High performance computation: numerical music or numerical noise?

Size: px
Start display at page:

Download "High performance computation: numerical music or numerical noise?"

Transcription

1 High performance computation: numerical music or numerical noise? N.S. Scott*, C. Denis, F. Jèzèquel, J.-M. Chesneaux *School of Electronics, Electrical Engineering and Computer Science The Queen's University of Belfast, Belfast, BT7 1NN, UK Laboratoire d'informatique de Paris 6, Universitè Pierre et Marie Curie - Paris 6, 4 place Jussieu,75252 Paris Cedex 05, France 1

2 Scientific computation: numerical music or numerical noise? I have little doubt that about 80% of all the results printed from the computer are in error to a much greater extent than the user would believe.. Leslie Fox,

3 Scientific computation is inherently flawed. continuum ionization threshold e - + H(1s) H - e - + H(nl) nl r 1 Internal region 2-D R-matrix Approach External region ground state 1s outer region e - r 2 Mathematical model e - Real world inner region Computational model Computer implementation 3

4 Precariousness of relying on extended precision f(x,y) =333.75y 6 +x 2 (11x 2 y 2 -y 6-121y 4-2)+5.5y 8 +x/(2y) Method Fortran:single precision Fortran:double precision Fortran:quad precision VP Interval Arithmetic f(77617,33096) * [ , ] S.M. Rump, Reliability in Computing. The role of Interval Methods in Scientific Computing, Academic Press,

5 Numerical health check recommended Ideally, we seek a numerical screening tool that will: report gradual and catastrophic loss of precision; report the accuracy of intermediate and final results; be of acceptable efficiency; and be non invasive to the source code. Accuracy vs Precision has eight decimal digit precision, irrespective of what it represents. 22/7 - accurate to eight decimal digits, π - accurate to three decimal digits only. 5

6 The CESTAC methodology Where no overflow occurs, the exact result, r, of any non exact floating-point arithmetic operation is bounded by two consecutive floating-point values R - and R +. The basic idea of the method is to perform each arithmetic operation N times, randomly rounding each time, with a probability of 0.5, to R - or R +. R 1 =x*y R 2 =x*y R 3 =x*y _ R C = 1 N N i= 1 Ri ( = f R, σ ({ R R i })) 6

7 The CANDA Library PROGRAM f!use cadna double precision :: y,x,res!type(double_st) :: y,x,res!call cadna_init(-1) x=77617d0; y=33096d0 res=333.75*y*y*y*y*y*y+x*x*(11*x*x*y*y-y*y*y*y*y*y- & 121*y*y*y*y-2.0)+5.5*y*y*y*y*y*y*y*y+x/(2*y) print *, res! print *, str(res)! call cand_end() END PROGRAM f 7

8 CADNA f(x,y) =333.75y 6 +x 2 (11x 2 y 2 -y 6-121y 4-2)+5.5y 8 +x/(2y) Method Fortran:single precision Fortran:double precision Fortran:quad precision VP Interval Arithmetic CADNA: single precision CADNA: double precision f(77617,33096) * Control of Accuracy and Debugging for Numerical Applications (CADNA) 8

9 CANDA analysis of the Slater integrals To compute the Slater integrals 2DRMP uses, rs, a legacy subroutine that has been used R-matrix codes for over 30 years. The computation of I λ with λ in {0, 2, 4, 6, 8} in double precision using 1025 equally spaced integration points. λ I λ E E E E E+002 9

10 CANDA analysis of the Slater integrals 10

11 CANDA analysis of the Slater integrals In the 1970s, for reasons of storage economy and computational efficiency was replaced by 11

12 CANDA analysis of the Slater integrals An alternative is to compute directly but in the direction of decreasing y Accuracy vs Precision Even points poor algorithm, well computed Odd points better algorithm, poorly computed 12

13 CANDA analysis of the Slater integrals λ I λ E E E E E+002 I λ improved E E E E E-001 How do we know that the results are accurate? 13

14 Dynamical control of step size using CADNA For Newton-Cotes type approximations it can be shown that in a series of successive iterations, if I n -I n+1 then the significant digits in common to I n and I n+1 are also common to the exact result, I, up to one bit. This can be used to generate benchmark results. λ I λ using 2 17 integration points E E E E E

