CS559: Computer Graphics

Size: px
Start display at page:

Download "CS559: Computer Graphics"

Transcription

1 CS559: Computer Graphics Lecture 8: 3D Transforms Li Zhang Spring 28 Most Slides from Stephen Chenne

2 Finish Color space Toda 3D Transforms and Coordinate sstem Reading: Shirle ch 6

3 RGB and HSV Green(,,) Can (,,) Yellow (,,) White(,,) Blue (,,) Magenta (,,) Black (,,) Red (,,) Different was to represent/parameterize color

4 Photoshop Color Picker

5 L-A-B L-A-B Color Space L: luminance/brightness A: position between magenta and green (negative values indicate green while positive values indicate magenta) B: position between ellow and blue (negative values indicate blue and positive values indicate ellow)

6 Spatial resolution and color R G B original

7 Blurring the G component R G B original processed

8 Blurring the R component R G original processed B

9 Blurring the B component R G original processed B

10 Lab Color Component L a A rotation of the color coordinates into directions that are more perceptuall meaningful: L: luminance, a: magenta-green, b: blue-ellow b

11 Bluring L L a original processed b

12 Bluring a L a original processed b

13 Bluring b L a original processed b

14 Application to image compression (compression is about hiding differences from the true image where ou can t see them).

15 Where to now We are now done with images We will spend several weeks on the mechanics of 3D graphics 3D Transform Coordinate sstems and Viewing Drawing lines and polgons Lighting and shading We will finish the semester with modeling and some additional topics

16 3D Graphics Pipeline Modeling (Creating 3D Geometr) Rendering (Creating, shading images from geometr, lighting, materials)

17 3D Graphics Pipeline Modeling (Creating 3D Geometr) Rendering (Creating, shading images from geometr, lighting, materials) Want to place it at correct location in the world Want to view it from different angles Want to scale it to make it bigger or smaller Need transformation between coordinate sstems -- Represent transformations using matrices and matri-vector multiplications.

18 Recall: All 2D Linear Transformations Linear transformations are combinations of Scale, Rotation, Shear, and Mirror d c b a ' '

19 2D Rotation Rotate counter-clockwise about the origin b an angle cos sin sin cos

20 Rotating About An Arbitrar Point What happens when ou appl a rotation transformation to an object that is not at the origin??

21 Rotating About An Arbitrar Point What happens when ou appl a rotation transformation to an object that is not at the origin? It translates as well

22 How Do We Fi it? How do we rotate an about an arbitrar point? Hint: we know how to rotate about the origin of a coordinate sstem

23 Rotating About An Arbitrar Point

24 Scaling an Object not at the Origin What happens if ou appl the scaling transformation to an object not at the origin? Based on the rotating about a point composition, what should ou do to resize an object about its own center?

25 Back to Rotation About a Pt Sa R is the rotation matri to appl, and p is the point about which to rotate Translation to Origin: p Rotation: R R( p) R Rp Translate back: p R Rp p How to epress all the transformation using matri multiplication?

26 Homogeneous Coordinates Use three numbers to represent a point Translation can now be done with matri multiplication! b a a b a a usuall w, an w for w w w w w w / /

27 Homogeneous Coordinates Use three numbers to represent a point Translation can now be done with matri multiplication! M M M M M usuall w, an w for w w w w w w / /

28 Basic Transformations Translation: Rotation: Scaling: b b s s cos sin sin cos

29 Composing rotations, scales R S R( S ) ( RS) 3 SR 3 Rotation and scaling are not commutative.

30 Inverting Composite Transforms Sa I want to invert a combination of 3 transforms Option : Find composite matri, invert Option 2: Invert each transform and swap order M M M M M M M M ( ( ) ) M M M M M M M M

31 Inverting Composite Transforms Sa I want to invert a combination of 3 transforms Option : Find composite matri, invert Option 2: Invert each transform and swap order Obvious from properties of matrices M M M M M M M M ( ( ) ) M M M M M M M M

32 Homogeneous Transform Advantages Unified view of transformation as matri multiplication Easier in hardware and software To compose transformations, simpl multipl matrices Order matters: BA vs AB Allows for transforming directional vectors Allows for non-affine transformations: Perspective projections!

33 Directions vs. Points We have been talking about transforming points Directions are also important in graphics Viewing directions Normal vectors Ra directions (,) (-2,-) Directions are represented b vectors, like points, and can be transformed, but not like points

34 Transforming Directions Sa I define a direction as the difference of two points: d=a b This represents the direction of the line between two points Now I translate the points b the same amount: a =a+t, b =b+t d =a b =d How should I transform d?

