval Task Kotaro Hashmoto

More information

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour 6.854 Advanced Algorthms Petar Maymounkov Problem Set 11 (November 23, 2005) Wth: Benjamn Rossman, Oren Wemann, and Pouya Kheradpour Problem 1. We reduce vertex cover to MAX-SAT wth weghts, such that the

More information

Machine Learning. Support Vector Machines. (contains material adapted from talks by Constantin F. Aliferis & Ioannis Tsamardinos, and Martin Law)

Machine Learning. Support Vector Machines. (contains material adapted from talks by Constantin F. Aliferis & Ioannis Tsamardinos, and Martin Law) Machne Learnng Support Vector Machnes (contans materal adapted from talks by Constantn F. Alfers & Ioanns Tsamardnos, and Martn Law) Bryan Pardo, Machne Learnng: EECS 349 Fall 2014 Support Vector Machnes

More information

Smoothing Spline ANOVA for variable screening

Smoothing Spline ANOVA for variable screening Smoothng Splne ANOVA for varable screenng a useful tool for metamodels tranng and mult-objectve optmzaton L. Rcco, E. Rgon, A. Turco Outlne RSM Introducton Possble couplng Test case MOO MOO wth Game Theory

More information

Face Recognition University at Buffalo CSE666 Lecture Slides Resources:

Face Recognition University at Buffalo CSE666 Lecture Slides Resources: Face Recognton Unversty at Buffalo CSE666 Lecture Sldes Resources: http://www.face-rec.org/algorthms/ Overvew of face recognton algorthms Correlaton - Pxel based correspondence between two face mages Structural

More information

Incremental Learning with Support Vector Machines and Fuzzy Set Theory

Incremental Learning with Support Vector Machines and Fuzzy Set Theory The 25th Workshop on Combnatoral Mathematcs and Computaton Theory Incremental Learnng wth Support Vector Machnes and Fuzzy Set Theory Yu-Mng Chuang 1 and Cha-Hwa Ln 2* 1 Department of Computer Scence and

More information

SHAPE RECOGNITION METHOD BASED ON THE k-nearest NEIGHBOR RULE

SHAPE RECOGNITION METHOD BASED ON THE k-nearest NEIGHBOR RULE SHAPE RECOGNITION METHOD BASED ON THE k-nearest NEIGHBOR RULE Dorna Purcaru Faculty of Automaton, Computers and Electroncs Unersty of Craoa 13 Al. I. Cuza Street, Craoa RO-1100 ROMANIA E-mal: dpurcaru@electroncs.uc.ro

More information

Outline. Self-Organizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like:

Outline. Self-Organizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like: Self-Organzng Maps (SOM) Turgay İBRİKÇİ, PhD. Outlne Introducton Structures of SOM SOM Archtecture Neghborhoods SOM Algorthm Examples Summary 1 2 Unsupervsed Hebban Learnng US Hebban Learnng, Cntd 3 A

More information

Human Face Recognition Using Generalized. Kernel Fisher Discriminant

Human Face Recognition Using Generalized. Kernel Fisher Discriminant Human Face Recognton Usng Generalzed Kernel Fsher Dscrmnant ng-yu Sun,2 De-Shuang Huang Ln Guo. Insttute of Intellgent Machnes, Chnese Academy of Scences, P.O.ox 30, Hefe, Anhu, Chna. 2. Department of

More information

Edge Detection in Noisy Images Using the Support Vector Machines

Edge Detection in Noisy Images Using the Support Vector Machines Edge Detecton n Nosy Images Usng the Support Vector Machnes Hlaro Gómez-Moreno, Saturnno Maldonado-Bascón, Francsco López-Ferreras Sgnal Theory and Communcatons Department. Unversty of Alcalá Crta. Madrd-Barcelona

More information

A fast algorithm for color image segmentation

A fast algorithm for color image segmentation Unersty of Wollongong Research Onlne Faculty of Informatcs - Papers (Arche) Faculty of Engneerng and Informaton Scences 006 A fast algorthm for color mage segmentaton L. Dong Unersty of Wollongong, lju@uow.edu.au

