Video Textures. Arno Schödl Richard Szeliski David H. Salesin Irfan Essa. presented by Marco Meyer. Video Textures

Size: px
Start display at page:

Download "Video Textures. Arno Schödl Richard Szeliski David H. Salesin Irfan Essa. presented by Marco Meyer. Video Textures"

Transcription

1 Arno Schödl Richard Szeliski David H. Salesin Irfan Essa presented by Marco Meyer

2 Motivation Images lack of dynamics Videos finite duration lack of timeless quality of image

3 Motivation Image Video Texture Video endless endless & in motion in motion Applications: dyn. scenes on the web dyn. background user-controlled animation

4 Outline Introduction Representation MAIN SYSTEM Extensions Results Future Work & Discussion

5 Introduction If two frames are similar, we can create a transition I1 I I 2 3 I 4... Find sequence with respect to global structure Smooth the selected transitions

6 Representation VT can be seen as Markov processes P 31 I1 I I P 12 P 23 P 34 I... P 24 Matrix of probabilities matrix mostly sparse Set of explicit links with associated probability

7 Outline Introduction Representation MAIN SYSTEM Extensions Results Analysis Synthesis random video play loop Rendering Future Work & Discussion

8 Analysis Preparation steps brightness equalization video stabilisation We need a measure of similarity L 2 distance distance-matrix D j i D ij = I i I j 2

9 Analysis Probability matrix D ij Map distances to probabilities P ij exp( D i+ 1, j σ ) Normalize so that P ij j P ij =1

10 Analysis Video P ij exp( D i+ 1, j σ ) high σ low σ

11 Analysis Preserving Dynamics

12 Analysis Preserving Dynamics Optical flow computation bad in untextured areas Compare temporally adjacent frames match subsequences instead of single frames filter matrix with a diagonal kernel with weights w k D' ij = m 1 k = m w k D i+ k, j+ k

13 Analysis Preserving Dynamics Dij D' ij j i swing to the right P ij swing to the left P' ij

14 Analysis Dead Ends Only window is considered we might get into dead end try to predict future cost Anticipated future cost - propagate future costs backward '' ' p D = ( ) + α ij D ij k '' '' P jk D jk with P '' i+ 1, ij '' D exp( σ j ) Solve by iteration

15 Analysis Dead Ends Only window is considered we might get into dead end try to predict future cost Anticipated future cost - propagate future costs backward '' ' p D = ( ) + α min ij D ij k D '' jk Solve with Q-Learning

16 Analysis Dead Ends Most effective if solved from last to first row P' ij P '' ij

17 Analysis Pruning Goal to supress non-optimal transitions to save storage space Paradigms 1. keep only local maxima 2. keep those transitions with probabilities above threshold

18 Synthesis Random play begin anywhere but in dead end '' select next frame according to P ij VT is never repeated exactly the same way Video loop fixed length loop for conventional digital video players

19 Synthesis Video loop primitive loop To combine loops ranges must overlap n range = [2,9] length = 7 forward transitions not considered compound loop 0 n Loop length # exec i length _ of _ loop i 2 9 i

20 Synthesis Optimal loop algorithm Multiset describes loop with focus to: length range Straightforward approach: exponentially in #transitions Optimal loop algorithm: select set of transitions (dyn. programming) schedule primitive loops

21 Synthesis Select set of transitions A(2) D(5) C(4) B(3) L A(2) B(3) C(4) D(5) Alg: foreach cell if L>=length of transition of current column find legal lowest cost multiset of length L, where the transition of current column appears at least once

22 Synthesis Select set of transitions A(2) D(5) C(4) B(3) L A(2) B(3) C(4) D(5) 1 B(3) 2 BB(6) D(5) Alg: foreach cell if L>=length of transition of current column find legal lowest cost multiset of length L, where the transition of current column appears at least once

23 Synthesis Select set of transitions A(2) D(5) C(4) B(3) L A(2) B(3) C(4) D(5) 1 B(3) 2 BB(6) D(5) Alg: foreach cell if L>=length of transition of current column find legal lowest cost multiset of length L, where the transition of current column appears at least once

24 Synthesis Select set of transitions A(2) D(5) C(4) B(3) L A(2) B(3) C(4) D(5) 1 B(3) 2 BB(6) D(5) 3 BBB (9) Alg: foreach cell if L>=length of transition of current column find legal lowest cost multiset of length L, where the transition of current column appears at least once

25 Synthesis Select set of transitions A(2) D(5) C(4) B(3) L A(2) B(3) C(4) D(5) 1 B(3) 2 BB(6) D(5) 3 BBB (9) C(4) 4 BBBB(12) DD(10) 5 A(2) BBBBB(15) CD(9) CD(9) 6 AB(5) Alg: foreach cell if L>=length of transition of current column find legal lowest cost multiset of length L, where the transition of current column appears at least once

26 Synthesis Select set of transitions A(2) D(5) C(4) B(3) L A(2) B(3) C(4) D(5) 1 B(3) 2 BB(6) D(5) 3 BBB (9) C(4) 4 BBBB(12) DD(10) 5 A(2) BBBBB(15) CD(9) CD(9) 6 AB(5) Alg: foreach cell if L>=length of transition of current column find legal lowest cost multiset of length L, where the transition of current column appears at least once