15 Concluding remarks report gradual and catastrophic loss of precision? report the accuracy of intermediate and final results? be of acceptable efficiency? be non invasive to the source code? 15

16 Moral Scientific codes used in high performance and grid environments need regular health checks to determine if they are fit for purpose. This is particularly important when legacy routines are used in new situations. CADNA is not a panacea - but it provides one way of achieving this. It is especially beneficial for screening legacy software where no documentation is available and where the author has long since departed. Scott NS, Jèzèquel F, Denis C and Chesneaux, J-M, Numerical health check for scientific codes: the CADNA approach, Compt. Phys. Commun (2007) 16

Estimation d arrondis, analyse de stabilité des grands codes de calcul numérique

Estimation d arrondis, analyse de stabilité des grands codes de calcul numérique Estimation d arrondis, analyse de stabilité des grands codes de calcul numérique Jean-Marie Chesneaux, Fabienne Jézéquel, Jean-Luc Lamotte, Jean Vignes Laboratoire d Informatique de Paris 6, P. and M.

More information

Estimation de la reproductibilité numérique dans les environnements hybrides CPU-GPU

Estimation de la reproductibilité numérique dans les environnements hybrides CPU-GPU Estimation de la reproductibilité numérique dans les environnements hybrides CPU-GPU Fabienne Jézéquel 1, Jean-Luc Lamotte 1 & Issam Said 2 1 LIP6, Université Pierre et Marie Curie 2 Total & LIP6, Université

More information

Stochastic arithmetic: presentation and recent developments

Stochastic arithmetic: presentation and recent developments Stochastic arithmetic: presentation and recent developments Fabienne Jézéquel, Jean-Luc Lamotte LIP6/PEQUAN - Université Pierre et Marie Curie (Paris 6) - CNRS Ecole "précision et reproductibilité en calcul

More information

Numerical validation of compensated summation algorithms with stochastic arithmetic

Numerical validation of compensated summation algorithms with stochastic arithmetic NSV 2015 Numerical validation of compensated summation algorithms with stochastic arithmetic S. Graillat 1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France CNRS, UMR 7606,

More information

CADNA: a library for estimating round-off error propagation

CADNA: a library for estimating round-off error propagation CADNA: a library for estimating round-off error propagation Fabienne Jézéquel 1, Jean-Marie Chesneaux UPMC Univ. Paris 06 UMR 7606 Laboratoire d Informatique de Paris 6 4 place Jussieu, F-75005 Paris,

More information

Numerical Verification of Large Scale CFD Simulations: One Way to Prepare the Exascale Challenge

Numerical Verification of Large Scale CFD Simulations: One Way to Prepare the Exascale Challenge Numerical Verification of Large Scale CFD Simulations: One Way to Prepare the Exascale Challenge Christophe DENIS Christophe.Denis@edf.fr EDF Resarch and Development - EDF Lab Clamart August 22, 2014 16

More information

Estimation of numerical reproducibility using stochastic arithmetic

Estimation of numerical reproducibility using stochastic arithmetic Estimation of numerical reproducibility using stochastic arithmetic Fabienne Jézéquel 1, Jean-Luc Lamotte 1 & Issam Said 2 1 LIP6, Université Pierre et Marie Curie 2 Total & LIP6, Université Pierre et

More information

Numerical validation using the CADNA library practical work

Numerical validation using the CADNA library practical work Numerical validation using the CADNA library practical work F. Jézéquel, J.-L. Lamotte LIP6 Laboratory, P. and M. Curie University, Paris, France Fabienne.Jezequel@lip6.fr, Jean-Luc.Lamotte@lip6.fr February

More information

Estimation of numerical reproducibility on CPU and GPU

Estimation of numerical reproducibility on CPU and GPU Estimation of numerical reproducibility on CPU and GPU Fabienne Jézéquel 1,2,3, Jean-Luc Lamotte 1,2, and Issam Saïd 1,2 1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris, France

More information

International Training Workshop on FPGA Design for Scientific Instrumentation and Computing November 2013

International Training Workshop on FPGA Design for Scientific Instrumentation and Computing November 2013 2499-13 International Training Workshop on FPGA Design for Scientific Instrumentation and Computing 11-22 Digital CMOS Design Combinational and sequential circuits, contd. Pirouz Bazargan-Sabet Department