More information

A Fast Visual Tracking Algorithm Based on Circle Pixels Matching

A Fast Visual Tracking Algorithm Based on Circle Pixels Matching A Fast Vsual Trackng Algorthm Based on Crcle Pxels Matchng Zhqang Hou hou_zhq@sohu.com Chongzhao Han czhan@mal.xjtu.edu.cn Ln Zheng Abstract: A fast vsual trackng algorthm based on crcle pxels matchng

More information

BAYESIAN MULTI-SOURCE DOMAIN ADAPTATION

BAYESIAN MULTI-SOURCE DOMAIN ADAPTATION BAYESIAN MULTI-SOURCE DOMAIN ADAPTATION SHI-LIANG SUN, HONG-LEI SHI Department of Computer Scence and Technology, East Chna Normal Unversty 500 Dongchuan Road, Shangha 200241, P. R. Chna E-MAIL: slsun@cs.ecnu.edu.cn,

More information

MULTISPECTRAL IMAGES CLASSIFICATION BASED ON KLT AND ATR AUTOMATIC TARGET RECOGNITION

MULTISPECTRAL IMAGES CLASSIFICATION BASED ON KLT AND ATR AUTOMATIC TARGET RECOGNITION MULTISPECTRAL IMAGES CLASSIFICATION BASED ON KLT AND ATR AUTOMATIC TARGET RECOGNITION Paulo Quntlano 1 & Antono Santa-Rosa 1 Federal Polce Department, Brasla, Brazl. E-mals: quntlano.pqs@dpf.gov.br and

More information

Collaboratively Regularized Nearest Points for Set Based Recognition

Collaboratively Regularized Nearest Points for Set Based Recognition Academc Center for Computng and Meda Studes, Kyoto Unversty Collaboratvely Regularzed Nearest Ponts for Set Based Recognton Yang Wu, Mchhko Mnoh, Masayuk Mukunok Kyoto Unversty 9/1/013 BMVC 013 @ Brstol,

More information

Classification / Regression Support Vector Machines

Classification / Regression Support Vector Machines Classfcaton / Regresson Support Vector Machnes Jeff Howbert Introducton to Machne Learnng Wnter 04 Topcs SVM classfers for lnearly separable classes SVM classfers for non-lnearly separable classes SVM

More information

Active Contours/Snakes

Active Contours/Snakes Actve Contours/Snakes Erkut Erdem Acknowledgement: The sldes are adapted from the sldes prepared by K. Grauman of Unversty of Texas at Austn Fttng: Edges vs. boundares Edges useful sgnal to ndcate occludng

More information

Cluster Analysis of Electrical Behavior

Cluster Analysis of Electrical Behavior Journal of Computer and Communcatons, 205, 3, 88-93 Publshed Onlne May 205 n ScRes. http://www.scrp.org/ournal/cc http://dx.do.org/0.4236/cc.205.350 Cluster Analyss of Electrcal Behavor Ln Lu Ln Lu, School

More information

Backpropagation: In Search of Performance Parameters

Backpropagation: In Search of Performance Parameters Bacpropagaton: In Search of Performance Parameters ANIL KUMAR ENUMULAPALLY, LINGGUO BU, and KHOSROW KAIKHAH, Ph.D. Computer Scence Department Texas State Unversty-San Marcos San Marcos, TX-78666 USA ae049@txstate.edu,

More information

An Optimal Algorithm for Prufer Codes *

An Optimal Algorithm for Prufer Codes * J. Software Engneerng & Applcatons, 2009, 2: 111-115 do:10.4236/jsea.2009.22016 Publshed Onlne July 2009 (www.scrp.org/journal/jsea) An Optmal Algorthm for Prufer Codes * Xaodong Wang 1, 2, Le Wang 3,

More information

Fast Feature Value Searching for Face Detection

Fast Feature Value Searching for Face Detection Vol., No. 2 Computer and Informaton Scence Fast Feature Value Searchng for Face Detecton Yunyang Yan Department of Computer Engneerng Huayn Insttute of Technology Hua an 22300, Chna E-mal: areyyyke@63.com

More information

A Semi-Supervised Approach Based on k-nearest Neighbor

A Semi-Supervised Approach Based on k-nearest Neighbor 768 JOURNAL OF SOFTWARE, VOL. 8, NO. 4, APRIL 03 A Sem-Supervsed Approach Based on k-nearest Neghbor Zhlang Lu School of Automaton Engneerng, Unversty of Electronc Scence and Technology of Chna, Chengdu,