27 Synthesis Select set of transitions A(2) D(5) C(4) B(3) L A(2) B(3) C(4) D(5) 1 B(3) 2 BB(6) D(5) 3 BBB (9) C(4) 4 BBBB(12) DD(10) 5 A(2) BBBBB(15) CD(9) CD(9) 6 AB(5) Alg: foreach cell if L>=length of transition of current column find legal lowest cost multiset of length L, where the transition of current column appears at least once

28 Synthesis Select set of transitions A(2) D(5) C(4) B(3) L A(2) B(3) C(4) D(5) 1 B(3) 2 BB(6) D(5) 3 BBB (9) C(4) 4 BBBB(12) DD(10) 5 A(2) BBBBB(15) CD(9) CD(9) 6 AB(5) Alg: foreach cell if L>=length of transition of current column find legal lowest cost multiset of length L, where the transition of current column appears at least once

29 Synthesis Select set of transitions A(2) D(5) C(4) B(3) L A(2) B(3) C(4) D(5) 1 B(3) 2 BB(6) D(5) 3 BBB (9) C(4) 4 BBBB(12) DD(10) 5 A(2) BBBBB(15) CD(9) CD(9) 6 AB(5) Alg: foreach cell if L>=length of transition of current column find legal lowest cost multiset of length L, where the transition of current column appears at least once

30 Synthesis Select set of transitions A(2) D(5) C(4) B(3) L A(2) B(3) C(4) D(5) 1 B(3) 2 BB(6) D(5) 3 BBB (9) C(4) 4 BBBB(12) DD(10) 5 A(2) BBBBB(15) CD(9) CD(9) 6 AB(5) AB(5) Alg: foreach cell if L>=length of transition of current column find legal lowest cost multiset of length L, where the transition of current column appears at least once

31 Synthesis Select set of transitions A(2) D(5) C(4) B(3) L A(2) B(3) C(4) D(5) 1 B(3) 2 BB(6) D(5) 3 BBB (9) C(4) 4 BBBB(12) DD(10) 5 A(2) BBBBB(15) CD(9) CD(9) 6 AB(5) AB(5) CC(8) DDD(15) Alg: foreach cell if L>=length of transition of current column time O(L 2 N 2 ) space find legal lowest cost multiset of length L, where the transition of current column appears at least once O(LN) optionally store pointers + range instead of full description

32 Synthesis Schedule primitive loops D C A B Alg: Given: length =17 transitions ABCDD occur current schedule:

33 Synthesis Schedule primitive loops j D C B i Alg: Schedule transition i j that starts at the end 1 or more ranges Given: length =17 transitions ABCDD occur current schedule: invariant: always in first range A

34 Synthesis Schedule primitive loops j D C B i Alg: Schedule transition i j that starts at the end 1 or more ranges Given: length =17 transitions ABCDD occur current schedule: Schedule any* transition in first range that starts after j invariant: always in first range A D * deterministic or stochastic

35 Synthesis Schedule primitive loops D B j i Given: length =17 transitions ABCDD occur current schedule: Alg: Schedule transition i j that starts at the end 1 or more ranges Schedule any* transition in first range that starts after j invariant: always in first range A D C * deterministic or stochastic

36 Synthesis Schedule primitive loops B j i Given: length =17 transitions ABCDD occur current schedule: Alg: Schedule transition i j that starts at the end 1 or more ranges Schedule any* transition in first range that starts after j invariant: always in first range A D C D * deterministic or stochastic

37 Synthesis Schedule primitive loops j i Given: length =17 transitions ABCDD occur current schedule: Alg: Schedule transition i j that starts at the end 1 or more ranges Schedule any* transition in first range that starts after j invariant: always in first range A D C D B * deterministic or stochastic

38 Rendering Jump cut noticable transitions Cross-fade blur if misaligned Morph common features get aligned

39 Rendering flag

40 Rendering Multi-way cross-fade multiple frames displayed at a time weighted average of all participating frames

41 Outline Introduction Representation MAIN SYSTEM Extensions Results Future Work & Discussion

42 3D Video Texture replace video with video texture create novel view

43 Extensions Motion factorization Divide original video into independently moving parts manual automatic

44 Extensions Video-based Animation Control where, how & how long to replay Add user-controlled term to error function based on: velocity of video sprite position of frame

45 Extensions Video-based Animation

46 Extensions Video Sprites 1. Object extraction (bg subtraction, blue screen) 2. Store velocity of centroid 3. Center object Analysis Synthesis + alpha, direction, speed + velocities

47 Extensions Video Sprites

48 Results Simple algorithm Several extensions & applications User control Combine video textures

49 Results Algorithm fails at complex and high-structured video material

50 Future Work & Discussion Distance metrics Blending Variety Control tools

Video Texture. A.A. Efros

Video Texture. A.A. Efros Video Texture A.A. Efros 15-463: Computational Photography Alexei Efros, CMU, Fall 2005 Weather Forecasting for Dummies Let s predict weather: Given today s weather only, we want to know tomorrow s Suppose