35 Homogeneous Directions Translation does not affect directions! Homogeneous coordinates give us a ver clean wa of handling this The direction (,) becomes the homogeneous direction (,,) The correct thing happens for rotation and scaling also Scaling changes the length of the vector, but not the direction Normal vectors are slightl different we ll see more later b b

36 Transforming normal vectors normal tangent normal tangent M n T t t' Mt n ' T t' If M is a rotation, T ) ( M M n' ( n ( n T T M M )( Mt) ) T ( M ) T n

37 3D Transformations Homogeneous coordinates: (,,z)=(w,w,wz,w) Transformations are now represented as 44 matrices usuall w, an w for w wz w w z w z w z w w / / / z t t t z z

38 3D Affine Transform z t i h g t f e d t c b a z z

39 3D Rotation Rotation in 3D is about an ais in 3D space passing through the origin Using a matri representation, an matri with an orthonormal top-left 33 sub-matri is a rotation Rows/columns are mutuall orthogonal ( dot product) Determinant is Implies columns are also orthogonal, and that the transpose is equal to the inverse.,,,,, then r r r r r r r r r r r r r r r R

40 Specifing a rotation matri

41 Specifing a rotation matri Euler angles: Specif how much to rotate about X, then how much about Y, then how much about Z Hard to think about, and hard to compose

42 Alternative Representations Specif the ais and the angle (OpenGL method) Hard to compose multiple rotations A rotation b an angle is given b around ais specified b the unit vector

43 Non-Commutativit Not Commutative (unlike in 2D)!! Rotate b, then is not same as then Order of appling rotations does matter Follows from matri multiplication not commutative R * R2 is not the same as R2 * R

44 Other Rotation Issues Rotation is about an ais at the origin For rotation about an arbitrar ais, use the same trick as in 2D: Translate the ais to the origin, rotate, and translate back again

45 Transformation Leftovers Scale, shear etc etend naturall from 2D to 3D Rotation and Translation are the rigid-bod transformations: Do not change lengths or angles, so a bod does not deform when transformed

46 Coordinate Frames All of discussion in terms of operating on points But can also change coordinate sstem Eample, motion means either point moves backward, or coordinate sstem moves forward P (2,) ' P (,) P (,)

47 Coordinate Frames: Rotations P ' P cos sin sin cos R v u cos sin sin cos u v P P P'

48 Geometric Interpretation 3D Rotations Rows of matri are 3 unit vectors of new coord frame Can construct rotation matri from 3 orthonormal vectors Effectivel, projections of point into new coord frame u u zu Ruvw v v zv u u X uy zuz w w z w z u u u p v v v p w w z w z p Rp z? u p v p w p

To Do. Computer Graphics (Fall 2004) Course Outline. Course Outline. Motivation. Motivation

To Do. Computer Graphics (Fall 2004) Course Outline. Course Outline. Motivation. Motivation Comuter Grahics (Fall 24) COMS 416, Lecture 3: ransformations 1 htt://www.cs.columbia.edu/~cs416 o Do Start (thinking about) assignment 1 Much of information ou need is in this lecture (slides) Ask A NOW

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical descriptions of geometric changes,

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

To Do. Course Outline. Course Outline. Goals. Motivation. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 3: Transformations 1

To Do. Course Outline. Course Outline. Goals. Motivation. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 3: Transformations 1 Fondations of Compter Graphics (Fall 212) CS 184, Lectre 3: Transformations 1 http://inst.eecs.berkele.ed/~cs184 Sbmit HW b To Do Start looking at HW 1 (simple, bt need to think) Ais-angle rotation and

More information

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1 Toda s class Geometric objects and transformations Wednesda, November 7, 27 Computer Graphics - Class 5 Vector operations Review of vector operations needed for working in computer graphics adding two

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

Geometric Transformations

Geometric Transformations Geometric Transformations CS 4620 Lecture 9 2017 Steve Marschner 1 A little quick math background Notation for sets, functions, mappings Linear and affine transformations Matrices Matrix-vector multiplication

More information

CS770/870 Spring 2017 Transformations

CS770/870 Spring 2017 Transformations CS770/870 Spring 2017 Transformations Coordinate sstems 2D Transformations Homogeneous coordinates Matrices, vectors, points Coordinate Sstems Coordinate sstems used in graphics Screen coordinates: the

More information

Determining the 2d transformation that brings one image into alignment (registers it) with another. And

Determining the 2d transformation that brings one image into alignment (registers it) with another. And Last two lectures: Representing an image as a weighted combination of other images. Toda: A different kind of coordinate sstem change. Solving the biggest problem in using eigenfaces? Toda Recognition