More information

Virtual Machine Migration based on Trust Measurement of Computer Node

Virtual Machine Migration based on Trust Measurement of Computer Node Appled Mechancs and Materals Onlne: 2014-04-04 ISSN: 1662-7482, Vols. 536-537, pp 678-682 do:10.4028/www.scentfc.net/amm.536-537.678 2014 Trans Tech Publcatons, Swtzerland Vrtual Machne Mgraton based on

More information

The Study of Remote Sensing Image Classification Based on Support Vector Machine

The Study of Remote Sensing Image Classification Based on Support Vector Machine Sensors & Transducers 03 by IFSA http://www.sensorsportal.com The Study of Remote Sensng Image Classfcaton Based on Support Vector Machne, ZHANG Jan-Hua Key Research Insttute of Yellow Rver Cvlzaton and

More information

Training of Kernel Fuzzy Classifiers by Dynamic Cluster Generation

Training of Kernel Fuzzy Classifiers by Dynamic Cluster Generation Tranng of Kernel Fuzzy Classfers by Dynamc Cluster Generaton Shgeo Abe Graduate School of Scence and Technology Kobe Unversty Nada, Kobe, Japan abe@eedept.kobe-u.ac.jp Abstract We dscuss kernel fuzzy classfers

More information

Maximum Variance Combined with Adaptive Genetic Algorithm for Infrared Image Segmentation

Maximum Variance Combined with Adaptive Genetic Algorithm for Infrared Image Segmentation Internatonal Conference on Logstcs Engneerng, Management and Computer Scence (LEMCS 5) Maxmum Varance Combned wth Adaptve Genetc Algorthm for Infrared Image Segmentaton Huxuan Fu College of Automaton Harbn

More information

Classifying Acoustic Transient Signals Using Artificial Intelligence

Classifying Acoustic Transient Signals Using Artificial Intelligence Classfyng Acoustc Transent Sgnals Usng Artfcal Intellgence Steve Sutton, Unversty of North Carolna At Wlmngton (suttons@charter.net) Greg Huff, Unversty of North Carolna At Wlmngton (jgh7476@uncwl.edu)

More information

Fitting: Deformable contours April 26 th, 2018

Fitting: Deformable contours April 26 th, 2018 4/6/08 Fttng: Deformable contours Aprl 6 th, 08 Yong Jae Lee UC Davs Recap so far: Groupng and Fttng Goal: move from array of pxel values (or flter outputs) to a collecton of regons, objects, and shapes.

More information

Parallelism for Nested Loops with Non-uniform and Flow Dependences

Parallelism for Nested Loops with Non-uniform and Flow Dependences Parallelsm for Nested Loops wth Non-unform and Flow Dependences Sam-Jn Jeong Dept. of Informaton & Communcaton Engneerng, Cheonan Unversty, 5, Anseo-dong, Cheonan, Chungnam, 330-80, Korea. seong@cheonan.ac.kr

More information

Face Recognition Method Based on Within-class Clustering SVM

Face Recognition Method Based on Within-class Clustering SVM Face Recognton Method Based on Wthn-class Clusterng SVM Yan Wu, Xao Yao and Yng Xa Department of Computer Scence and Engneerng Tong Unversty Shangha, Chna Abstract - A face recognton method based on Wthn-class

More information

Tsinghua University at TAC 2009: Summarizing Multi-documents by Information Distance

Tsinghua University at TAC 2009: Summarizing Multi-documents by Information Distance Tsnghua Unversty at TAC 2009: Summarzng Mult-documents by Informaton Dstance Chong Long, Mnle Huang, Xaoyan Zhu State Key Laboratory of Intellgent Technology and Systems, Tsnghua Natonal Laboratory for

More information

Spam Filtering Based on Support Vector Machines with Taguchi Method for Parameter Selection

Spam Filtering Based on Support Vector Machines with Taguchi Method for Parameter Selection E-mal Spam Flterng Based on Support Vector Machnes wth Taguch Method for Parameter Selecton We-Chh Hsu, Tsan-Yng Yu E-mal Spam Flterng Based on Support Vector Machnes wth Taguch Method for Parameter Selecton

