What does OpenGL do?

Size: px
Start display at page:

Download "What does OpenGL do?"

Transcription

1 Theor behind Geometrical Transform

2 What does OpenGL do? So the user specifies a lot of information Ee Center Up Near, far, UP EE Left, right top, bottom, etc. f b CENTER left right top bottom

3 What does OpenGL do? What does a sstem programmer do with those numbers? Generate screen coordinates correctl and efficientl Inside/outside test Projection Here comes the part which contains math which ou ma not like But all ou need to know is matri operation

4 Arbitrar View Volume UP f b EE CENTER left right top bottom

5 Inside-Outside Test Intersection of A plane and A Line ) ( : t d c b a plane EE line of points end : ),, ( ),,, ( ) ( ) ( ) ( )] ( [ )] ( [ )] ( [ ) ( ) ( ) ( : t c b a d c b a t d t c t b t a t t t line

6 Clipping in Canonical Volumes 45^o - (A,B,C) - min near plane (A,B,C) - far planefilm -

7 Clipping with 6-bit outcode Perspective Above >- Below < Right >- Left < Behind <- In front >min Parallel Above > Below <- Right > Left <- Behind <- In front >

8 Projection Again, an intersection of A plane and A Line EE

9 Canonical Volumes - near plane (A/C,B/C) (A,B,C) (A,B) (A,B,C) 45^o min - - far planefilm -

10 Problem Both clipping and projection can be done efficientl in a canonical volume But we do not have a canonical volume in general Solution: Normaliation transform A single matri operation to bring objects in an arbitrar volume into a canonical volume Cannot change what the user sees

11 Case Stud:Normaliation Transform A transformation to facilitate clipping An arbitrar view volume: Epensive for clipping and projection

12 45 o The canonical view volume: Simple clipping (si-bit outcode) Simple projection (/, /) min

13 OpenGL Terminolog UP f b EE CENTER left right top bottom

14 PRP PHIGS Terminolog VUP f b VPN u min u ma v ma VRP v min

15 SideBar: Homogeneous Coordinates Inconsistent representation for translation Cannot be concatenated Homogeneous coordinates consistent representation for all three can be concatenated & pre-computed (,, ) ( w, w, w) ( w, w, w, w), w ( w/ w, w/ w, w/ w)

16 SideBar: Euler Angle Rotation ' ' ' cos sin sin cos θ θ θ θ ' ' ' cos sin sin cos θ θ θ θ sin cos cos sin ' ' ' θ θ θ θ

17 Sidebar: Rotation Matri An orthonormal matri Have orthogonal rows Have orthogonal columns Does not magnif or shrink sie of vector (eigen value is )

18 SideBar: Rotation From world to ee: Column vectors are the (,,), (,,), (,,) of the world frame in the ee frame From ee to world: Row vectors are the,, of the ee frame in world ee world ee camera world P R P R Row vectors are the,, of the ee frame in the world frame ' ' ' i j i j r r r R r r r R

19 SideBar: Rotation From world to ee j i r r r i i i r r r P r r r P ) ( (,,) world ee world ee camera world P R P R From ee to world ),, ( ) ( ' ' ' ' ' ' i j i i i r r r P r r r P r r r (,,) (,,) (,,) ' r ' r ' r

20 Comparison PHIGS PRP (projection reference point) VUP (viewup) VPN (view plane normal) VRP (view reference point) uma, umin, vma,vmin View plane F: front clipping distance B: back clipping distance OpenGL EE UP EE-CENTER (left, bottom, -near) right, left, top, bottom N/A (or back clipping) F B

21 Normaliation Transform Perspective - OpenGL Eternal parameters Translate EE into origin Rotate the EE coordinate sstem such that w (e-c) becomes u becomes v becomes Internal parameters Shear to have centerline of the view volume aligning with Scale into canonical truncated pramid

22 Eisting Rendering Pipeline graphics primitives modeling transform viewing transform clipping shading & teture transform Ee, lookat, Parallel or material, matri headup Perspective lights, volume surface color images on screen viewport transform images in Internal buffer projection viewport location

23 Rendering Pipeline with Normaliation Transform normaliation transform graphics primitives modeling transform viewing transform clipping shading & teture transform matri Ee, lookat, headup Parallel or Perspective volume material, lights, surface color images on screen viewport transform images in Internal buffer projection viewport location

24 Changes Modeling Viewing Normaliation get concatenated into ONE transform before appling to an primitives Confusion: normaliation does not just push the ee frame back to origin and line up with world frame, it pushes objects awa too Purpose: to make clipping and projection much more efficient

25 Viewing Normaliation Line up (--) and (U-V-W) Initiall, (U-V-W) are specified in (--) sstem (In fact, everthing is specified in -- sstem) Some point in time, want to specif things in (U-V-W) sstem, or U becomes (,,), V becomes (,,), W becomes (,,) Translation (eas) Rotation (hard)