More information

Vector Algebra Transformations. Lecture 4

Vector Algebra Transformations. Lecture 4 Vector Algebra Transformations Lecture 4 Cornell CS4620 Fall 2008 Lecture 4 2008 Steve Marschner 1 Geometry A part of mathematics concerned with questions of size, shape, and relative positions of figures

More information

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications CSE328 Fundamentals of Computer Graphics: Theor, Algorithms, and Applications Hong in State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794-44 Tel: (63)632-845; Fa:

More information

Homogeneous Coordinates

Homogeneous Coordinates COMS W4172 3D Math 2 Steven Feiner Department of Computer Science Columbia Universit New York, NY 127 www.cs.columbia.edu/graphics/courses/csw4172 Februar 1, 218 1 Homogeneous Coordinates w X W Y X W Y

More information

What and Why Transformations?

What and Why Transformations? 2D transformations What and Wh Transformations? What? : The geometrical changes of an object from a current state to modified state. Changing an object s position (translation), orientation (rotation)

More information

Transforms. COMP 575/770 Spring 2013

Transforms. COMP 575/770 Spring 2013 Transforms COMP 575/770 Spring 2013 Transforming Geometry Given any set of points S Could be a 2D shape, a 3D object A transform is a function T that modifies all points in S: T S S T v v S Different transforms

More information

Transformations II. Week 2, Wed Jan 17

Transformations II. Week 2, Wed Jan 17 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 27 Tamara Munzner Transformations II Week 2, Wed Jan 7 http://www.ugrad.cs.ubc.ca/~cs34/vjan27 Readings for Jan 5-22 FCG Chap 6 Transformation

More information

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing)

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) ME 29-R: General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) Sara McMains Spring 29 lecture 2 Toda s GPU eample: moldabilit feedback Two-part mold [The Complete Sculptor

More information

More on Transformations. COS 426, Spring 2019 Princeton University

More on Transformations. COS 426, Spring 2019 Princeton University More on Transformations COS 426, Spring 2019 Princeton Universit Agenda Grab-bag of topics related to transformations: General rotations! Euler angles! Rodrigues s rotation formula Maintaining camera transformations!

More information

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1

To Do. Outline. Translation. Homogeneous Coordinates. Foundations of Computer Graphics. Representation of Points (4-Vectors) Start doing HW 1 Foundations of Computer Graphics Homogeneous Coordinates Start doing HW 1 To Do Specifics of HW 1 Last lecture covered basic material on transformations in 2D Likely need this lecture to understand full

More information

Computer Graphics. Si Lu. Fall er_graphics.htm 10/11/2017

Computer Graphics. Si Lu. Fall er_graphics.htm 10/11/2017 Computer Graphics Si Lu Fall 27 http://www.cs.pd.edu/~lusi/cs447/cs447_547_comput er_graphics.htm //27 Last time Filtering Resampling 2 Toda Compositing NPR 3D Graphics Toolkits Transformations 3 Demo

More information

1. We ll look at: Types of geometrical transformation. Vector and matrix representations

1. We ll look at: Types of geometrical transformation. Vector and matrix representations Tob Howard COMP272 Computer Graphics and Image Processing 3: Transformations Tob.Howard@manchester.ac.uk Introduction We ll look at: Tpes of geometrical transformation Vector and matri representations

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theor, Algorithms, and Applications Hong Qin State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794--44 Tel: (63)632-845; Fa: (63)632-8334 qin@cs.sunsb.edu

More information

GEOMETRIC TRANSFORMATIONS AND VIEWING

GEOMETRIC TRANSFORMATIONS AND VIEWING GEOMETRIC TRANSFORMATIONS AND VIEWING 2D and 3D 1/44 2D TRANSFORMATIONS HOMOGENIZED Transformation Scaling Rotation Translation Matrix s x s y cosθ sinθ sinθ cosθ 1 dx 1 dy These 3 transformations are

More information

CT5510: Computer Graphics. Transformation BOCHANG MOON

CT5510: Computer Graphics. Transformation BOCHANG MOON CT5510: Computer Graphics Transformation BOCHANG MOON 2D Translation Transformations such as rotation and scale can be represented using a matrix M.., How about translation? No way to express this using

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Overview Ra-Tracing so far Modeling transformations Ra Tracing Image RaTrace(Camera camera, Scene scene, int width, int heigh,

More information

Linear and Affine Transformations Coordinate Systems

Linear and Affine Transformations Coordinate Systems Linear and Affine Transformations Coordinate Systems Recall A transformation T is linear if Recall A transformation T is linear if Every linear transformation can be represented as matrix Linear Transformation