More information

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points;

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points; Subspace clusterng Clusterng Fundamental to all clusterng technques s the choce of dstance measure between data ponts; D q ( ) ( ) 2 x x = x x, j k = 1 k jk Squared Eucldean dstance Assumpton: All features

More information

Lecture 5: Multilayer Perceptrons

Lecture 5: Multilayer Perceptrons Lecture 5: Multlayer Perceptrons Roger Grosse 1 Introducton So far, we ve only talked about lnear models: lnear regresson and lnear bnary classfers. We noted that there are functons that can t be represented

More information

NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS

NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS ARPN Journal of Engneerng and Appled Scences 006-017 Asan Research Publshng Network (ARPN). All rghts reserved. NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS Igor Grgoryev, Svetlana

More information

An efficient method to build panoramic image mosaics

An efficient method to build panoramic image mosaics An effcent method to buld panoramc mage mosacs Pattern Recognton Letters vol. 4 003 Dae-Hyun Km Yong-In Yoon Jong-Soo Cho School of Electrcal Engneerng and Computer Scence Kyungpook Natonal Unv. Abstract

More information

Three supervised learning methods on pen digits character recognition dataset

Three supervised learning methods on pen digits character recognition dataset Three supervsed learnng methods on pen dgts character recognton dataset Chrs Flezach Department of Computer Scence and Engneerng Unversty of Calforna, San Dego San Dego, CA 92093 cflezac@cs.ucsd.edu Satoru

More information

2x x l. Module 3: Element Properties Lecture 4: Lagrange and Serendipity Elements

2x x l. Module 3: Element Properties Lecture 4: Lagrange and Serendipity Elements Module 3: Element Propertes Lecture : Lagrange and Serendpty Elements 5 In last lecture note, the nterpolaton functons are derved on the bass of assumed polynomal from Pascal s trangle for the fled varable.

More information

Research of Neural Network Classifier Based on FCM and PSO for Breast Cancer Classification

Research of Neural Network Classifier Based on FCM and PSO for Breast Cancer Classification Research of Neural Network Classfer Based on FCM and PSO for Breast Cancer Classfcaton Le Zhang 1, Ln Wang 1, Xujewen Wang 2, Keke Lu 2, and Ajth Abraham 3 1 Shandong Provncal Key Laboratory of Network

More information

Discriminative Dictionary Learning with Pairwise Constraints

Discriminative Dictionary Learning with Pairwise Constraints Dscrmnatve Dctonary Learnng wth Parwse Constrants Humn Guo Zhuoln Jang LARRY S. DAVIS UNIVERSITY OF MARYLAND Nov. 6 th, Outlne Introducton/motvaton Dctonary Learnng Dscrmnatve Dctonary Learnng wth Parwse

More information

Efficient Text Classification by Weighted Proximal SVM *

Efficient Text Classification by Weighted Proximal SVM * Effcent ext Classfcaton by Weghted Proxmal SVM * Dong Zhuang 1, Benyu Zhang, Qang Yang 3, Jun Yan 4, Zheng Chen, Yng Chen 1 1 Computer Scence and Engneerng, Bejng Insttute of echnology, Bejng 100081, Chna

More information

An Evaluation of Divide-and-Combine Strategies for Image Categorization by Multi-Class Support Vector Machines

An Evaluation of Divide-and-Combine Strategies for Image Categorization by Multi-Class Support Vector Machines An Evaluaton of Dvde-and-Combne Strateges for Image Categorzaton by Mult-Class Support Vector Machnes C. Demrkesen¹ and H. Cherf¹, ² 1: Insttue of Scence and Engneerng 2: Faculté des Scences Mrande Galatasaray

More information

LECTURE : MANIFOLD LEARNING

LECTURE : MANIFOLD LEARNING LECTURE : MANIFOLD LEARNING Rta Osadchy Some sldes are due to L.Saul, V. C. Raykar, N. Verma Topcs PCA MDS IsoMap LLE EgenMaps Done! Dmensonalty Reducton Data representaton Inputs are real-valued vectors

More information

Kent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT-16. Dynamic Programming

Kent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT-16. Dynamic Programming CS 4/560 Desgn and Analyss of Algorthms Kent State Unversty Dept. of Math & Computer Scence LECT-6 Dynamc Programmng 2 Dynamc Programmng Dynamc Programmng, lke the dvde-and-conquer method, solves problems

More information

SIGGRAPH Interactive Image Cutout. Interactive Graph Cut. Interactive Graph Cut. Interactive Graph Cut. Hard Constraints. Lazy Snapping.