More information

Image Processing Techniques and Smart Image Manipulation : Texture Synthesis

Image Processing Techniques and Smart Image Manipulation : Texture Synthesis CS294-13: Special Topics Lecture #15 Advanced Computer Graphics University of California, Berkeley Monday, 26 October 2009 Image Processing Techniques and Smart Image Manipulation : Texture Synthesis Lecture

More information

Data-driven methods: Video & Texture. A.A. Efros

Data-driven methods: Video & Texture. A.A. Efros Data-driven methods: Video & Texture A.A. Efros CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2014 Michel Gondry train video http://www.youtube.com/watch?v=0s43iwbf0um

More information

Data-driven methods: Video & Texture. A.A. Efros

Data-driven methods: Video & Texture. A.A. Efros Data-driven methods: Video & Texture A.A. Efros 15-463: Computational Photography Alexei Efros, CMU, Fall 2010 Michel Gondry train video http://youtube.com/watch?v=ques1bwvxga Weather Forecasting for Dummies

More information

Machine Learning for Video-Based Rendering

Machine Learning for Video-Based Rendering Machine Learning for Video-Based Rendering Arno Schadl arno@schoedl. org Irfan Essa irjan@cc.gatech.edu Georgia Institute of Technology GVU Center / College of Computing Atlanta, GA 30332-0280, USA. Abstract

More information

Machine Learning for Video-Based Rendering

Machine Learning for Video-Based Rendering Machine Learning for Video-Based Rendering Arno Schödl arno@schoedl.org Irfan Essa irfan@cc.gatech.edu Georgia Institute of Technology GVU Center / College of Computing Atlanta, GA 30332-0280, USA. Abstract

More information

Texture Synthesis. Fourier Transform. F(ω) f(x) To understand frequency ω let s reparametrize the signal by ω: Fourier Transform

Texture Synthesis. Fourier Transform. F(ω) f(x) To understand frequency ω let s reparametrize the signal by ω: Fourier Transform Texture Synthesis Image Manipulation and Computational Photography CS294-69 Fall 2011 Maneesh Agrawala [Some slides from James Hays, Derek Hoiem, Alexei Efros and Fredo Durand] Fourier Transform To understand

More information

Topics. Image Processing Techniques and Smart Image Manipulation. Texture Synthesis. Topics. Markov Chain. Weather Forecasting for Dummies

Topics. Image Processing Techniques and Smart Image Manipulation. Texture Synthesis. Topics. Markov Chain. Weather Forecasting for Dummies Image Processing Techniques and Smart Image Manipulation Maneesh Agrawala Topics Texture Synthesis High Dynamic Range Imaging Bilateral Filter Gradient-Domain Techniques Matting Graph-Cut Optimization

More information

Panoramic Video Texture

Panoramic Video Texture Aseem Agarwala, Colin Zheng, Chris Pal, Maneesh Agrawala, Michael Cohen, Brian Curless, David Salesin, Richard Szeliski A paper accepted for SIGGRAPH 05 presented by 1 Outline Introduction & Motivation

More information

Topics to be Covered in the Rest of the Semester. CSci 4968 and 6270 Computational Vision Lecture 15 Overview of Remainder of the Semester

Topics to be Covered in the Rest of the Semester. CSci 4968 and 6270 Computational Vision Lecture 15 Overview of Remainder of the Semester Topics to be Covered in the Rest of the Semester CSci 4968 and 6270 Computational Vision Lecture 15 Overview of Remainder of the Semester Charles Stewart Department of Computer Science Rensselaer Polytechnic

More information

CSCI 1290: Comp Photo

CSCI 1290: Comp Photo CSCI 1290: Comp Photo Fall 2018 @ Brown University James Tompkin Many slides thanks to James Hays old CS 129 course, along with all its acknowledgements. CS 4495 Computer Vision A. Bobick Motion and Optic

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 19: Graph Cuts source S sink T Readings Szeliski, Chapter 11.2 11.5 Stereo results with window search problems in areas of uniform texture Window-based matching

More information

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0)

3/1/2010. Acceleration Techniques V1.2. Goals. Overview. Based on slides from Celine Loscos (v1.0) Acceleration Techniques V1.2 Anthony Steed Based on slides from Celine Loscos (v1.0) Goals Although processor can now deal with many polygons (millions), the size of the models for application keeps on

More information

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials)

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials) Advanced Computer Graphics CSE 190 [Spring 2015], Lecture 16 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 3 milestone due May 29 Should already be well on way Contact us for difficulties

More information

Representing Moving Images with Layers. J. Y. Wang and E. H. Adelson MIT Media Lab

Representing Moving Images with Layers. J. Y. Wang and E. H. Adelson MIT Media Lab Representing Moving Images with Layers J. Y. Wang and E. H. Adelson MIT Media Lab Goal Represent moving images with sets of overlapping layers Layers are ordered in depth and occlude each other Velocity

More information

Browsing: Query Refinement and Video Synopsis

Browsing: Query Refinement and Video Synopsis April 23, 2009 CuZero: Frontier of Interactive Visual Search Goals Finding interesting content in video and images Solution Better video and image search Video synopsis to quickly scan long video Current