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

4. Two Dimensional Transformations

4. Two Dimensional Transformations 4. Two Dimensional Transformations CS362 Introduction to Computer Graphics Helena Wong, 2 In man applications, changes in orientations, sizes, and shapes are accomplished with geometric transformations

More information

2D/3D Geometric Transformations and Scene Graphs

2D/3D Geometric Transformations and Scene Graphs 2D/3D Geometric Transformations and Scene Graphs Week 4 Acknowledgement: The course slides are adapted from the slides prepared by Steve Marschner of Cornell University 1 A little quick math background

More information

Modeling Transformations Revisited

Modeling Transformations Revisited Modeling Transformations Revisited Basic 3D Transformations Translation Scale Shear Rotation 3D Transformations Same idea as 2D transformations o Homogeneous coordinates: (,,z,w) o 44 transformation matrices

More information

CMSC 425: Lecture 10 Basics of Skeletal Animation and Kinematics

CMSC 425: Lecture 10 Basics of Skeletal Animation and Kinematics : Lecture Basics of Skeletal Animation and Kinematics Reading: Chapt of Gregor, Game Engine Architecture. The material on kinematics is a simplification of similar concepts developed in the field of robotics,

More information

Transformations. Examples of transformations: shear. scaling

Transformations. Examples of transformations: shear. scaling Transformations Eamples of transformations: translation rotation scaling shear Transformations More eamples: reflection with respect to the y-ais reflection with respect to the origin Transformations Linear

More information

Motivation. General Idea. Goals. (Nonuniform) Scale. Outline. Foundations of Computer Graphics. s x Scale(s x. ,s y. 0 s y. 0 0 s z.

Motivation. General Idea. Goals. (Nonuniform) Scale. Outline. Foundations of Computer Graphics. s x Scale(s x. ,s y. 0 s y. 0 0 s z. Fondations of Compter Graphics Online Lectre 3: Transformations 1 Basic 2D Transforms Motivation Man different coordinate sstems in graphics World, model, bod, arms, To relate them, we mst transform between

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Announcement Assignment 2 has been posted: Due: 10/24 ASAP: Download the code and make sure it compiles» On windows: just build

More information

CS770/870 Spring 2017 Transformations

CS770/870 Spring 2017 Transformations CS770/870 Spring 2017 Transformations Coordinate sstems 2D Transformations Homogeneous coordinates Matrices, vectors, points 01/29/2017 1 Coordinate Sstems Coordinate sstems used in graphics Screen coordinates:

More information

CS 450: COMPUTER GRAPHICS 2D TRANSFORMATIONS SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS 2D TRANSFORMATIONS SPRING 2016 DR. MICHAEL J. REALE CS 45: COMUTER GRAHICS 2D TRANSFORMATIONS SRING 26 DR. MICHAEL J. REALE INTRODUCTION Now that we hae some linear algebra under our resectie belts, we can start ug it in grahics! So far, for each rimitie,

More information

Transformations III. Week 2, Fri Jan 19

Transformations III. Week 2, Fri Jan 19 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 2007 Tamara Munzner Transformations III Week 2, Fri Jan 9 http://www.ugrad.cs.ubc.ca/~cs34/vjan2007 Readings for Jan 5-22 FCG Chap 6 Transformation

More information

XPM 2D Transformations Week 2, Lecture 3

XPM 2D Transformations Week 2, Lecture 3 CS 430/585 Computer Graphics I XPM 2D Transformations Week 2, Lecture 3 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel

More information

CS Computer Graphics: Transformations & The Synthetic Camera

CS Computer Graphics: Transformations & The Synthetic Camera CS 543 - Computer Graphics: Transformations The Snthetic Camera b Robert W. Lindeman gogo@wpi.edu (with help from Emmanuel Agu ;-) Introduction to Transformations A transformation changes an objects Size

More information

The 3-D Graphics Rendering Pipeline

The 3-D Graphics Rendering Pipeline The 3-D Graphics Rendering Pipeline Modeling Trival Rejection Illumination Viewing Clipping Projection Almost ever discussion of 3-D graphics begins here Seldom are an two versions drawn the same wa Seldom

More information

XPM 2D Transformations Week 2, Lecture 3

XPM 2D Transformations Week 2, Lecture 3 CS 430/585 Computer Graphics I XPM 2D Transformations Week 2, Lecture 3 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel

More information

What does OpenGL do?