More information

Numerical Methods in Scientific Computation

Numerical Methods in Scientific Computation Numerical Methods in Scientific Computation Programming and Software Introduction to error analysis 1 Packages vs. Programming Packages MATLAB Excel Mathematica Maple Packages do the work for you Most

More information

A Multiple-Precision Division Algorithm

A Multiple-Precision Division Algorithm Digital Commons@ Loyola Marymount University and Loyola Law School Mathematics Faculty Works Mathematics 1-1-1996 A Multiple-Precision Division Algorithm David M. Smith Loyola Marymount University, dsmith@lmu.edu

More information

IRP programming paradigm and its implementation in Fortran for quantum Monte Carlo

IRP programming paradigm and its implementation in Fortran for quantum Monte Carlo IRP programming paradigm and its implementation in Fortran for quantum Monte Carlo Roland Assaraf and Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France CECAM discussion meeting, IDRIS,

More information

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing EE878 Special Topics in VLSI Computer Arithmetic for Digital Signal Processing Part 4-B Floating-Point Arithmetic - II Spring 2017 Koren Part.4b.1 The IEEE Floating-Point Standard Four formats for floating-point

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4-B Floating-Point Arithmetic - II Israel Koren ECE666/Koren Part.4b.1 The IEEE Floating-Point

More information

Algorithms. algorithm: An algorithm must possess the following properties: Algorithm Analysis

Algorithms. algorithm: An algorithm must possess the following properties: Algorithm Analysis Algorithms 1 algorithm: a finite set of instructions that specify a sequence of operations to be carried out in order to solve a specific problem or class of problems An algorithm must possess the following

More information

Auto-tuning for floating-point precision with Discrete Stochastic Arithmetic

Auto-tuning for floating-point precision with Discrete Stochastic Arithmetic Auto-tuning for floating-point precision with Discrete Stochastic Arithmetic Stef Graillat, Fabienne Jézéquel, Romain Picot, François Févotte, Bruno Lathuilière To cite this version: Stef Graillat, Fabienne

More information

Christophe DENIS 1 and Sethy MONTAN 2

Christophe DENIS 1 and Sethy MONTAN 2 ESAIM: PROCEEDINGS, March 2012, Vol. 35, p. 107-113 Fédération Denis Poisson (Orléans-Tours) et E. Trélat (UPMC), Editors NUMERICAL VERIFICATION OF INDUSTRIAL NUMERICAL CODES Christophe DENIS 1 and Sethy

More information

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method.

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. Reals 1 13 Reals Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. 13.1 Floating-point numbers Real numbers, those declared to be

More information

The Global Standard for Mobility (GSM) (see, e.g., [6], [4], [5]) yields a

The Global Standard for Mobility (GSM) (see, e.g., [6], [4], [5]) yields a Preprint 0 (2000)?{? 1 Approximation of a direction of N d in bounded coordinates Jean-Christophe Novelli a Gilles Schaeer b Florent Hivert a a Universite Paris 7 { LIAFA 2, place Jussieu - 75251 Paris

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

Signed Multiplication Multiply the positives Negate result if signs of operand are different

Signed Multiplication Multiply the positives Negate result if signs of operand are different Another Improvement Save on space: Put multiplier in product saves on speed: only single shift needed Figure: Improved hardware for multiplication Signed Multiplication Multiply the positives Negate result

More information

Algorithm must complete after a finite number of instructions have been executed. Each step must be clearly defined, having only one interpretation.

Algorithm must complete after a finite number of instructions have been executed. Each step must be clearly defined, having only one interpretation. Algorithms 1 algorithm: a finite set of instructions that specify a sequence of operations to be carried out in order to solve a specific problem or class of problems An algorithm must possess the following

More information

MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic

MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic MAT128A: Numerical Analysis Lecture Two: Finite Precision Arithmetic September 28, 2018 Lecture 1 September 28, 2018 1 / 25 Floating point arithmetic Computers use finite strings of binary digits to represent

More information

Compensated algorithms in floating point arithmetic: accuracy, validation, performances.