More information

Synthesizing Realistic Facial Expressions from Photographs

Synthesizing Realistic Facial Expressions from Photographs Synthesizing Realistic Facial Expressions from Photographs 1998 F. Pighin, J Hecker, D. Lischinskiy, R. Szeliskiz and D. H. Salesin University of Washington, The Hebrew University Microsoft Research 1

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

Spring semester 2008 June 24 th 2009

Spring semester 2008 June 24 th 2009 Spring semester 2008 June 24 th 2009 Introduction Suggested Algorithm Outline Implementation Summary Live Demo 2 Project Motivation and Domain High quality pedestrian detection and tracking system. Fixed

More information

Introduction to SLAM Part II. Paul Robertson

Introduction to SLAM Part II. Paul Robertson Introduction to SLAM Part II Paul Robertson Localization Review Tracking, Global Localization, Kidnapping Problem. Kalman Filter Quadratic Linear (unless EKF) SLAM Loop closing Scaling: Partition space

More information

The SIFT (Scale Invariant Feature

The SIFT (Scale Invariant Feature The SIFT (Scale Invariant Feature Transform) Detector and Descriptor developed by David Lowe University of British Columbia Initial paper ICCV 1999 Newer journal paper IJCV 2004 Review: Matt Brown s Canonical

More information

Targil 10 : Why Mosaic? Why is this a challenge? Exposure differences Scene illumination Miss-registration Moving objects

Targil 10 : Why Mosaic? Why is this a challenge? Exposure differences Scene illumination Miss-registration Moving objects Why Mosaic? Are you getting the whole picture? Compact Camera FOV = 5 x 35 Targil : Panoramas - Stitching and Blending Some slides from Alexei Efros 2 Slide from Brown & Lowe Why Mosaic? Are you getting

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information

Multi-View Stereo for Static and Dynamic Scenes

Multi-View Stereo for Static and Dynamic Scenes Multi-View Stereo for Static and Dynamic Scenes Wolfgang Burgard Jan 6, 2010 Main references Yasutaka Furukawa and Jean Ponce, Accurate, Dense and Robust Multi-View Stereopsis, 2007 C.L. Zitnick, S.B.

More information

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs)

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) OBJECTIVE FLUID SIMULATIONS Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) The basic objective of the project is the implementation of the paper Stable Fluids (Jos Stam, SIGGRAPH 99). The final

More information

Local Feature Detectors

Local Feature Detectors Local Feature Detectors Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Slides adapted from Cordelia Schmid and David Lowe, CVPR 2003 Tutorial, Matthew Brown,

More information

Transitions and Photos

Transitions and Photos 4 Adding Lesson 3: Transitions and Photos You ve arranged your video clips in the order you want them. But the jump from one clip to the next is very abrupt, and you d like to smooth things out. You can

More information

Lecture 28 Intro to Tracking

Lecture 28 Intro to Tracking Lecture 28 Intro to Tracking Some overlap with T&V Section 8.4.2 and Appendix A.8 Recall: Blob Merge/Split merge occlusion occlusion split When two objects pass close to each other, they are detected as

More information

Epitomic Analysis of Human Motion

Epitomic Analysis of Human Motion Epitomic Analysis of Human Motion Wooyoung Kim James M. Rehg Department of Computer Science Georgia Institute of Technology Atlanta, GA 30332 {wooyoung, rehg}@cc.gatech.edu Abstract Epitomic analysis is

More information

Recall: Blob Merge/Split Lecture 28

Recall: Blob Merge/Split Lecture 28 Recall: Blob Merge/Split Lecture 28 merge occlusion Intro to Tracking Some overlap with T&V Section 8.4.2 and Appendix A.8 occlusion split When two objects pass close to each other, they are detected as

More information

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1 Last update: May 4, 200 Vision CMSC 42: Chapter 24 CMSC 42: Chapter 24 Outline Perception generally Image formation Early vision 2D D Object recognition CMSC 42: Chapter 24 2 Perception generally Stimulus

More information

Motion Tracking and Event Understanding in Video Sequences

Motion Tracking and Event Understanding in Video Sequences Motion Tracking and Event Understanding in Video Sequences Isaac Cohen Elaine Kang, Jinman Kang Institute for Robotics and Intelligent Systems University of Southern California Los Angeles, CA Objectives!

More information

Models for grids. Computer vision: models, learning and inference. Multi label Denoising. Binary Denoising. Denoising Goal.

Models for grids. Computer vision: models, learning and inference. Multi label Denoising. Binary Denoising. Denoising Goal. Models for grids Computer vision: models, learning and inference Chapter 9 Graphical Models Consider models where one unknown world state at each pixel in the image takes the form of a grid. Loops in the

More information

Problem Set 4. Assigned: March 23, 2006 Due: April 17, (6.882) Belief Propagation for Segmentation

Problem Set 4. Assigned: March 23, 2006 Due: April 17, (6.882) Belief Propagation for Segmentation 6.098/6.882 Computational Photography 1 Problem Set 4 Assigned: March 23, 2006 Due: April 17, 2006 Problem 1 (6.882) Belief Propagation for Segmentation In this problem you will set-up a Markov Random

More information

Recurrent Neural Network (RNN) Industrial AI Lab.