What does OpenGL do? Theor behind Geometrical Transform What does OpenGL do? So the user specifies a lot of information Ee Center Up Near, far, UP EE Left, right top, bottom, etc. f b CENTER left right top bottom What does

More information

MEM380 Applied Autonomous Robots Winter Robot Kinematics

MEM380 Applied Autonomous Robots Winter Robot Kinematics MEM38 Applied Autonomous obots Winter obot Kinematics Coordinate Transformations Motivation Ultimatel, we are interested in the motion of the robot with respect to a global or inertial navigation frame

More information

Image Warping. Some slides from Steve Seitz

Image Warping.   Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Spring 2 Image Transformations image filtering: change range of image g() = T(f())

More information

3D Transformations. CS 4620 Lecture 10. Cornell CS4620 Fall 2014 Lecture Steve Marschner (with previous instructors James/Bala)

3D Transformations. CS 4620 Lecture 10. Cornell CS4620 Fall 2014 Lecture Steve Marschner (with previous instructors James/Bala) 3D Transformations CS 4620 Lecture 10 1 Translation 2 Scaling 3 Rotation about z axis 4 Rotation about x axis 5 Rotation about y axis 6 Properties of Matrices Translations: linear part is the identity

More information

Two Dimensional Viewing

Two Dimensional Viewing Two Dimensional Viewing Dr. S.M. Malaek Assistant: M. Younesi Two Dimensional Viewing Basic Interactive Programming Basic Interactive Programming User controls contents, structure, and appearance of objects

More information

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is.

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is. Interactive Computer Graphics Warping and morphing Lecture 14+15: Warping and Morphing Lecture 14: Warping and Morphing: Slide 1 Lecture 14: Warping and Morphing: Slide 2 Warping and Morphing What is Warping

More information

3D Transformations. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 11

3D Transformations. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 11 3D Transformations CS 4620 Lecture 11 1 Announcements A2 due tomorrow Demos on Monday Please sign up for a slot Post on piazza 2 Translation 3 Scaling 4 Rotation about z axis 5 Rotation about x axis 6

More information

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner GLOBAL EDITION Interactive Computer Graphics A Top-Down Approach with WebGL SEVENTH EDITION Edward Angel Dave Shreiner This page is intentionall left blank. 4.10 Concatenation of Transformations 219 in

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 8: Geometric transformations Szeliski: Chapter 3.6 Reading Announcements Project 2 out today, due Oct. 4 (demo at end of class today) Image alignment Why don

More information

Notes. University of British Columbia

Notes. University of British Columbia Notes Drop-bo is no. 14 You can hand in our assignments Assignment 0 due Fri. 4pm Assignment 1 is out Office hours toda 16:00 17:00, in lab or in reading room Uniersit of Uniersit of Chapter 4 - Reminder

More information

CS 335 Graphics and Multimedia. Geometric Warping

CS 335 Graphics and Multimedia. Geometric Warping CS 335 Graphics and Multimedia Geometric Warping Geometric Image Operations Eample transformations Straightforward methods and their problems The affine transformation Transformation algorithms: Forward

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

Transforms 1 Christian Miller CS Fall 2011

Transforms 1 Christian Miller CS Fall 2011 Transforms 1 Christian Miller CS 354 - Fall 2011 Transformations What happens if you multiply a square matrix and a vector together? You get a different vector with the same number of coordinates These

More information

[ ] [ ] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D. φ = cos 1 1/ φ = tan 1 [ 2 /1]

[ ] [ ] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D. φ = cos 1 1/ φ = tan 1 [ 2 /1] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D A vector is specified b its coordinates, so it is defined relative to a reference frame. The same vector will have different coordinates in

More information

Transformations II. Arbitrary 3D Rotation. What is its inverse? What is its transpose? Can we constructively elucidate this relationship?

Transformations II. Arbitrary 3D Rotation. What is its inverse? What is its transpose? Can we constructively elucidate this relationship? Utah School of Computing Fall 25 Transformations II CS46 Computer Graphics From Rich Riesenfeld Fall 25 Arbitrar 3D Rotation What is its inverse? What is its transpose? Can we constructivel elucidate this

More information

Editing and Transformation

Editing and Transformation Lecture 5 Editing and Transformation Modeling Model can be produced b the combination of entities that have been edited. D: circle, arc, line, ellipse 3D: primitive bodies, etrusion and revolved of a profile

More information

Linear transformations Affine transformations Transformations in 3D. Graphics 2009/2010, period 1. Lecture 5: linear and affine transformations

Linear transformations Affine transformations Transformations in 3D. Graphics 2009/2010, period 1. Lecture 5: linear and affine transformations Graphics 2009/2010, period 1 Lecture 5 Linear and affine transformations Vector transformation: basic idea Definition Examples Finding matrices Compositions of transformations Transposing normal vectors