Compensated algorithms in floating point arithmetic: accuracy, validation, performances. Compensated algorithms in floating point arithmetic: accuracy, validation, performances. Nicolas Louvet Directeur de thèse: Philippe Langlois Université de Perpignan Via Domitia Laboratoire ELIAUS Équipe

More information

Roundoff Errors and Computer Arithmetic

Roundoff Errors and Computer Arithmetic Jim Lambers Math 105A Summer Session I 2003-04 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Roundoff Errors and Computer Arithmetic In computing the solution to any mathematical problem,

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic CS 365 Floating-Point What can be represented in N bits? Unsigned 0 to 2 N 2s Complement -2 N-1 to 2 N-1-1 But, what about? very large numbers? 9,349,398,989,787,762,244,859,087,678

More information

Numerical quality: an industrial case study on code_aster

Numerical quality: an industrial case study on code_aster Numerical quality: an industrial case study on code_aster Numerical Software Verication 22/07/2017 François Févotte Bruno Lathuilière EDF R&D PERICLES / I23 (Analysis and Numerical Modeling) Industrial

More information

What we need to know about error: Class Outline. Computational Methods CMSC/AMSC/MAPL 460. Errors in data and computation

What we need to know about error: Class Outline. Computational Methods CMSC/AMSC/MAPL 460. Errors in data and computation Class Outline Computational Methods CMSC/AMSC/MAPL 460 Errors in data and computation Representing numbers in floating point Ramani Duraiswami, Dept. of Computer Science Computations should be as accurate

More information

Parallel Implementations of Gaussian Elimination

Parallel Implementations of Gaussian Elimination s of Western Michigan University vasilije.perovic@wmich.edu January 27, 2012 CS 6260: in Parallel Linear systems of equations General form of a linear system of equations is given by a 11 x 1 + + a 1n

More information

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Representing numbers in floating point and associated issues Ramani Duraiswami, Dept. of Computer Science Class Outline Computations should be as accurate and as

More information

A Multiple -Precision Division Algorithm. By David M. Smith

A Multiple -Precision Division Algorithm. By David M. Smith A Multiple -Precision Division Algorithm By David M. Smith Abstract. The classical algorithm for multiple -precision division normalizes digits during each step and sometimes makes correction steps when

More information

Reproducibility in Stochastic Simulation

Reproducibility in Stochastic Simulation Reproducibility in Stochastic Simulation Prof. Michael Mascagni Department of Computer Science Department of Mathematics Department of Scientific Computing Graduate Program in Molecular Biophysics Florida

More information

VeriTracer: Context-enriched tracer for floating-point arithmetic analysis

VeriTracer: Context-enriched tracer for floating-point arithmetic analysis VeriTracer: Context-enriched tracer for floating-point arithmetic analysis ARITH 25, Amherst MA USA, June 2018 Yohan Chatelain 1,5 Pablo de Oliveira Castro 1,5 Eric Petit 2,5 David Defour 3 Jordan Bieder

More information

Toward hardware support for Reproducible BLAS

Toward hardware support for Reproducible BLAS Toward hardware support for Reproducible BLAS http://bebop.cs.berkeley.edu/reproblas/ James Demmel, Hong Diep Nguyen SCAN 2014 - Wurzburg, Germany Sep 24, 2014 1 / 17 Reproducibility Reproducibility: obtaining

More information

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Representing numbers in floating point and associated issues Ramani Duraiswami, Dept. of Computer Science Class Outline Computations should be as accurate and as

More information

Errors in Computation

Errors in Computation Theory of Errors Content Errors in computation Absolute Error Relative Error Roundoff Errors Truncation Errors Floating Point Numbers Normalized Floating Point Numbers Roundoff Error in Floating Point

More information

Numerical computing. How computers store real numbers and the problems that result

Numerical computing. How computers store real numbers and the problems that result Numerical computing How computers store real numbers and the problems that result The scientific method Theory: Mathematical equations provide a description or model Experiment Inference from data Test

More information

CODE ANALYSES FOR NUMERICAL ACCURACY WITH AFFINE FORMS: FROM DIAGNOSIS TO THE ORIGIN OF THE NUMERICAL ERRORS. Teratec 2017 Forum Védrine Franck