SIGGRAPH Interactive Image Cutout. Interactive Graph Cut. Interactive Graph Cut. Interactive Graph Cut. Hard Constraints. Lazy Snapping. SIGGRAPH 004 Interactve Image Cutout Lazy Snappng Yn L Jan Sun Ch-Keung Tang Heung-Yeung Shum Mcrosoft Research Asa Hong Kong Unversty Separate an object from ts background Compose the object on another

More information

CHAPTER 3 SEQUENTIAL MINIMAL OPTIMIZATION TRAINED SUPPORT VECTOR CLASSIFIER FOR CANCER PREDICTION

CHAPTER 3 SEQUENTIAL MINIMAL OPTIMIZATION TRAINED SUPPORT VECTOR CLASSIFIER FOR CANCER PREDICTION 48 CHAPTER 3 SEQUENTIAL MINIMAL OPTIMIZATION TRAINED SUPPORT VECTOR CLASSIFIER FOR CANCER PREDICTION 3.1 INTRODUCTION The raw mcroarray data s bascally an mage wth dfferent colors ndcatng hybrdzaton (Xue

More information

An Image Fusion Approach Based on Segmentation Region

An Image Fusion Approach Based on Segmentation Region Rong Wang, L-Qun Gao, Shu Yang, Yu-Hua Cha, and Yan-Chun Lu An Image Fuson Approach Based On Segmentaton Regon An Image Fuson Approach Based on Segmentaton Regon Rong Wang, L-Qun Gao, Shu Yang 3, Yu-Hua

More information

Optimizing Document Scoring for Query Retrieval

Optimizing Document Scoring for Query Retrieval Optmzng Document Scorng for Query Retreval Brent Ellwen baellwe@cs.stanford.edu Abstract The goal of ths project was to automate the process of tunng a document query engne. Specfcally, I used machne learnng

More information

Correlative features for the classification of textural images

Correlative features for the classification of textural images Correlatve features for the classfcaton of textural mages M A Turkova 1 and A V Gadel 1, 1 Samara Natonal Research Unversty, Moskovskoe Shosse 34, Samara, Russa, 443086 Image Processng Systems Insttute

More information

Support Vector Machines. CS534 - Machine Learning

Support Vector Machines. CS534 - Machine Learning Support Vector Machnes CS534 - Machne Learnng Perceptron Revsted: Lnear Separators Bnar classfcaton can be veed as the task of separatng classes n feature space: b > 0 b 0 b < 0 f() sgn( b) Lnear Separators

More information

Supervised Nonlinear Dimensionality Reduction for Visualization and Classification

Supervised Nonlinear Dimensionality Reduction for Visualization and Classification IEEE Transactons on Systems, Man, and Cybernetcs Part B: Cybernetcs 1 Supervsed Nonlnear Dmensonalty Reducton for Vsualzaton and Classfcaton Xn Geng, De-Chuan Zhan, and Zh-Hua Zhou, Member, IEEE Abstract

More information

A Modified Median Filter for the Removal of Impulse Noise Based on the Support Vector Machines

A Modified Median Filter for the Removal of Impulse Noise Based on the Support Vector Machines A Modfed Medan Flter for the Removal of Impulse Nose Based on the Support Vector Machnes H. GOMEZ-MORENO, S. MALDONADO-BASCON, F. LOPEZ-FERRERAS, M. UTRILLA- MANSO AND P. GIL-JIMENEZ Departamento de Teoría

More information

Tuning of Fuzzy Inference Systems Through Unconstrained Optimization Techniques

Tuning of Fuzzy Inference Systems Through Unconstrained Optimization Techniques Tunng of Fuzzy Inference Systems Through Unconstraned Optmzaton Technques ROGERIO ANDRADE FLAUZINO, IVAN NUNES DA SILVA Department of Electrcal Engneerng State Unversty of São Paulo UNESP CP 473, CEP 733-36,