26 Translate EE into the origin u v w u v w EE EE EE T

27 Viewing Normaliation Three rotations Rotate about Rotate about Rotate about

28 UP E-C rotation rotation rotation

29 Viewing Normaliation Figuring out [u, v, w] in [,, ] sstem Appling a rotation to transform [,, ] coordinates into [u, v, w] coordinates w e c e c u u p w u p w v w u u v w u u u v v v w w w

30 Rotate EE coordinate to align w. world sstem v u v w w u

31 Shear v v ),, ( near bottom top right left ),, ( near w u w u near bottom top b near right left a b a SH,, w

32 Scale into canonical volume top bottom - near far - 45 o - scale in and scale in top bottom near near S (, right left top bottom S (,, ) far far far,)

33 Eample EE (,,) CENTER (,,) UP (,,) ( right, left) (,) ( top, (,) ) F B bottom

34 Translate EE into the origin T Rotate EE to align with the world sstem 3 (,,) c e c e w R ),, ( 6 ) (,, (,,) 6 ) (,, (,,) (,,) (,,) (,,) 3 u w v w UP w UP u c e

35 Shear, SH, near bottom top b near right left a

36 Scale into canonical volume scale in and S scale in S

37 Normaliation Transform Parallel (othographic) - OpenGL Eternal parameters Translate EE into origin Even though ee is not reall where the viewer is Rotate the EE coordinate sstem such that w (e-c) becomes u becomes v becomes Internal parameters Translate to have centerline of the view volume aligning with, and near plane at Scale into canonical rectangular piped

38 Viewing Normaliation Line up (--) and (U-V-W) Initiall, (U-V-W) are specified in (--) sstem (In fact, everthing is specified in -- sstem) Some point in time, want to specif things in (U-V-W) sstem, or U becomes (,,), V becomes (,,), W becomes (,,) Translation (eas) Rotation (hard)

39 Translate EE into the origin u v w u v w EE EE EE T

40 Viewing Normaliation Three rotations Rotate about Rotate about Rotate about

41 UP E-C rotation rotation rotation

42 Viewing Normaliation Figuring out [u, v, w] in [,, ] sstem Appling a rotation to transform [,, ] coordinates into [u, v, w] coordinates w e c e c u u p w u p w v w u u v w u u u v v v w w w

43 Rotate EE coordinate to align w. world sstem v u v w w u

44 Translation v v ),, ( near bottom top right left (,,) w u w u near c bottom top b right left a c b a T,,, w

45 Scale into canonical volume top bottom near Far-near near top bottom scale in,, and S ( right left, top bottom, far ) near

46 Eample EE (,,) CENTER (,,) UP (,,) ( right, left) (,) ( top, (,) ) F B bottom

47 Translate EE into the origin T Rotate EE to align with the world sstem 3 (,,) c e c e w R ),, ( 6 ) (,, (,,) 6 ) (,, (,,) (,,) (,,) (,,) 3 u w v w UP w UP u c e

48 Translation, SH, near bottom top b near right left a

49 Scale into canonical volume scale in,, and S 9

Chap 7, 2009 Spring Yeong Gil Shin

Chap 7, 2009 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 29 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a snthetic camera) Specification

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theor, Algorithms, and Applications Hong Qin State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794--44 Tel: (63)632-845; Fa: (63)632-8334 qin@cs.sunsb.edu

More information

Chap 7, 2008 Spring Yeong Gil Shin

Chap 7, 2008 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 28 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a synthetic camera)

More information

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides)

Computer Graphics. Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen s slides) Computer Graphics Jeng-Sheng Yeh 葉正聖 Ming Chuan Universit (modified from Bing-Yu Chen s slides) Viewing in 3D 3D Viewing Process Specification of an Arbitrar 3D View Orthographic Parallel Projection Perspective

More information

Must first specify the type of projection desired. When use parallel projections? For technical drawings, etc. Specify the viewing parameters

Must first specify the type of projection desired. When use parallel projections? For technical drawings, etc. Specify the viewing parameters walters@buffalo.edu CSE 480/580 Lecture 4 Slide 3-D Viewing Continued Eamples of 3-D Viewing Must first specif the tpe of projection desired When use parallel projections? For technical drawings, etc.