More information

Graphics Pipeline 2D Geometric Transformations

Graphics Pipeline 2D Geometric Transformations Graphics Pipeline 2D Geometric Transformations CS 4620 Lecture 8 1 Plane projection in drawing Albrecht Dürer 2 Plane projection in drawing source unknown 3 Rasterizing triangles Summary 1 evaluation of

More information

Modeling Transformations

Modeling Transformations שיעור 3 גרפיקה ממוחשבת תשס"ח ב ליאור שפירא Modeling Transformations Heavil based on: Thomas Funkhouser Princeton Universit CS 426, Fall 2 Modeling Transformations Specif transformations for objects Allows

More information

Image warping. image filtering: change range of image. image warping: change domain of image g(x) = f(h(x)) h(y)=0.5y+0.5. h([x,y])=[x,y/2] f h

Image warping. image filtering: change range of image. image warping: change domain of image g(x) = f(h(x)) h(y)=0.5y+0.5. h([x,y])=[x,y/2] f h Image warping Image warping image filtering: change range of image g() () = h(f()) h(f()) f h g h()=0.5+0.5 image warping: change domain of image g() = f(h()) f h g h([,])=[,/2] Parametric (global) warping

More information

Last week. Machiraju/Zhang/Möller/Fuhrmann

Last week. Machiraju/Zhang/Möller/Fuhrmann Last week Machiraju/Zhang/Möller/Fuhrmann 1 Geometry basics Scalar, point, and vector Vector space and affine space Basic point and vector operations Sided-ness test Lines, planes, and triangles Linear

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Thomas Funkhouser Princeton Universit CS 426, Fall 2 Modeling Transformations Specif transformations for objects Allos definitions of objects in on coordinate sstems Allos use

More information

Modeling Transformations

Modeling Transformations Transformations Transformations Specif transformations for objects o Allos definitions of objects in on coordinate sstems o Allos use of object definition multiple times in a scene Adam Finkelstein Princeton

More information

Image Warping (Szeliski Sec 2.1.2)

Image Warping (Szeliski Sec 2.1.2) Image Warping (Szeliski Sec 2..2) http://www.jeffre-martin.com CS94: Image Manipulation & Computational Photograph Aleei Efros, UC Berkele, Fall 7 Some slides from Steve Seitz Image Transformations image

More information

Today. Parity. General Polygons? Non-Zero Winding Rule. Winding Numbers. CS559 Lecture 11 Polygons, Transformations

Today. Parity. General Polygons? Non-Zero Winding Rule. Winding Numbers. CS559 Lecture 11 Polygons, Transformations CS559 Lecture Polygons, Transformations These are course notes (not used as slides) Written by Mike Gleicher, Oct. 005 With some slides adapted from the notes of Stephen Chenney Final version (after class)

More information

Computer Graphics. P04 Transformations. Aleksandra Pizurica Ghent University

Computer Graphics. P04 Transformations. Aleksandra Pizurica Ghent University Computer Graphics P4 Transformations Aleksandra Pizurica Ghent Universit Telecommunications and Information Processing Image Processing and Interpretation Group Transformations in computer graphics Goal:

More information

CSCI-4530/6530 Advanced Computer Graphics

CSCI-4530/6530 Advanced Computer Graphics Luo Jr. CSCI-453/653 Advanced Computer Graphics http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/s7/ Barb Cutler cutler@cs.rpi.edu MRC 33A Piar Animation Studios, 986 Topics for the Semester Meshes

More information

Geometric Model of Camera

Geometric Model of Camera Geometric Model of Camera Dr. Gerhard Roth COMP 42A Winter 25 Version 2 Similar Triangles 2 Geometric Model of Camera Perspective projection P(X,Y,Z) p(,) f X Z f Y Z 3 Parallel lines aren t 4 Figure b

More information

Image Warping CSE399b, Spring 07 Computer Vision

Image Warping CSE399b, Spring 07 Computer Vision Image Warping CSE399b, Spring 7 Computer Vision http://maps.a9.com http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html Autostiching on A9.com

More information

IMGD The Game Development Process: 3D Modeling and Transformations

IMGD The Game Development Process: 3D Modeling and Transformations IMGD - The Game Development Process: 3D Modeling and Transformations b Robert W. Lindeman (gogo@wpi.edu Kent Quirk (kent_quirk@cognito.com (with lots of input from Mark Clapool! Overview of 3D Modeling

More information

3D graphics rendering pipeline (1) 3D graphics rendering pipeline (3) 3D graphics rendering pipeline (2) 8/29/11