CODE ANALYSES FOR NUMERICAL ACCURACY WITH AFFINE FORMS: FROM DIAGNOSIS TO THE ORIGIN OF THE NUMERICAL ERRORS. Teratec 2017 Forum Védrine Franck CODE ANALYSES FOR NUMERICAL ACCURACY WITH AFFINE FORMS: FROM DIAGNOSIS TO THE ORIGIN OF THE NUMERICAL ERRORS NUMERICAL CODE ACCURACY WITH FLUCTUAT Compare floating point with ideal computation Use interval

More information

Multidisciplinary System Optimization of Spacecraft Interferometer Testbed

Multidisciplinary System Optimization of Spacecraft Interferometer Testbed Multidisciplinary System Optimization of Spacecraft Interferometer Testbed 16.888 Final Presentation 7 May 2003 Deborah Howell Space Systems Laboratory Chart: 1 SIM: Space Interferometry Mission Mission:

More information

Scientific Computing. Error Analysis

Scientific Computing. Error Analysis ECE257 Numerical Methods and Scientific Computing Error Analysis Today s s class: Introduction to error analysis Approximations Round-Off Errors Introduction Error is the difference between the exact solution

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 8 Division through Multiplication Israel Koren ECE666/Koren Part.8.1 Division by Convergence

More information

CSCI 402: Computer Architectures. Arithmetic for Computers (3) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Arithmetic for Computers (3) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Arithmetic for Computers (3) Fengguang Song Department of Computer & Information Science IUPUI 3.5 Today s Contents Floating point numbers: 2.5, 10.1, 100.2, etc.. How

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic Computer Systems, Section 2.4 Abstraction Anything that is not an integer can be thought of as . e.g. 391.1356 Or can be thought of as + /

More information

High Order Super Nested Arrays

High Order Super Nested Arrays High Order Super Nested Arrays Chun-Lin Liu 1 and P. P. Vaidyanathan 2 Dept. of Electrical Engineering, MC 136-93 California Institute of Technology, Pasadena, CA 91125, USA cl.liu@caltech.edu 1, ppvnath@systems.caltech.edu

More information

Efficient implementation of interval matrix multiplication

Efficient implementation of interval matrix multiplication Efficient implementation of interval matrix multiplication Hong Diep Nguyen To cite this version: Hong Diep Nguyen. Efficient implementation of interval matrix multiplication. Para 2010: State of the Art

More information

Parallel Interval Analysis for Chemical Process Modeling

Parallel Interval Analysis for Chemical Process Modeling arallel Interval Analysis for Chemical rocess Modeling Chao-Yang Gau and Mark A. Stadtherr Λ Department of Chemical Engineering University of Notre Dame Notre Dame, IN 46556 USA SIAM CSE 2000 Washington,

More information

Lecture Objectives. Structured Programming & an Introduction to Error. Review the basic good habits of programming

Lecture Objectives. Structured Programming & an Introduction to Error. Review the basic good habits of programming Structured Programming & an Introduction to Error Lecture Objectives Review the basic good habits of programming To understand basic concepts of error and error estimation as it applies to Numerical Methods

More information

LECTURE 0: Introduction and Background

LECTURE 0: Introduction and Background 1 LECTURE 0: Introduction and Background September 10, 2012 1 Computational science The role of computational science has become increasingly significant during the last few decades. It has become the

More information

Application of Tatian s Method to Slanted-Edge MTF Measurement

Application of Tatian s Method to Slanted-Edge MTF Measurement Application of s Method to Slanted-Edge MTF Measurement Peter D. Burns Eastman Kodak Company, Rochester, NY USA 465-95 ABSTRACT The 33 method for the measurement of the spatial frequency response () of

More information

Verification of Numerical Results, using Posits, Valids, and Quires

Verification of Numerical Results, using Posits, Valids, and Quires Verification of Numerical Results, using Posits, Valids, and Quires Gerd Bohlender, Karlsruhe Institute of Technology CoNGA Singapore, March 28, 2018 Outline Floating-Point Arithmetic Pure vs. Applied

More information

Chapter Three. Arithmetic

Chapter Three. Arithmetic Chapter Three 1 Arithmetic Where we've been: Performance (seconds, cycles, instructions) Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's up ahead: Implementing

More information

Abstract Interpretation of Floating-Point Computations

Abstract Interpretation of Floating-Point Computations Abstract Interpretation of Floating-Point Computations Sylvie Putot Laboratory for ModElling and Analysis of Systems in Interaction, CEA-LIST/X/CNRS Session: Static Analysis for Safety and Performance