Recurrent Neural Network (RNN) Industrial AI Lab. Recurrent Neural Network (RNN) Industrial AI Lab. For example (Deterministic) Time Series Data Closed- form Linear difference equation (LDE) and initial condition High order LDEs 2 (Stochastic) Time Series

More information

the gamedesigninitiative at cornell university Lecture 12 2D Animation

the gamedesigninitiative at cornell university Lecture 12 2D Animation Lecture 12 2D Animation Animation Basics: The FilmStrip Animation is a sequence of hand-drawn frames Smoothly displays action when change quickly Also called flipbook animation Arrange animation in a sprite

More information

Cinemagraph: Automated Generation (CAG)

Cinemagraph: Automated Generation (CAG) Cinemagraph: Automated Generation (CAG) Walter Li Stanford University walterli@stanford.edu Bo Xian See Stanford University bsee@stanford.edu Abstract We implement a method of automating the creation of

More information

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov

Structured Light II. Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Structured Light II Johannes Köhler Johannes.koehler@dfki.de Thanks to Ronen Gvili, Szymon Rusinkiewicz and Maks Ovsjanikov Introduction Previous lecture: Structured Light I Active Scanning Camera/emitter

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 10 130221 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Canny Edge Detector Hough Transform Feature-Based

More information

arxiv: v1 [cs.cv] 22 Feb 2017

arxiv: v1 [cs.cv] 22 Feb 2017 Synthesising Dynamic Textures using Convolutional Neural Networks arxiv:1702.07006v1 [cs.cv] 22 Feb 2017 Christina M. Funke, 1, 2, 3, Leon A. Gatys, 1, 2, 4, Alexander S. Ecker 1, 2, 5 1, 2, 3, 6 and Matthias

More information

INFOMCANIM Computer Animation Motion Synthesis. Christyowidiasmoro (Chris)

INFOMCANIM Computer Animation Motion Synthesis. Christyowidiasmoro (Chris) INFOMCANIM Computer Animation Motion Synthesis Christyowidiasmoro (Chris) Why Motion Synthesis? We don t have the specific motion / animation We don t have the skeleton and motion for specific characters

More information

Kernel Spectral Clustering

Kernel Spectral Clustering Kernel Spectral Clustering Ilaria Giulini Université Paris Diderot joint work with Olivier Catoni introduction clustering is task of grouping objects into classes (clusters) according to their similarities

More information

Midterm Examination CS 534: Computational Photography

Midterm Examination CS 534: Computational Photography Midterm Examination CS 534: Computational Photography November 3, 2016 NAME: Problem Score Max Score 1 6 2 8 3 9 4 12 5 4 6 13 7 7 8 6 9 9 10 6 11 14 12 6 Total 100 1 of 8 1. [6] (a) [3] What camera setting(s)

More information

Computer Vision I. Announcement. Corners. Edges. Numerical Derivatives f(x) Edge and Corner Detection. CSE252A Lecture 11

Computer Vision I. Announcement. Corners. Edges. Numerical Derivatives f(x) Edge and Corner Detection. CSE252A Lecture 11 Announcement Edge and Corner Detection Slides are posted HW due Friday CSE5A Lecture 11 Edges Corners Edge is Where Change Occurs: 1-D Change is measured by derivative in 1D Numerical Derivatives f(x)

More information

By Bonemap Extending Isadora s 3D Particles and 3D Model Particles

By Bonemap Extending Isadora s 3D Particles and 3D Model Particles Extending Isadora s 3D Particles and 3D Model Particles By Bonemap 2018 Page 1 v.1 Extending Isadora s 3D Particles and 3D Model Particles with media instances By Bonemap 2018 One of the more difficult

More information

BCC Rays Ripply Filter

BCC Rays Ripply Filter BCC Rays Ripply Filter The BCC Rays Ripply filter combines a light rays effect with a rippled light effect. The resulting light is generated from a selected channel in the source image and spreads from

More information

Motion Texture. Harriet Pashley Advisor: Yanxi Liu Ph.D. Student: James Hays. 1. Introduction

Motion Texture. Harriet Pashley Advisor: Yanxi Liu Ph.D. Student: James Hays. 1. Introduction Motion Texture Harriet Pashley Advisor: Yanxi Liu Ph.D. Student: James Hays 1. Introduction Motion capture data is often used in movies and video games because it is able to realistically depict human

More information

Image Composition. COS 526 Princeton University

Image Composition. COS 526 Princeton University Image Composition COS 526 Princeton University Modeled after lecture by Alexei Efros. Slides by Efros, Durand, Freeman, Hays, Fergus, Lazebnik, Agarwala, Shamir, and Perez. Image Composition Jurassic Park

More information

Detecting and Identifying Moving Objects in Real-Time

Detecting and Identifying Moving Objects in Real-Time Chapter 9 Detecting and Identifying Moving Objects in Real-Time For surveillance applications or for human-computer interaction, the automated real-time tracking of moving objects in images from a stationary