More information

THE CONDENSED FUZZY K-NEAREST NEIGHBOR RULE BASED ON SAMPLE FUZZY ENTROPY

THE CONDENSED FUZZY K-NEAREST NEIGHBOR RULE BASED ON SAMPLE FUZZY ENTROPY Proceedngs of the 20 Internatonal Conference on Machne Learnng and Cybernetcs, Guln, 0-3 July, 20 THE CONDENSED FUZZY K-NEAREST NEIGHBOR RULE BASED ON SAMPLE FUZZY ENTROPY JUN-HAI ZHAI, NA LI, MENG-YAO

More information

High-Boost Mesh Filtering for 3-D Shape Enhancement

High-Boost Mesh Filtering for 3-D Shape Enhancement Hgh-Boost Mesh Flterng for 3-D Shape Enhancement Hrokazu Yagou Λ Alexander Belyaev y Damng We z Λ y z ; ; Shape Modelng Laboratory, Unversty of Azu, Azu-Wakamatsu 965-8580 Japan y Computer Graphcs Group,

More information

K-means and Hierarchical Clustering

K-means and Hierarchical Clustering Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n gvng your own lectures. Feel free to use these sldes verbatm, or to modfy them to ft your

More information

A New Approach For the Ranking of Fuzzy Sets With Different Heights

A New Approach For the Ranking of Fuzzy Sets With Different Heights New pproach For the ankng of Fuzzy Sets Wth Dfferent Heghts Pushpnder Sngh School of Mathematcs Computer pplcatons Thapar Unversty, Patala-7 00 Inda pushpndersnl@gmalcom STCT ankng of fuzzy sets plays

More information

Pruning Training Corpus to Speedup Text Classification 1

Pruning Training Corpus to Speedup Text Classification 1 Prunng Tranng Corpus to Speedup Text Classfcaton Jhong Guan and Shugeng Zhou School of Computer Scence, Wuhan Unversty, Wuhan, 430079, Chna hguan@wtusm.edu.cn State Key Lab of Software Engneerng, Wuhan

More information

Problem Definitions and Evaluation Criteria for Computational Expensive Optimization

Problem Definitions and Evaluation Criteria for Computational Expensive Optimization Problem efntons and Evaluaton Crtera for Computatonal Expensve Optmzaton B. Lu 1, Q. Chen and Q. Zhang 3, J. J. Lang 4, P. N. Suganthan, B. Y. Qu 6 1 epartment of Computng, Glyndwr Unversty, UK Faclty

More information

Biostatistics 615/815

Biostatistics 615/815 The E-M Algorthm Bostatstcs 615/815 Lecture 17 Last Lecture: The Smplex Method General method for optmzaton Makes few assumptons about functon Crawls towards mnmum Some recommendatons Multple startng ponts

More information

Feature Reduction and Selection

Feature Reduction and Selection Feature Reducton and Selecton Dr. Shuang LIANG School of Software Engneerng TongJ Unversty Fall, 2012 Today s Topcs Introducton Problems of Dmensonalty Feature Reducton Statstc methods Prncpal Components

More information

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms

Course Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms Course Introducton Course Topcs Exams, abs, Proects A quc loo at a few algorthms 1 Advanced Data Structures and Algorthms Descrpton: We are gong to dscuss algorthm complexty analyss, algorthm desgn technques

More information

Machine Learning. Topic 6: Clustering

Machine Learning. Topic 6: Clustering Machne Learnng Topc 6: lusterng lusterng Groupng data nto (hopefully useful) sets. Thngs on the left Thngs on the rght Applcatons of lusterng Hypothess Generaton lusters mght suggest natural groups. Hypothess

More information

Announcements. Supervised Learning

Announcements. Supervised Learning Announcements See Chapter 5 of Duda, Hart, and Stork. Tutoral by Burge lnked to on web page. Supervsed Learnng Classfcaton wth labeled eamples. Images vectors n hgh-d space. Supervsed Learnng Labeled eamples

More information

Evolutionary Support Vector Regression based on Multi-Scale Radial Basis Function Kernel

Evolutionary Support Vector Regression based on Multi-Scale Radial Basis Function Kernel Eolutonary Support Vector Regresson based on Mult-Scale Radal Bass Functon Kernel Tanasanee Phenthrakul and Boonserm Kjsrkul Abstract Kernel functons are used n support ector regresson (SVR) to compute