More information

The Perils of Floating Point

The Perils of Floating Point The Perils of Floating Point by Bruce M. Bush Copyright (c) 1996 Lahey Computer Systems, Inc. Permission to copy is granted with acknowledgement of the source. Many great engineering and scientific advances

More information

arxiv: v3 [cs.ms] 4 Nov 2015

arxiv: v3 [cs.ms] 4 Nov 2015 Verificarlo: checking floating point accuracy through Monte Carlo Arithmetic arxiv:1509.01347v3 [cs.ms] 4 Nov 2015 Christophe Denis, Pablo de Oliveira Castro, Eric Petit CMLA - Centre de Mathématiques

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

CS 5803 Introduction to High Performance Computer Architecture: Arithmetic Logic Unit. A.R. Hurson 323 CS Building, Missouri S&T

CS 5803 Introduction to High Performance Computer Architecture: Arithmetic Logic Unit. A.R. Hurson 323 CS Building, Missouri S&T CS 5803 Introduction to High Performance Computer Architecture: Arithmetic Logic Unit A.R. Hurson 323 CS Building, Missouri S&T hurson@mst.edu 1 Outline Motivation Design of a simple ALU How to design

More information

Physics 331 Introduction to Numerical Techniques in Physics

Physics 331 Introduction to Numerical Techniques in Physics Physics 331 Introduction to Numerical Techniques in Physics Instructor: Joaquín Drut Lecture 2 Any logistics questions? Today: Number representation Sources of error Note: typo in HW! Two parts c. Call

More information

Systolic Super Summation with Reduced Hardware

Systolic Super Summation with Reduced Hardware Systolic Super Summation with Reduced Hardware Willard L. Miranker Mathematical Sciences Department IBM T.J. Watson Research Center Route 134 & Kitichwan Road Yorktown Heights, NY 10598 Abstract A principal

More information

Floating-point numbers. Phys 420/580 Lecture 6

Floating-point numbers. Phys 420/580 Lecture 6 Floating-point numbers Phys 420/580 Lecture 6 Random walk CA Activate a single cell at site i = 0 For all subsequent times steps, let the active site wander to i := i ± 1 with equal probability Random

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lambers MAT 460/560 Fall Semester 2009-10 Lecture 4 Notes These notes correspond to Sections 1.1 1.2 in the text. Review of Calculus, cont d Taylor s Theorem, cont d We conclude our discussion of Taylor

More information

Natural Numbers and Integers. Big Ideas in Numerical Methods. Overflow. Real Numbers 29/07/2011. Taking some ideas from NM course a little further

Natural Numbers and Integers. Big Ideas in Numerical Methods. Overflow. Real Numbers 29/07/2011. Taking some ideas from NM course a little further Natural Numbers and Integers Big Ideas in Numerical Methods MEI Conference 2011 Natural numbers can be in the range [0, 2 32 1]. These are known in computing as unsigned int. Numbers in the range [ (2

More information

Lecture 16: Introduction to Dynamic Programming Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY

Lecture 16: Introduction to Dynamic Programming Steven Skiena. Department of Computer Science State University of New York Stony Brook, NY Lecture 16: Introduction to Dynamic Programming Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Problem of the Day

More information

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers

A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers A Formally-Proved Algorithm to Compute the Correct Average of Decimal Floating-Point Numbers Sylvie Boldo, Florian Faissole, and Vincent Tourneur 1 ARITH-25 - June 26th 1 Thanks to the IEEE for the student

More information

Numerical Methods 5633

Numerical Methods 5633 Numerical Methods 5633 Lecture 2 Marina Krstic Marinkovic mmarina@maths.tcd.ie School of Mathematics Trinity College Dublin Marina Krstic Marinkovic 1 / 15 5633-Numerical Methods Organisational Assignment

More information

Memory Bandwidth and Low Precision Computation. CS6787 Lecture 9 Fall 2017

Memory Bandwidth and Low Precision Computation. CS6787 Lecture 9 Fall 2017 Memory Bandwidth and Low Precision Computation CS6787 Lecture 9 Fall 2017 Memory as a Bottleneck So far, we ve just been talking about compute e.g. techniques to decrease the amount of compute by decreasing