More information

Linking Natural Language to Action. Advisors: George Pappas and Norm Badler

Linking Natural Language to Action. Advisors: George Pappas and Norm Badler Linking Natural Language to Action Hadas Kress-Gazit Jan M. Allbeck Advisors: George Pappas and Norm Badler SUBTLE MURI LTL and PAR Integration Pragmatics->PAR->LTL->PAR Commands in the form of PARs will

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

Object Recognition with Invariant Features

Object Recognition with Invariant Features Object Recognition with Invariant Features Definition: Identify objects or scenes and determine their pose and model parameters Applications Industrial automation and inspection Mobile robots, toys, user

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

Dense Image-based Motion Estimation Algorithms & Optical Flow

Dense Image-based Motion Estimation Algorithms & Optical Flow Dense mage-based Motion Estimation Algorithms & Optical Flow Video A video is a sequence of frames captured at different times The video data is a function of v time (t) v space (x,y) ntroduction to motion

More information

Edge and corner detection

Edge and corner detection Edge and corner detection Prof. Stricker Doz. G. Bleser Computer Vision: Object and People Tracking Goals Where is the information in an image? How is an object characterized? How can I find measurements

More information

Outline. Data Association Scenarios. Data Association Scenarios. Data Association Scenarios

Outline. Data Association Scenarios. Data Association Scenarios. Data Association Scenarios Outline Data Association Scenarios Track Filtering and Gating Global Nearest Neighbor (GNN) Review: Linear Assignment Problem Murthy s k-best Assignments Algorithm Probabilistic Data Association (PDAF)

More information

Introduction to Image Super-resolution. Presenter: Kevin Su

Introduction to Image Super-resolution. Presenter: Kevin Su Introduction to Image Super-resolution Presenter: Kevin Su References 1. S.C. Park, M.K. Park, and M.G. KANG, Super-Resolution Image Reconstruction: A Technical Overview, IEEE Signal Processing Magazine,

More information

Anti-aliasing and sampling

Anti-aliasing and sampling Anti-aliasing and sampling 1996-2017 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Sampling 2017 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 34 Spatial and temporal

More information

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy

BSB663 Image Processing Pinar Duygulu. Slides are adapted from Selim Aksoy BSB663 Image Processing Pinar Duygulu Slides are adapted from Selim Aksoy Image matching Image matching is a fundamental aspect of many problems in computer vision. Object or scene recognition Solving

More information

Segmentation and Grouping

Segmentation and Grouping Segmentation and Grouping How and what do we see? Fundamental Problems ' Focus of attention, or grouping ' What subsets of pixels do we consider as possible objects? ' All connected subsets? ' Representation

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

CS 664 Segmentation. Daniel Huttenlocher

CS 664 Segmentation. Daniel Huttenlocher CS 664 Segmentation Daniel Huttenlocher Grouping Perceptual Organization Structural relationships between tokens Parallelism, symmetry, alignment Similarity of token properties Often strong psychophysical

More information

CSCI 4972/6963 Advanced Computer Graphics Quiz 2 Tuesday April 17, 2007 noon-1:30pm

CSCI 4972/6963 Advanced Computer Graphics Quiz 2 Tuesday April 17, 2007 noon-1:30pm CSCI 4972/6963 Advanced Computer Graphics Quiz 2 Tuesday April 17, 2007 noon-1:30pm Name: RCS username: This quiz is closed book & closed notes except for one 8.5x11 (double-sided) sheet of notes. Please

More information

6.801/866. Segmentation and Line Fitting. T. Darrell

6.801/866. Segmentation and Line Fitting. T. Darrell 6.801/866 Segmentation and Line Fitting T. Darrell Segmentation and Line Fitting Gestalt grouping Background subtraction K-Means Graph cuts Hough transform Iterative fitting (Next time: Probabilistic segmentation)

More information

Rasterization Computer Graphics I Lecture 14. Scan Conversion Antialiasing Compositing [Angel, Ch , ]

Rasterization Computer Graphics I Lecture 14. Scan Conversion Antialiasing Compositing [Angel, Ch , ] 15-462 Computer Graphics I Lecture 14 Rasterization March 13, 2003 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/ Scan Conversion Antialiasing Compositing [Angel,

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 10 Segmentation 14/02/27 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

Scott Philips, Edward Kao, Michael Yee and Christian Anderson. Graph Exploitation Symposium August 9 th 2011

Scott Philips, Edward Kao, Michael Yee and Christian Anderson. Graph Exploitation Symposium August 9 th 2011 Activity-Based Community Detection Scott Philips, Edward Kao, Michael Yee and Christian Anderson Graph Exploitation Symposium August 9 th 2011 23-1 This work is sponsored by the Office of Naval Research

More information

Hidden Markov Models. Slides adapted from Joyce Ho, David Sontag, Geoffrey Hinton, Eric Xing, and Nicholas Ruozzi

Hidden Markov Models. Slides adapted from Joyce Ho, David Sontag, Geoffrey Hinton, Eric Xing, and Nicholas Ruozzi Hidden Markov Models Slides adapted from Joyce Ho, David Sontag, Geoffrey Hinton, Eric Xing, and Nicholas Ruozzi Sequential Data Time-series: Stock market, weather, speech, video Ordered: Text, genes Sequential