More information

Relevance Feedback Document Retrieval using Non-Relevant Documents

Relevance Feedback Document Retrieval using Non-Relevant Documents Relevance Feedback Document Retreval usng Non-Relevant Documents TAKASHI ONODA, HIROSHI MURATA and SEIJI YAMADA Ths paper reports a new document retreval method usng non-relevant documents. From a large

More information

Hybridization of Expectation-Maximization and K-Means Algorithms for Better Clustering Performance

Hybridization of Expectation-Maximization and K-Means Algorithms for Better Clustering Performance BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 16, No 2 Sofa 2016 Prnt ISSN: 1311-9702; Onlne ISSN: 1314-4081 DOI: 10.1515/cat-2016-0017 Hybrdzaton of Expectaton-Maxmzaton

More information

Fuzzy Logic Based RS Image Classification Using Maximum Likelihood and Mahalanobis Distance Classifiers

Fuzzy Logic Based RS Image Classification Using Maximum Likelihood and Mahalanobis Distance Classifiers Research Artcle Internatonal Journal of Current Engneerng and Technology ISSN 77-46 3 INPRESSCO. All Rghts Reserved. Avalable at http://npressco.com/category/jcet Fuzzy Logc Based RS Image Usng Maxmum

More information

Identification of a Gaussian Fuzzy Classifier

Identification of a Gaussian Fuzzy Classifier 8 Internatonal Journal of Control, Automaton, and Systems Vol., No., March 004 Identfcaton of a Gaussan Fuzzy Classfer Heesoo Hwang Abstract: Ths paper proposes an approach to dervng a fuzzy classfer based

More information

Optimal Design of Nonlinear Fuzzy Model by Means of Independent Fuzzy Scatter Partition

Optimal Design of Nonlinear Fuzzy Model by Means of Independent Fuzzy Scatter Partition Optmal Desgn of onlnear Fuzzy Model by Means of Independent Fuzzy Scatter Partton Keon-Jun Park, Hyung-Kl Kang and Yong-Kab Km *, Department of Informaton and Communcaton Engneerng, Wonkwang Unversty,

More information

WIRELESS CAPSULE ENDOSCOPY IMAGE CLASSIFICATION BASED ON VECTOR SPARSE CODING.

WIRELESS CAPSULE ENDOSCOPY IMAGE CLASSIFICATION BASED ON VECTOR SPARSE CODING. WIRELESS CAPSULE ENDOSCOPY IMAGE CLASSIFICATION BASED ON VECTOR SPARSE CODING Tao Ma 1, Yuexan Zou 1 *, Zhqang Xang 1, Le L 1 and Y L 1 ADSPLAB/ELIP, School of ECE, Pekng Unversty, Shenzhen 518055, Chna

More information

Laplacian Eigenmap for Image Retrieval

Laplacian Eigenmap for Image Retrieval Laplacan Egenmap for Image Retreval Xaofe He Partha Nyog Department of Computer Scence The Unversty of Chcago, 1100 E 58 th Street, Chcago, IL 60637 ABSTRACT Dmensonalty reducton has been receved much

More information

Experiments in Text Categorization Using Term Selection by Distance to Transition Point

Experiments in Text Categorization Using Term Selection by Distance to Transition Point Experments n Text Categorzaton Usng Term Selecton by Dstance to Transton Pont Edgar Moyotl-Hernández, Héctor Jménez-Salazar Facultad de Cencas de la Computacón, B. Unversdad Autónoma de Puebla, 14 Sur

More information

Japanese Dependency Analysis Based on Improved SVM and KNN

Japanese Dependency Analysis Based on Improved SVM and KNN Proceedngs of the 7th WSEAS Internatonal Conference on Smulaton, Modellng and Optmzaton, Bejng, Chna, September 15-17, 2007 140 Japanese Dependency Analyss Based on Improved SVM and KNN ZHOU HUIWEI and

More information

Feature Selection as an Improving Step for Decision Tree Construction

Feature Selection as an Improving Step for Decision Tree Construction 2009 Internatonal Conference on Machne Learnng and Computng IPCSIT vol.3 (2011) (2011) IACSIT Press, Sngapore Feature Selecton as an Improvng Step for Decson Tree Constructon Mahd Esmael 1, Fazekas Gabor