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

1.2 Round-off Errors and Computer Arithmetic

1.2 Round-off Errors and Computer Arithmetic 1.2 Round-off Errors and Computer Arithmetic 1 In a computer model, a memory storage unit word is used to store a number. A word has only a finite number of bits. These facts imply: 1. Only a small set

More information

ENGG 1203 Tutorial. Computer Arithmetic (1) Computer Arithmetic (3) Computer Arithmetic (2) Convert the following decimal values to binary:

ENGG 1203 Tutorial. Computer Arithmetic (1) Computer Arithmetic (3) Computer Arithmetic (2) Convert the following decimal values to binary: ENGG 203 Tutorial Computer Arithmetic () Computer Systems Supplementary Notes Learning Objectives Compute via Computer Arithmetic Evaluate the performance of processing via Amdahl s law News Revision tutorial

More information

Nested Arrays: A Novel Approach to Array Processing with Enhanced Degrees of Freedom

Nested Arrays: A Novel Approach to Array Processing with Enhanced Degrees of Freedom Nested Arrays: A Novel Approach to Array Processing with Enhanced Degrees of Freedom Xiangfeng Wang OSPAC May 7, 2013 Reference Reference Pal Piya, and P. P. Vaidyanathan. Nested arrays: a novel approach

More information

Introduction to Computational Mathematics

Introduction to Computational Mathematics Introduction to Computational Mathematics Introduction Computational Mathematics: Concerned with the design, analysis, and implementation of algorithms for the numerical solution of problems that have

More information

Verificarlo: Checking Floating-Point Accuracy Through Monte Carlo Arithmetic

Verificarlo: Checking Floating-Point Accuracy Through Monte Carlo Arithmetic Verificarlo: Checking Floating-Point Accuracy Through Monte Carlo Arithmetic Study on Europlexus Pablo de Oliveira Castro 1, Olivier Jamond 2, E. Petit 3, C. Denis 4, Y. Chatelain 1 1 UVSQ - 2 CEA - 3

More information

Numerical Computing: An Introduction

Numerical Computing: An Introduction Numerical Computing: An Introduction Gyula Horváth Horvath@inf.u-szeged.hu Tom Verhoeff T.Verhoeff@TUE.NL University of Szeged Hungary Eindhoven University of Technology The Netherlands Numerical Computing

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic 1 Numerical Analysis a definition sources of error 2 Floating-Point Numbers floating-point representation of a real number machine precision 3 Floating-Point Arithmetic adding

More information

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction 1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

More information

Abstract Interpretation of Floating-Point. Computations. Interaction, CEA-LIST/X/CNRS. February 20, Presentation at the University of Verona

Abstract Interpretation of Floating-Point. Computations. Interaction, CEA-LIST/X/CNRS. February 20, Presentation at the University of Verona 1 Laboratory for ModElling and Analysis of Systems in Interaction, Laboratory for ModElling and Analysis of Systems in Interaction, Presentation at the University of Verona February 20, 2007 2 Outline

More information

MATH 353 Engineering mathematics III

MATH 353 Engineering mathematics III MATH 353 Engineering mathematics III Instructor: Francisco-Javier Pancho Sayas Spring 2014 University of Delaware Instructor: Francisco-Javier Pancho Sayas MATH 353 1 / 20 MEET YOUR COMPUTER Instructor:

More information

Automatically improving floating point code

Automatically improving floating point code Automatically improving floating point code Scientists Write Code Every scientist needs to write code Analyze data Simulate models Control experiments Scientists Write Code Every scientist needs to write

More information

Annotated multitree output

Annotated multitree output Annotated multitree output A simplified version of the two high-threshold (2HT) model, applied to two experimental conditions, is used as an example to illustrate the output provided by multitree (version

More information

Identifying Volatile Numeric Expressions in OpenCL Applications Miriam Leeser

Identifying Volatile Numeric Expressions in OpenCL Applications Miriam Leeser Identifying Volatile Numeric Expressions in OpenCL Applications Miriam Leeser mel@coe.neu.edu Mahsa Bayati, Brian Crafton Electrical and Computer Engineering Yijia Gu and Thomas Wahl College of Computer