More information

Image gradients and edges April 10 th, 2018

Image gradients and edges April 10 th, 2018 Image gradients and edges April th, 28 Yong Jae Lee UC Davis PS due this Friday Announcements Questions? 2 Last time Image formation Linear filters and convolution useful for Image smoothing, removing

More information

Artificial Intelligence for Robotics: A Brief Summary

Artificial Intelligence for Robotics: A Brief Summary Artificial Intelligence for Robotics: A Brief Summary This document provides a summary of the course, Artificial Intelligence for Robotics, and highlights main concepts. Lesson 1: Localization (using Histogram

More information

Course Outline. Advanced Computer Graphics. Animation. The Story So Far. Animation. To Do

Course Outline. Advanced Computer Graphics. Animation. The Story So Far. Animation. To Do Advanced Computer Graphics CSE 163 [Spring 2017], Lecture 18 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir 3D Graphics Pipeline Modeling (Creating 3D Geometry) Course Outline Rendering (Creating, shading

More information

Final Exam. Introduction to Artificial Intelligence. CS 188 Spring 2010 INSTRUCTIONS. You have 3 hours.

Final Exam. Introduction to Artificial Intelligence. CS 188 Spring 2010 INSTRUCTIONS. You have 3 hours. CS 188 Spring 2010 Introduction to Artificial Intelligence Final Exam INSTRUCTIONS You have 3 hours. The exam is closed book, closed notes except a two-page crib sheet. Please use non-programmable calculators

More information

Light Field Occlusion Removal

Light Field Occlusion Removal Light Field Occlusion Removal Shannon Kao Stanford University kaos@stanford.edu Figure 1: Occlusion removal pipeline. The input image (left) is part of a focal stack representing a light field. Each image

More information

3D Human Motion Analysis and Manifolds

3D Human Motion Analysis and Manifolds D E P A R T M E N T O F C O M P U T E R S C I E N C E U N I V E R S I T Y O F C O P E N H A G E N 3D Human Motion Analysis and Manifolds Kim Steenstrup Pedersen DIKU Image group and E-Science center Motivation

More information

D animation. Advantages of 3-D3. Advantages of 2-D2. Related work. Key idea. Applications of Computer Graphics in Cel Animation.

D animation. Advantages of 3-D3. Advantages of 2-D2. Related work. Key idea. Applications of Computer Graphics in Cel Animation. Applications of Computer Graphics in Cel Animation 3-D D and 2-D 2 D animation Adam Finkelstein Princeton University Homer 3-D3 Homer 2-D2 Advantages of 3-D3 Complex lighting and shading Reuse from scene

More information

Normalized cuts and image segmentation

Normalized cuts and image segmentation Normalized cuts and image segmentation Department of EE University of Washington Yeping Su Xiaodan Song Normalized Cuts and Image Segmentation, IEEE Trans. PAMI, August 2000 5/20/2003 1 Outline 1. Image

More information

Implementation of Lexical Analysis. Lecture 4

Implementation of Lexical Analysis. Lecture 4 Implementation of Lexical Analysis Lecture 4 1 Tips on Building Large Systems KISS (Keep It Simple, Stupid!) Don t optimize prematurely Design systems that can be tested It is easier to modify a working

More information

Animation of 3D surfaces

Animation of 3D surfaces Animation of 3D surfaces 2013-14 Motivations When character animation is controlled by skeleton set of hierarchical joints joints oriented by rotations the character shape still needs to be visible: visible

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov ECE521: Week 11, Lecture 20 27 March 2017: HMM learning/inference With thanks to Russ Salakhutdinov Examples of other perspectives Murphy 17.4 End of Russell & Norvig 15.2 (Artificial Intelligence: A Modern

More information

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization in Low Level Vision Low level vision problems concerned with estimating some quantity at each pixel Visual motion (u(x,y),v(x,y))

More information

Observations. Basic iteration Line estimated from 2 inliers

Observations. Basic iteration Line estimated from 2 inliers Line estimated from 2 inliers 3 Observations We need (in this case!) a minimum of 2 points to determine a line Given such a line l, we can determine how well any other point y fits the line l For example:

More information

Dynamic Programming. CIS 110, Fall University of Pennsylvania

Dynamic Programming. CIS 110, Fall University of Pennsylvania Dynamic Programming CIS 110, Fall 2012 University of Pennsylvania Dynamic Programming Dynamic programming records saves computation for reuse later. Programming: in the optimization sense ( Linear Programming

More information

CS 787: Assignment 4, Stereo Vision: Block Matching and Dynamic Programming Due: 12:00noon, Fri. Mar. 30, 2007.