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervsed Learnng and Clusterng Supervsed vs. Unsupervsed Learnng Up to now we consdered supervsed learnng scenaro, where we are gven 1. samples 1,, n 2. class labels for all samples 1,, n Ths s also

More information

A MODIFIED K-NEAREST NEIGHBOR CLASSIFIER TO DEAL WITH UNBALANCED CLASSES

A MODIFIED K-NEAREST NEIGHBOR CLASSIFIER TO DEAL WITH UNBALANCED CLASSES A MODIFIED K-NEAREST NEIGHBOR CLASSIFIER TO DEAL WITH UNBALANCED CLASSES Aram AlSuer, Ahmed Al-An and Amr Atya 2 Faculty of Engneerng and Informaton Technology, Unversty of Technology, Sydney, Australa

More information

Yan et al. / J Zhejiang Univ-Sci C (Comput & Electron) in press 1. Improving Naive Bayes classifier by dividing its decision regions *

Yan et al. / J Zhejiang Univ-Sci C (Comput & Electron) in press 1. Improving Naive Bayes classifier by dividing its decision regions * Yan et al. / J Zhejang Unv-Sc C (Comput & Electron) n press 1 Journal of Zhejang Unversty-SCIENCE C (Computers & Electroncs) ISSN 1869-1951 (Prnt); ISSN 1869-196X (Onlne) www.zju.edu.cn/jzus; www.sprngerlnk.com

More information

Using Fuzzy Logic to Enhance the Large Size Remote Sensing Images

Using Fuzzy Logic to Enhance the Large Size Remote Sensing Images Internatonal Journal of Informaton and Electroncs Engneerng Vol. 5 No. 6 November 015 Usng Fuzzy Logc to Enhance the Large Sze Remote Sensng Images Trung Nguyen Tu Huy Ngo Hoang and Thoa Vu Van Abstract

More information

A Load-balancing and Energy-aware Clustering Algorithm in Wireless Ad-hoc Networks

A Load-balancing and Energy-aware Clustering Algorithm in Wireless Ad-hoc Networks A Load-balancng and Energy-aware Clusterng Algorthm n Wreless Ad-hoc Networks Wang Jn, Shu Le, Jnsung Cho, Young-Koo Lee, Sungyoung Lee, Yonl Zhong Department of Computer Engneerng Kyung Hee Unversty,

More information

Learning-based License Plate Detection on Edge Features

Learning-based License Plate Detection on Edge Features Learnng-based Lcense Plate Detecton on Edge Features Wng Teng Ho, Woo Hen Yap, Yong Haur Tay Computer Vson and Intellgent Systems (CVIS) Group Unverst Tunku Abdul Rahman, Malaysa wngteng_h@yahoo.com, woohen@yahoo.com,

More information

An Application of the Dulmage-Mendelsohn Decomposition to Sparse Null Space Bases of Full Row Rank Matrices

An Application of the Dulmage-Mendelsohn Decomposition to Sparse Null Space Bases of Full Row Rank Matrices Internatonal Mathematcal Forum, Vol 7, 2012, no 52, 2549-2554 An Applcaton of the Dulmage-Mendelsohn Decomposton to Sparse Null Space Bases of Full Row Rank Matrces Mostafa Khorramzadeh Department of Mathematcal

More information

On Supporting Identification in a Hand-Based Biometric Framework

On Supporting Identification in a Hand-Based Biometric Framework On Supportng Identfcaton n a Hand-Based Bometrc Framework Pe-Fang Guo 1, Prabr Bhattacharya 2, and Nawwaf Kharma 1 1 Electrcal & Computer Engneerng, Concorda Unversty, 1455 de Masonneuve Blvd., Montreal,

More information

Adaptive Virtual Support Vector Machine for the Reliability Analysis of High-Dimensional Problems

Adaptive Virtual Support Vector Machine for the Reliability Analysis of High-Dimensional Problems Proceedngs of the ASME 2 Internatonal Desgn Engneerng Techncal Conferences & Computers and Informaton n Engneerng Conference IDETC/CIE 2 August 29-3, 2, Washngton, D.C., USA DETC2-47538 Adaptve Vrtual

More information