More information

Transforms II. Overview. Homogeneous Coordinates 3-D Transforms Viewing Projections. Homogeneous Coordinates. x y z w

Transforms II. Overview. Homogeneous Coordinates 3-D Transforms Viewing Projections. Homogeneous Coordinates. x y z w Transforms II Overvie Homogeneous Coordinates 3- Transforms Vieing Projections 2 Homogeneous Coordinates Allos translations to be included into matri transform. Allos us to distinguish beteen a vector

More information

CS Computer Graphics: Transformations & The Synthetic Camera

CS Computer Graphics: Transformations & The Synthetic Camera CS 543 - Computer Graphics: Transformations The Snthetic Camera b Robert W. Lindeman gogo@wpi.edu (with help from Emmanuel Agu ;-) Introduction to Transformations A transformation changes an objects Size

More information

Realtime 3D Computer Graphics & Virtual Reality. Viewing

Realtime 3D Computer Graphics & Virtual Reality. Viewing Realtime 3D Computer Graphics & Virtual Realit Viewing Transformation Pol. Per Verte Pipeline CPU DL Piel Teture Raster Frag FB v e r t e object ee clip normalied device Modelview Matri Projection Matri

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan Universit The Universit of Toko Viewing in 3D 3D Viewing Process Classical Viewing and Projections 3D Snthetic Camera Model Parallel Projection Perspective

More information

5.8.3 Oblique Projections

5.8.3 Oblique Projections 278 Chapter 5 Viewing y (, y, ) ( p, y p, p ) Figure 537 Oblique projection P = 2 left right 0 0 left+right left right 0 2 top bottom 0 top+bottom top bottom far+near far near 0 0 far near 2 0 0 0 1 Because

More information

Viewing and Projection

Viewing and Projection Viewing and Projection Sheelagh Carpendale Camera metaphor. choose camera position 2. set up and organie objects 3. choose a lens 4. take the picture View Volumes what gets into the scene perspective view

More information

Lecture 4: Viewing. Topics:

Lecture 4: Viewing. Topics: Lecture 4: Viewing Topics: 1. Classical viewing 2. Positioning the camera 3. Perspective and orthogonal projections 4. Perspective and orthogonal projections in OpenGL 5. Perspective and orthogonal projection

More information

3D Viewing. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

3D Viewing. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller 3D Viewing CMPT 361 Introduction to Computer Graphics Torsten Möller Reading Chapter 4 of Angel Chapter 6 of Foley, van Dam, 2 Objectives What kind of camera we use? (pinhole) What projections make sense

More information

Chapter 8 Three-Dimensional Viewing Operations

Chapter 8 Three-Dimensional Viewing Operations Projections Chapter 8 Three-Dimensional Viewing Operations Figure 8.1 Classification of planar geometric projections Figure 8.2 Planar projection Figure 8.3 Parallel-oblique projection Figure 8.4 Orthographic

More information

Projection: Mapping 3-D to 2-D. Orthographic Projection. The Canonical Camera Configuration. Perspective Projection

Projection: Mapping 3-D to 2-D. Orthographic Projection. The Canonical Camera Configuration. Perspective Projection Projection: Mapping 3-D to 2-D Our scene models are in 3-D space and images are 2-D so we need some wa of projecting 3-D to 2-D The fundamental approach: planar projection first, we define a plane in 3-D

More information

Midterm Review. Wen-Chieh (Steve) Lin Department of Computer Science

Midterm Review. Wen-Chieh (Steve) Lin Department of Computer Science Midterm Review Wen-Chieh (Steve) Lin Department of Computer Science Administration Assignment due on /3 :59 PM Midterm eam on /6 (Monda) Lecture slides Chapter 3 ecluding 3.6 & 3.8 Chapter 6, 7, 8 Chapter

More information

3-Dimensional Viewing

3-Dimensional Viewing CHAPTER 6 3-Dimensional Vieing Vieing and projection Objects in orld coordinates are projected on to the vie plane, hich is defined perpendicular to the vieing direction along the v -ais. The to main tpes

More information

3D graphics rendering pipeline (1) 3D graphics rendering pipeline (3) 3D graphics rendering pipeline (2) 8/29/11

3D graphics rendering pipeline (1) 3D graphics rendering pipeline (3) 3D graphics rendering pipeline (2) 8/29/11 3D graphics rendering pipeline (1) Geometr Rasteriation 3D Coordinates & Transformations Prof. Aaron Lanterman (Based on slides b Prof. Hsien-Hsin Sean Lee) School of Electrical and Computer Engineering

More information

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner GLOBAL EDITION Interactive Computer Graphics A Top-Down Approach with WebGL SEVENTH EDITION Edward Angel Dave Shreiner This page is intentionall left blank. 4.10 Concatenation of Transformations 219 in

More information

CS 4731/543: Computer Graphics Lecture 5 (Part I): Projection. Emmanuel Agu

CS 4731/543: Computer Graphics Lecture 5 (Part I): Projection. Emmanuel Agu CS 4731/543: Computer Graphics Lecture 5 (Part I): Projection Emmanuel Agu 3D Viewing and View Volume Recall: 3D viewing set up Projection Transformation View volume can have different shapes (different

More information

3D Coordinates & Transformations

3D Coordinates & Transformations 3D Coordinates & Transformations Prof. Aaron Lanterman (Based on slides b Prof. Hsien-Hsin Sean Lee) School of Electrical and Computer Engineering Georgia Institute of Technolog 3D graphics rendering pipeline

More information

Transformations II. Arbitrary 3D Rotation. What is its inverse? What is its transpose? Can we constructively elucidate this relationship?