3D graphics rendering pipeline (1) 3D graphics rendering pipeline (3) 3D graphics rendering pipeline (2) 8/29/11 3D graphics rendering pipeline (1) Geometr Rasteriation 3D Coordinates & Transformations Prof. Aaron Lanterman (Based on slides b Prof. Hsien-Hsin Sean Lee) School of Electrical and Computer Engineering

More information

Translation. 3D Transformations. Rotation about z axis. Scaling. CS 4620 Lecture 8. 3 Cornell CS4620 Fall 2009!Lecture 8

Translation. 3D Transformations. Rotation about z axis. Scaling. CS 4620 Lecture 8. 3 Cornell CS4620 Fall 2009!Lecture 8 Translation 3D Transformations CS 4620 Lecture 8 1 2 Scaling Rotation about z axis 3 4 Rotation about x axis Rotation about y axis 5 6 Transformations in OpenGL Stack-based manipulation of model-view transformation,

More information

Today. Today. Introduction. Matrices. Matrices. Computergrafik. Transformations & matrices Introduction Matrices

Today. Today. Introduction. Matrices. Matrices. Computergrafik. Transformations & matrices Introduction Matrices Computergrafik Matthias Zwicker Universität Bern Herbst 2008 Today Transformations & matrices Introduction Matrices Homogeneous Affine transformations Concatenating transformations Change of Common coordinate

More information

3D GRAPHICS. design. animate. render

3D GRAPHICS. design. animate. render 3D GRAPHICS design animate render 3D animation movies Computer Graphics Special effects Computer Graphics Advertising Computer Graphics Games Computer Graphics Simulations & serious games Computer Graphics

More information

Advanced Computer Graphics Transformations. Matthias Teschner

Advanced Computer Graphics Transformations. Matthias Teschner Advanced Computer Graphics Transformations Matthias Teschner Motivation Transformations are used To convert between arbitrary spaces, e.g. world space and other spaces, such as object space, camera space

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

3D Coordinates & Transformations

3D Coordinates & Transformations 3D Coordinates & Transformations Prof. Aaron Lanterman (Based on slides b Prof. Hsien-Hsin Sean Lee) School of Electrical and Computer Engineering Georgia Institute of Technolog 3D graphics rendering pipeline

More information

Lecture 4: Viewing. Topics:

Lecture 4: Viewing. Topics: Lecture 4: Viewing Topics: 1. Classical viewing 2. Positioning the camera 3. Perspective and orthogonal projections 4. Perspective and orthogonal projections in OpenGL 5. Perspective and orthogonal projection

More information

Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision

Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision http://grail.cs.washington.edu/projects/rotoscoping/ Image Warping, mesh, and triangulation CSE399b, Spring 7 Computer Vision Man of the slides from A. Efros. Parametric (global) warping Eamples of parametric

More information

Geometric transformations in 3D and coordinate frames. Computer Graphics CSE 167 Lecture 3

Geometric transformations in 3D and coordinate frames. Computer Graphics CSE 167 Lecture 3 Geometric transformations in 3D and coordinate frames Computer Graphics CSE 167 Lecture 3 CSE 167: Computer Graphics 3D points as vectors Geometric transformations in 3D Coordinate frames CSE 167, Winter

More information

CS4620/5620. Professor: Kavita Bala. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner)

CS4620/5620. Professor: Kavita Bala. Cornell CS4620/5620 Fall 2012 Lecture Kavita Bala 1 (with previous instructors James/Marschner) CS4620/5620 Affine and 3D Transformations Professor: Kavita Bala 1 Announcements Updated schedule on course web page 2 Prelim days finalized and posted Oct 11, Nov 29 No final exam, final project will

More information

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 2 Image Transformations image filtering: change range of image g() T(f())

More information

Midterm Review. Wen-Chieh (Steve) Lin Department of Computer Science

Midterm Review. Wen-Chieh (Steve) Lin Department of Computer Science Midterm Review Wen-Chieh (Steve) Lin Department of Computer Science Administration Assignment due on /3 :59 PM Midterm eam on /6 (Monda) Lecture slides Chapter 3 ecluding 3.6 & 3.8 Chapter 6, 7, 8 Chapter

More information

Lecture 4: Transforms. Computer Graphics CMU /15-662, Fall 2016

Lecture 4: Transforms. Computer Graphics CMU /15-662, Fall 2016 Lecture 4: Transforms Computer Graphics CMU 15-462/15-662, Fall 2016 Brief recap from last class How to draw a triangle - Why focus on triangles, and not quads, pentagons, etc? - What was specific to triangles