CS 787: Assignment 4, Stereo Vision: Block Matching and Dynamic Programming Due: 12:00noon, Fri. Mar. 30, 2007. CS 787: Assignment 4, Stereo Vision: Block Matching and Dynamic Programming Due: 12:00noon, Fri. Mar. 30, 2007. In this assignment you will implement and test some simple stereo algorithms discussed in

More information

Edge Detection (with a sidelight introduction to linear, associative operators). Images

Edge Detection (with a sidelight introduction to linear, associative operators). Images Images (we will, eventually, come back to imaging geometry. But, now that we know how images come from the world, we will examine operations on images). Edge Detection (with a sidelight introduction to

More information

BCC Rays Streaky Filter

BCC Rays Streaky Filter BCC Rays Streaky Filter The BCC Rays Streaky filter produces a light that contains streaks. The resulting light is generated from a chosen channel in the source image, and spreads from a source point in

More information

Georgios Tziritas Computer Science Department

Georgios Tziritas Computer Science Department New Video Coding standards MPEG-4, HEVC Georgios Tziritas Computer Science Department http://www.csd.uoc.gr/~tziritas 1 MPEG-4 : introduction Motion Picture Expert Group Publication 1998 (Intern. Standardization

More information

Mesh segmentation. Florent Lafarge Inria Sophia Antipolis - Mediterranee

Mesh segmentation. Florent Lafarge Inria Sophia Antipolis - Mediterranee Mesh segmentation Florent Lafarge Inria Sophia Antipolis - Mediterranee Outline What is mesh segmentation? M = {V,E,F} is a mesh S is either V, E or F (usually F) A Segmentation is a set of sub-meshes

More information

Collision Detection. Motivation - Dynamic Simulation ETH Zurich. Motivation - Path Planning ETH Zurich. Motivation - Biomedical Simulation ETH Zurich

Collision Detection. Motivation - Dynamic Simulation ETH Zurich. Motivation - Path Planning ETH Zurich. Motivation - Biomedical Simulation ETH Zurich Collision Detection Motivation - Dynamic Simulation Collision detection is an essential part of physically realistic dynamic simulations. For each time step: compute dynamics detect collisions resolve

More information

Spatio-Temporal Stereo Disparity Integration

Spatio-Temporal Stereo Disparity Integration Spatio-Temporal Stereo Disparity Integration Sandino Morales and Reinhard Klette The.enpeda.. Project, The University of Auckland Tamaki Innovation Campus, Auckland, New Zealand pmor085@aucklanduni.ac.nz

More information

Conemarching in VR. Johannes Saam Mariano Merchante FRAMESTORE. Developing a Fractal experience at 90 FPS. / Framestore

Conemarching in VR. Johannes Saam Mariano Merchante FRAMESTORE. Developing a Fractal experience at 90 FPS. / Framestore Conemarching in VR Developing a Fractal experience at 90 FPS Johannes Saam Mariano Merchante FRAMESTORE / Framestore THE CONCEPT THE CONCEPT FRACTALS AND COLLISIONS THE CONCEPT RAYMARCHING AND VR FRACTALS

More information

Synthesis by Example. Connecting Motion Planning and Example based Movement. Michael Gleicher

Synthesis by Example. Connecting Motion Planning and Example based Movement. Michael Gleicher Synthesis by Example Connecting Motion Planning and Example based Movement Michael Gleicher Dept of Computer Sciences University of Wisconsin Madison Case Study 1 Part I. Michael Gleicher 1 What is Motion

More information

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Video based Animation Synthesis with the Essential Graph Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Goal Given a set of 4D models, how to generate realistic motion from user specified

More information

Tracking system. Danica Kragic. Object Recognition & Model Based Tracking

Tracking system. Danica Kragic. Object Recognition & Model Based Tracking Tracking system Object Recognition & Model Based Tracking Motivation Manipulating objects in domestic environments Localization / Navigation Object Recognition Servoing Tracking Grasping Pose estimation

More information

Combinatorial optimization and its applications in image Processing. Filip Malmberg

Combinatorial optimization and its applications in image Processing. Filip Malmberg Combinatorial optimization and its applications in image Processing Filip Malmberg Part 1: Optimization in image processing Optimization in image processing Many image processing problems can be formulated

More information

Hidden Markov Model for Sequential Data

Hidden Markov Model for Sequential Data Hidden Markov Model for Sequential Data Dr.-Ing. Michelle Karg mekarg@uwaterloo.ca Electrical and Computer Engineering Cheriton School of Computer Science Sequential Data Measurement of time series: Example:

More information

Lecture 10 CNNs on Graphs

Lecture 10 CNNs on Graphs Lecture 10 CNNs on Graphs CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 26, 2017 Two Scenarios For CNNs on graphs, we have two distinct scenarios: Scenario 1: Each

More information

Dynamic Geometry Processing

Dynamic Geometry Processing Dynamic Geometry Processing EG 2012 Tutorial Will Chang, Hao Li, Niloy Mitra, Mark Pauly, Michael Wand Tutorial: Dynamic Geometry Processing 1 Articulated Global Registration Introduction and Overview

More information

3D Modelling: Animation Fundamentals & Unit Quaternions

3D Modelling: Animation Fundamentals & Unit Quaternions 3D Modelling: Animation Fundamentals & Unit Quaternions CITS3003 Graphics & Animation Thanks to both Richard McKenna and Marco Gillies for permission to use their slides as a base. Static objects are boring

More information

Broad field that includes low-level operations as well as complex high-level algorithms

Broad field that includes low-level operations as well as complex high-level algorithms Image processing About Broad field that includes low-level operations as well as complex high-level algorithms Low-level image processing Computer vision Computational photography Several procedures and

More information