Transformations II. Arbitrary 3D Rotation. What is its inverse? What is its transpose? Can we constructively elucidate this relationship? Utah School of Computing Fall 25 Transformations II CS46 Computer Graphics From Rich Riesenfeld Fall 25 Arbitrar 3D Rotation What is its inverse? What is its transpose? Can we constructivel elucidate this

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical descriptions of geometric changes,

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

3D Viewing. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

3D Viewing. Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller 3D Viewing Introduction to Computer Graphics Torsten Möller Machiraju/Zhang/Möller Reading Chapter 4 of Angel Chapter 13 of Hughes, van Dam, Chapter 7 of Shirley+Marschner Machiraju/Zhang/Möller 2 Objectives

More information

CS559: Computer Graphics

CS559: Computer Graphics CS559: Computer Graphics Lecture 8: 3D Transforms Li Zhang Spring 28 Most Slides from Stephen Chenne Finish Color space Toda 3D Transforms and Coordinate sstem Reading: Shirle ch 6 RGB and HSV Green(,,)

More information

CS488. Implementation of projections. Luc RENAMBOT

CS488. Implementation of projections. Luc RENAMBOT CS488 Implementation of projections Luc RENAMBOT 1 3D Graphics Convert a set of polygons in a 3D world into an image on a 2D screen After theoretical view Implementation 2 Transformations P(X,Y,Z) Modeling

More information

Three-Dimensional Viewing Hearn & Baker Chapter 7

Three-Dimensional Viewing Hearn & Baker Chapter 7 Three-Dimensional Viewing Hearn & Baker Chapter 7 Overview 3D viewing involves some tasks that are not present in 2D viewing: Projection, Visibility checks, Lighting effects, etc. Overview First, set up

More information

Computer Graphics. P05 Viewing in 3D. Part 1. Aleksandra Pizurica Ghent University

Computer Graphics. P05 Viewing in 3D. Part 1. Aleksandra Pizurica Ghent University Computer Graphics P05 Viewing in 3D Part 1 Aleksandra Pizurica Ghent University Telecommunications and Information Processing Image Processing and Interpretation Group Viewing in 3D: context Create views

More information

The 3-D Graphics Rendering Pipeline

The 3-D Graphics Rendering Pipeline The 3-D Graphics Rendering Pipeline Modeling Trival Rejection Illumination Viewing Clipping Projection Almost ever discussion of 3-D graphics begins here Seldom are an two versions drawn the same wa Seldom

More information

CS 325 Computer Graphics

CS 325 Computer Graphics CS 325 Computer Graphics 02 / 29 / 2012 Instructor: Michael Eckmann Today s Topics Questions? Comments? Specifying arbitrary views Transforming into Canonical view volume View Volumes Assuming a rectangular

More information

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem Graphics Pipeline: Projective Last Time Shadows cast ra to light stop after first intersection Reflection & Refraction compute direction of recursive ra Recursive Ra Tracing maimum number of bounces OR

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Overview Ra-Tracing so far Modeling transformations Ra Tracing Image RaTrace(Camera camera, Scene scene, int width, int heigh,

More information

Viewing. Cliff Lindsay, Ph.D. WPI

Viewing. Cliff Lindsay, Ph.D. WPI Viewing Cliff Lindsa, Ph.D. WPI Building Virtual Camera Pipeline l Used To View Virtual Scene l First Half of Rendering Pipeline Related To Camera l Takes Geometr From ApplicaHon To RasteriaHon Stages

More information

Transformations II. Week 2, Wed Jan 17

Transformations II. Week 2, Wed Jan 17 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 27 Tamara Munzner Transformations II Week 2, Wed Jan 7 http://www.ugrad.cs.ubc.ca/~cs34/vjan27 Readings for Jan 5-22 FCG Chap 6 Transformation

More information

CS 351: Perspective Viewing

CS 351: Perspective Viewing CS 351: Perspective Viewing Instructor: Joel Castellanos e-mail: joel@unm.edu Web: http://cs.unm.edu/~joel/ 2/16/2017 Perspective Projection 2 1 Frustum In computer graphics, the viewing frustum is the

More information

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications CSE328 Fundamentals of Computer Graphics: Theor, Algorithms, and Applications Hong in State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794-44 Tel: (63)632-845; Fa:

More information

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing Foundations of Computer Graphics (Fall 0) CS 84, Lecture 5: Viewing http://inst.eecs.berkele.edu/~cs84 To Do Questions/concerns about assignment? Remember it is due Sep. Ask me or TAs re problems Motivation