More information

2D transformations and homogeneous coordinates

2D transformations and homogeneous coordinates 2D transformations and homogeneous coordinates Dr Nicolas Holzschuch Universit of Cape Ton e-mail: holzschu@cs.uct.ac.za Map of the lecture Transformations in 2D: vector/matri notation eample: translation,

More information

Image Warping. Some slides from Steve Seitz

Image Warping.   Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 26 Image Warping image filtering: change range of image g() T(f()) f T f image

More information

CSCI-4530/6530 Advanced Computer Graphics

CSCI-4530/6530 Advanced Computer Graphics Luo Jr. CSCI-45/65 Advanced Computer Graphics http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/s9/ Barb Cutler cutler@cs.rpi.edu MRC 9A Piar Animation Studios, 986 Topics for the Semester Mesh Simplification

More information

DIHEDRAL GROUPS KEITH CONRAD

DIHEDRAL GROUPS KEITH CONRAD DIHEDRAL GROUPS KEITH CONRAD 1. Introduction For n 3, the dihedral group D n is defined as the rigid motions 1 taking a regular n-gon back to itself, with the operation being composition. These polygons

More information

Scene Graphs & Modeling Transformations COS 426

Scene Graphs & Modeling Transformations COS 426 Scene Graphs & Modeling Transformations COS 426 3D Object Representations Points Range image Point cloud Surfaces Polgonal mesh Subdivision Parametric Implicit Solids Voels BSP tree CSG Sweep High-level

More information

(x, y) (ρ, θ) ρ θ. Polar Coordinates. Cartesian Coordinates

(x, y) (ρ, θ) ρ θ. Polar Coordinates. Cartesian Coordinates Coordinate Sstems Point Representation in two dimensions Cartesian Coordinates: (; ) Polar Coordinates: (; ) (, ) ρ θ (ρ, θ) Cartesian Coordinates Polar Coordinates p = CPS1, 9: Computer Graphics D Geometric

More information

MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration

MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration MAN-522: COMPUTER VISION SET-2 Projections and Camera Calibration Image formation How are objects in the world captured in an image? Phsical parameters of image formation Geometric Tpe of projection Camera

More information

Announcements. Equation of Perspective Projection. Image Formation and Cameras

Announcements. Equation of Perspective Projection. Image Formation and Cameras Announcements Image ormation and Cameras Introduction to Computer Vision CSE 52 Lecture 4 Read Trucco & Verri: pp. 22-4 Irfanview: http://www.irfanview.com/ is a good Windows utilit for manipulating images.

More information

Viewing and Projection

Viewing and Projection 15-462 Computer Graphics I Lecture 5 Viewing and Projection Shear Transformation Camera Positioning Simple Parallel Projections Simple Perspective Projections [Angel, Ch. 5.2-5.4] January 30, 2003 [Red

More information

Warping, Morphing and Mosaics

Warping, Morphing and Mosaics Computational Photograph and Video: Warping, Morphing and Mosaics Prof. Marc Pollefes Dr. Gabriel Brostow Toda s schedule Last week s recap Warping Morphing Mosaics Toda s schedule Last week s recap Warping

More information

Introduction to Homogeneous Transformations & Robot Kinematics

Introduction to Homogeneous Transformations & Robot Kinematics Introduction to Homogeneous Transformations & Robot Kinematics Jennifer Ka Rowan Universit Computer Science Department. Drawing Dimensional Frames in 2 Dimensions We will be working in -D coordinates,

More information

Think About. Unit 5 Lesson 3. Investigation. This Situation. Name: a Where do you think the origin of a coordinate system was placed in creating this

Think About. Unit 5 Lesson 3. Investigation. This Situation. Name: a Where do you think the origin of a coordinate system was placed in creating this Think About This Situation Unit 5 Lesson 3 Investigation 1 Name: Eamine how the sequence of images changes from frame to frame. a Where do ou think the origin of a coordinate sstem was placed in creating

More information

Image Warping. Many slides from Alyosha Efros + Steve Seitz. Photo by Sean Carroll

Image Warping. Many slides from Alyosha Efros + Steve Seitz. Photo by Sean Carroll Image Warping Man slides from Alosha Efros + Steve Seitz Photo b Sean Carroll Morphing Blend from one object to other with a series of local transformations Image Transformations image filtering: change

More information

Fundamentals of Linear Algebra, Part II

Fundamentals of Linear Algebra, Part II -7/8-797 Machine Learning for Signal Processing Fundamentals of Linear Algebra, Part II Class 3 August 9 Instructor: Bhiksha Raj Administrivia Registration: Anone on waitlist still? We have a second TA

More information