More information

CS 475 / CS 675 Computer Graphics. Lecture 7 : The Modeling-Viewing Pipeline

CS 475 / CS 675 Computer Graphics. Lecture 7 : The Modeling-Viewing Pipeline CS 475 / CS 675 Computer Graphics Lecture 7 : The Modeling-Viewing Pipeline Taonom Planar Projections Parallel Perspectie Orthographic Aonometric Oblique Front Top Side Trimetric Dimetric Isometric Caalier

More information

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics Foundations of Computer Graphics Online Lecture 5: Viewing Orthographic Projection Ravi Ramamoorthi Motivation We have seen transforms (between coord sstems) But all that is in 3D We still need to make

More information

To Do. Motivation. Demo (Projection Tutorial) What we ve seen so far. Computer Graphics. Summary: The Whole Viewing Pipeline

To Do. Motivation. Demo (Projection Tutorial) What we ve seen so far. Computer Graphics. Summary: The Whole Viewing Pipeline Computer Graphics CSE 67 [Win 9], Lecture 5: Viewing Ravi Ramamoorthi http://viscomp.ucsd.edu/classes/cse67/wi9 To Do Questions/concerns about assignment? Remember it is due tomorrow! (Jan 6). Ask me or

More information

CSC 305 The Graphics Pipeline-1

CSC 305 The Graphics Pipeline-1 C. O. P. d y! "#"" (-1, -1) (1, 1) x z CSC 305 The Graphics Pipeline-1 by Brian Wyvill The University of Victoria Graphics Group Perspective Viewing Transformation l l l Tools for creating and manipulating

More information

3D Viewing and Projec5on. Taking Pictures with a Real Camera. Steps: Graphics does the same thing for rendering an image for 3D geometric objects

3D Viewing and Projec5on. Taking Pictures with a Real Camera. Steps: Graphics does the same thing for rendering an image for 3D geometric objects 3D Vieing and Projec5on Taking Pictures ith a Real Camera Steps: Iden5 interes5ng objects Rotate and translate the camera to desired viepoint Adjust camera seings such as ocal length Choose desired resolu5on

More information

Announcement. Project 1 has been posted online and in dropbox. Due: 11:59:59 pm, Friday, October 14

Announcement. Project 1 has been posted online and in dropbox. Due: 11:59:59 pm, Friday, October 14 Announcement Project 1 has been posted online and in dropbox Due: 11:59:59 pm, Friday, October 14 Project 1: Interactive Viewing of Two Teapots How to create a teapot? Before OpenGL 3., glutsolidteapot

More information

What and Why Transformations?

What and Why Transformations? 2D transformations What and Wh Transformations? What? : The geometrical changes of an object from a current state to modified state. Changing an object s position (translation), orientation (rotation)

More information

Two Dimensional Viewing

Two Dimensional Viewing Two Dimensional Viewing Dr. S.M. Malaek Assistant: M. Younesi Two Dimensional Viewing Basic Interactive Programming Basic Interactive Programming User controls contents, structure, and appearance of objects

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

The Importance of Matrices in the DirectX API. by adding support in the programming language for frequently used calculations.

The Importance of Matrices in the DirectX API. by adding support in the programming language for frequently used calculations. Hermann Chong Dr. King Linear Algebra Applications 28 November 2001 The Importance of Matrices in the DirectX API In the world of 3D gaming, there are two APIs (Application Program Interface) that reign

More information

CPSC 314, Midterm Exam 1. 9 Feb 2007

CPSC 314, Midterm Exam 1. 9 Feb 2007 CPSC, Midterm Eam 9 Feb 007 Closed book, no calculators or other electronic devices. Cell phones must be turned off. Place our photo ID face up on our desk. One single-sided sheet of handwritten notes

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Announcement Assignment 2 has been posted: Due: 10/24 ASAP: Download the code and make sure it compiles» On windows: just build

More information

Determining the 2d transformation that brings one image into alignment (registers it) with another. And

Determining the 2d transformation that brings one image into alignment (registers it) with another. And Last two lectures: Representing an image as a weighted combination of other images. Toda: A different kind of coordinate sstem change. Solving the biggest problem in using eigenfaces? Toda Recognition

More information

Homogeneous Coordinates

Homogeneous Coordinates COMS W4172 3D Math 2 Steven Feiner Department of Computer Science Columbia Universit New York, NY 127 www.cs.columbia.edu/graphics/courses/csw4172 Februar 1, 218 1 Homogeneous Coordinates w X W Y X W Y

More information

4. Two Dimensional Transformations

4. Two Dimensional Transformations 4. Two Dimensional Transformations CS362 Introduction to Computer Graphics Helena Wong, 2 In man applications, changes in orientations, sizes, and shapes are accomplished with geometric transformations

More information

CS 428: Fall Introduction to. Viewing and projective transformations. Andrew Nealen, Rutgers, /23/2009 1

CS 428: Fall Introduction to. Viewing and projective transformations. Andrew Nealen, Rutgers, /23/2009 1 CS 428: Fall 29 Introduction to Computer Graphics Viewing and projective transformations Andrew Nealen, Rutgers, 29 9/23/29 Modeling and viewing transformations Canonical viewing volume Viewport transformation

More information

Computer Graphics 7: Viewing in 3-D

Computer Graphics 7: Viewing in 3-D Computer Graphics 7: Viewing in 3-D In today s lecture we are going to have a look at: Transformations in 3-D How do transformations in 3-D work? Contents 3-D homogeneous coordinates and matrix based transformations

More information

2D Transformations. 7 February 2017 Week 5-2D Transformations 1

2D Transformations. 7 February 2017 Week 5-2D Transformations 1 2D Transformations 7 Februar 27 Week 5-2D Transformations Matri math Is there a difference between possible representations? a c b e d f ae bf ce df a c b d e f ae cf be df a b c d e f ae bf ce df 7 Februar

More information

Evening s Goals. Mathematical Transformations. Discuss the mathematical transformations that are utilized for computer graphics

Evening s Goals. Mathematical Transformations. Discuss the mathematical transformations that are utilized for computer graphics Evening s Goals Discuss the mathematical transformations that are utilized for computer graphics projection viewing modeling Describe aspect ratio and its importance Provide a motivation for homogenous

More information

Computer Viewing Computer Graphics I, Fall 2008

Computer Viewing Computer Graphics I, Fall 2008 Computer Viewing 1 Objectives Introduce mathematics of projection Introduce OpenGL viewing functions Look at alternate viewing APIs 2 Computer Viewing Three aspects of viewing process All implemented in

More information

More on Transformations. COS 426, Spring 2019 Princeton University

More on Transformations. COS 426, Spring 2019 Princeton University More on Transformations COS 426, Spring 2019 Princeton Universit Agenda Grab-bag of topics related to transformations: General rotations! Euler angles! Rodrigues s rotation formula Maintaining camera transformations!

More information

Models and The Viewing Pipeline. Jian Huang CS456

Models and The Viewing Pipeline. Jian Huang CS456 Models and The Viewing Pipeline Jian Huang CS456 Vertex coordinates list, polygon table and (maybe) edge table Auxiliary: Per vertex normal Neighborhood information, arranged with regard to vertices and

More information

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1 Foundations of Computer Graphics Homogeneous Coordinates Start doing HW 1 To Do Specifics of HW 1 Last lecture covered basic material on transformations in 2D Likely need this lecture to understand full

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 8: Geometric transformations Szeliski: Chapter 3.6 Reading Announcements Project 2 out today, due Oct. 4 (demo at end of class today) Image alignment Why don

More information

High Dimensional Rendering in OpenGL

High Dimensional Rendering in OpenGL High Dimensional Rendering in OpenGL Josh McCo December, 2003 Description of Project Adding high dimensional rendering capabilit to the OpenGL graphics programming environment is the goal of this project

More information

6. Modelview Transformations

6. Modelview Transformations 6. Modelview Transformations Transformation Basics Transformations map coordinates from one frame of reference to another through matri multiplications Basic transformation operations include: - translation

More information

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 6: Viewing Transformations Tamar Shinar Computer Science & Engineering UC Riverside Rendering approaches 1. image-oriented foreach pixel... 2. object-oriented foreach

More information

CS770/870 Spring 2017 Transformations

CS770/870 Spring 2017 Transformations CS770/870 Spring 2017 Transformations Coordinate sstems 2D Transformations Homogeneous coordinates Matrices, vectors, points Coordinate Sstems Coordinate sstems used in graphics Screen coordinates: the

More information

Computer Graphics. Si Lu. Fall er_graphics.htm 10/11/2017

Computer Graphics. Si Lu. Fall er_graphics.htm 10/11/2017 Computer Graphics Si Lu Fall 27 http://www.cs.pd.edu/~lusi/cs447/cs447_547_comput er_graphics.htm //27 Last time Filtering Resampling 2 Toda Compositing NPR 3D Graphics Toolkits Transformations 3 Demo

More information

Note 2: Transformation (modeling and viewing)

Note 2: Transformation (modeling and viewing) Note : Tranformation (modeling and viewing Reading: tetbook chapter 4 (geometric tranformation and chapter 5 (viewing.. Introduction (model tranformation modeling coordinate modeling tranformation world

More information

1. We ll look at: Types of geometrical transformation. Vector and matrix representations

1. We ll look at: Types of geometrical transformation. Vector and matrix representations Tob Howard COMP272 Computer Graphics and Image Processing 3: Transformations Tob.Howard@manchester.ac.uk Introduction We ll look at: Tpes of geometrical transformation Vector and matri representations

More information

Viewing/Projections III. Week 4, Wed Jan 31

Viewing/Projections III. Week 4, Wed Jan 31 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 27 Tamara Munner Viewing/Projections III Week 4, Wed Jan 3 http://www.ugrad.cs.ubc.ca/~cs34/vjan27 News etra TA coverage in lab to answer

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-845; Fax: (631)632-8334 qin@cs.stonybrook.edu

More information

News. Projections and Picking. Transforming View Volumes. Projections recap. Basic Perspective Projection. Basic Perspective Projection

News. Projections and Picking. Transforming View Volumes. Projections recap. Basic Perspective Projection. Basic Perspective Projection Universit of British Columbia CPSC 44 Computer Graphics Projections and Picking Wed 4 Sep 3 project solution demo recap: projections projections 3 picking News Project solution eecutable available idea

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE45 Computer Graphics Lecture 8: Computer Projection CSE45 Lecture 8: Computer Projection 1 Review In the last lecture We set up a Virtual Camera Position Orientation Clipping planes Viewing angles Orthographic/Perspective

More information

Chap 3 Viewing Pipeline Reading: Angel s Interactive Computer Graphics, Sixth ed. Sections 4.1~4.7

Chap 3 Viewing Pipeline Reading: Angel s Interactive Computer Graphics, Sixth ed. Sections 4.1~4.7 Chap 3 Viewing Pipeline Reading: Angel s Interactive Computer Graphics, Sixth ed. Sections 4.~4.7 Chap 3 View Pipeline, Comp. Graphics (U) CGGM Lab., CS Dept., NCTU Jung Hong Chuang Outline View parameters

More information

Introduction to Computer Graphics 4. Viewing in 3D

Introduction to Computer Graphics 4. Viewing in 3D Introduction to Computer Graphics 4. Viewing in 3D National Chiao Tung Univ, Taiwan By: I-Chen Lin, Assistant Professor Textbook: E.Angel, Interactive Computer Graphics, 5 th Ed., Addison Wesley Ref: Hearn

More information

Viewing with Computers (OpenGL)

Viewing with Computers (OpenGL) We can now return to three-dimension?', graphics from a computer perspective. Because viewing in computer graphics is based on the synthetic-camera model, we should be able to construct any of the classical

More information

Viewing. Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points

Viewing. Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points Viewing Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points Viewing Announcements. A Note About Transformations. Orthographic and Perspective

More information

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination

3D Polygon Rendering. Many applications use rendering of 3D polygons with direct illumination Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination 3D Polygon Rendering What steps are necessary to utilize spatial coherence while drawing

More information

p =(x,y,d) y (0,0) d z Projection plane, z=d

p =(x,y,d) y (0,0) d z Projection plane, z=d Projections ffl Mapping from d dimensional space to d 1 dimensional subspace ffl Range of an projection P : R! R called a projection plane ffl P maps lines to points ffl The image of an point p under P

More information

Announcements. Tutorial this week Life of the polygon A1 theory questions

Announcements. Tutorial this week Life of the polygon A1 theory questions Announcements Assignment programming (due Frida) submission directories are ied use (submit -N Ab cscd88 a_solution.tgz) theor will be returned (Wednesda) Midterm Will cover all o the materials so ar including

More information

Transformations. Examples of transformations: shear. scaling

Transformations. Examples of transformations: shear. scaling Transformations Eamples of transformations: translation rotation scaling shear Transformations More eamples: reflection with respect to the y-ais reflection with respect to the origin Transformations Linear

More information

Graphics Pipeline 2D Geometric Transformations

Graphics Pipeline 2D Geometric Transformations Graphics Pipeline 2D Geometric Transformations CS 4620 Lecture 8 1 Plane projection in drawing Albrecht Dürer 2 Plane projection in drawing source unknown 3 Rasterizing triangles Summary 1 evaluation of

More information

One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface

One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface Classical Viewing Viewing requires three basic elements One or more objects A viewer with a projection surface Projectors that go from the object(s) to the projection surface Classical views are based

More information

3D Viewing Transformations

3D Viewing Transformations 3D Viewing Transformations Eric C. McCreath School of Computer Science The Australian National University ACT 2 Australia ericm@cs.anu.edu.au Overview 2 3D Matri Transformations Model/World/Viewing/Project/Viewport

More information

Uses of Transformations. 2D transformations Homogeneous coordinates. Transformations. Transformations. Transformations. Transformations and matrices

Uses of Transformations. 2D transformations Homogeneous coordinates. Transformations. Transformations. Transformations. Transformations and matrices Uses of Transformations 2D transformations Homogeneous coordinates odeling: position and resie parts of a comple model; Viewing: define and position the virtual camera Animation: define how objects move/change

More information

Examples. Clipping. The Rendering Pipeline. View Frustum. Normalization. How it is done. Types of operations. Removing what is not seen on the screen

Examples. Clipping. The Rendering Pipeline. View Frustum. Normalization. How it is done. Types of operations. Removing what is not seen on the screen Computer Graphics, Lecture 0 November 7, 006 Eamples Clipping Types of operations Accept Reject Clip Removing what is not seen on the screen The Rendering Pipeline The Graphics pipeline includes one stage

More information

CSE328 Fundamentals of Computer Graphics

CSE328 Fundamentals of Computer Graphics CSE328 Fundamentals of Computer Graphics Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 794--44 Tel: (63)632-845; Fax: (63)632-8334 qin@cs.sunysb.edu

More information

Modeling Transformations Revisited

Modeling Transformations Revisited Modeling Transformations Revisited Basic 3D Transformations Translation Scale Shear Rotation 3D Transformations Same idea as 2D transformations o Homogeneous coordinates: (,,z,w) o 44 transformation matrices

More information

Today. The Graphics Pipeline: Projective Transformations. Last Week: Schedule. XForms Forms Library. Questions?

Today. The Graphics Pipeline: Projective Transformations. Last Week: Schedule. XForms Forms Library. Questions? Toda The Graphics Pipeline: Projectie Reiew & Schedule Ra Casting / Tracing s. The Graphics Pipeline Projectie Last Week: Animation & Quaternions Finite Element Simulations collisions, fracture, & deformation

More information

Projections. Brian Curless CSE 457 Spring Reading. Shrinking the pinhole. The pinhole camera. Required:

Projections. Brian Curless CSE 457 Spring Reading. Shrinking the pinhole. The pinhole camera. Required: Reading Required: Projections Brian Curless CSE 457 Spring 2013 Angel, 5.1-5.6 Further reading: Fole, et al, Chapter 5.6 and Chapter 6 David F. Rogers and J. Alan Adams, Mathematical Elements for Computer

More information

Viewing/Projection IV. Week 4, Fri Jan 29

Viewing/Projection IV. Week 4, Fri Jan 29 Universit of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010 Tamara Munner Viewing/Projection IV Week 4, Fri Jan 29 http://www.ugrad.cs.ubc.ca/~cs314/vjan2010 News etra TA office hours in lab

More information

Geometric Model of Camera

Geometric Model of Camera Geometric Model of Camera Dr. Gerhard Roth COMP 42A Winter 25 Version 2 Similar Triangles 2 Geometric Model of Camera Perspective projection P(X,Y,Z) p(,) f X Z f Y Z 3 Parallel lines aren t 4 Figure b

More information

Perspective Projection Transformation

Perspective Projection Transformation Perspective Projection Transformation Where does a point of a scene appear in an image?? p p Transformation in 3 steps:. scene coordinates => camera coordinates. projection of camera coordinates into image

More information

Clipping. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015

Clipping. Angel and Shreiner: Interactive Computer Graphics 7E Addison-Wesley 2015 Clipping 1 Objectives Clipping lines First of implementation algorithms Clipping polygons (next lecture) Focus on pipeline plus a few classic algorithms 2 Clipping 2D against clipping window 3D against

More information

Viewing in 3D (Chapt. 6 in FVD, Chapt. 12 in Hearn & Baker)

Viewing in 3D (Chapt. 6 in FVD, Chapt. 12 in Hearn & Baker) Viewing in 3D (Chapt. 6 in FVD, Chapt. 2 in Hearn & Baker) Viewing in 3D s. 2D 2D 2D world Camera world 2D 3D Transformation Pipe-Line Modeling transformation world Bod Sstem Viewing transformation Front-

More information

CS251 Spring 2014 Lecture 7

CS251 Spring 2014 Lecture 7 CS251 Spring 2014 Lecture 7 Stephanie R Taylor Feb 19, 2014 1 Moving on to 3D Today, we move on to 3D coordinates. But first, let s recap of what we did in 2D: 1. We represented a data point in 2D data

More information

For each question, indicate whether the statement is true or false by circling T or F, respectively.

For each question, indicate whether the statement is true or false by circling T or F, respectively. True/False For each question, indicate whether the statement is true or false by circling T or F, respectively. 1. (T/F) Rasterization occurs before vertex transformation in the graphics pipeline. 2. (T/F)

More information

Geometry of image formation

Geometry of image formation Geometr of image formation Tomáš Svoboda, svoboda@cmp.felk.cvut.c ech Technical Universit in Prague, enter for Machine Perception http://cmp.felk.cvut.c Last update: November 0, 2008 Talk Outline Pinhole

More information

3D Sensing. Translation and Scaling in 3D. Rotation about Arbitrary Axis. Rotation in 3D is about an axis

3D Sensing. Translation and Scaling in 3D. Rotation about Arbitrary Axis. Rotation in 3D is about an axis 3D Sensing Camera Model: Recall there are 5 Different Frames of Reference c Camera Model and 3D Transformations Camera Calibration (Tsai s Method) Depth from General Stereo (overview) Pose Estimation from

More information