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

CHAPTER 2 SENSITIVITY OF LINEAR SYSTEMS; EFFECTS OF ROUNDOFF ERRORS

CHAPTER 2 SENSITIVITY OF LINEAR SYSTEMS; EFFECTS OF ROUNDOFF ERRORS CHAPTER SENSITIVITY OF LINEAR SYSTEMS; EFFECTS OF ROUNDOFF ERRORS The two main concepts involved here are the condition (of a problem) and the stability (of an algorithm). Both of these concepts deal with

More information

Adaptive active contours (snakes) for the segmentation of complex structures in biological images

Adaptive active contours (snakes) for the segmentation of complex structures in biological images Adaptive active contours (snakes) for the segmentation of complex structures in biological images Philippe Andrey a and Thomas Boudier b a Analyse et Modélisation en Imagerie Biologique, Laboratoire Neurobiologie

More information

Forward inner-approximated reachability of non-linear continuous systems

Forward inner-approximated reachability of non-linear continuous systems Forward inner-approximated reachability of non-linear continuous systems Eric Goubault 1 Sylvie Putot 1 1 LIX, Ecole Polytechnique - CNRS, Université Paris-Saclay HSCC, Pittsburgh, April 18, 2017 ric Goubault,

More information

Machine Computation of the Sine Function

Machine Computation of the Sine Function Machine Computation of the Sine Function Chuck Allison CNS 3320 Numerical Software Engineering Utah Valley State College February 2007 Abstract This note shows how to determine the number of terms to use

More information

Interval Arithmetic. MCS 507 Lecture 29 Mathematical, Statistical and Scientific Software Jan Verschelde, 28 October 2011

Interval Arithmetic. MCS 507 Lecture 29 Mathematical, Statistical and Scientific Software Jan Verschelde, 28 October 2011 Naive Arithmetic 1 2 Naive 3 MCS 507 Lecture 29 Mathematical, Statistical and Scientific Software Jan Verschelde, 28 October 2011 Naive Arithmetic 1 2 Naive 3 an expression Naive Problem: Evaluate f(x,

More information

ELECTROMAGNETIC FAULT INJECTION ON MICROCONTROLLERS

ELECTROMAGNETIC FAULT INJECTION ON MICROCONTROLLERS ELECTROMAGNETIC FAULT INJECTION ON MICROCONTROLLERS Nicolas Moro 1,3, Amine Dehbaoui 2, Karine Heydemann 3, Bruno Robisson 1, Emmanuelle Encrenaz 3 1 CEA Commissariat à l Energie Atomique et aux Energies

More information

Computing Integer Powers in Floating-Point Arithmetic

Computing Integer Powers in Floating-Point Arithmetic Computing Integer Powers in Floating-Point Arithmetic Peter Kornerup Vincent Lefèvre Jean-Michel Muller May 2007 This is LIP Research Report number RR2007-23 Ceci est le Rapport de Recherches numéro RR2007-23

More information

Application 2.4 Implementing Euler's Method

Application 2.4 Implementing Euler's Method Application 2.4 Implementing Euler's Method One's understanding of a numerical algorithm is sharpened by considering its implementation in the form of a calculator or computer program. Figure 2.4.13 in

More information

Efficient implementation of elementary functions in the medium-precision range

Efficient implementation of elementary functions in the medium-precision range Efficient implementation of elementary functions in the medium-precision range Fredrik Johansson (LFANT, INRIA Bordeaux) 22nd IEEE Symposium on Computer Arithmetic (ARITH 22), Lyon, France, June 2015 1

More information

Floating-point representation

Floating-point representation Lecture 3-4: Floating-point representation and arithmetic Floating-point representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However,

More information

Computational Methods. Randomness and Monte Carlo Methods

Computational Methods. Randomness and Monte Carlo Methods Computational Methods Randomness and Monte Carlo Methods Manfred Huber 2010 1 Randomness and Monte Carlo Methods Introducing randomness in an algorithm can lead to improved efficiencies Random sampling

More information

A simulated annealing algorithm for the vehicle routing problem with time windows and synchronization constraints

A simulated annealing algorithm for the vehicle routing problem with time windows and synchronization constraints A simulated annealing algorithm for the vehicle routing problem with time windows and synchronization constraints Sohaib Afifi 1, Duc-Cuong Dang 1,2, and Aziz Moukrim 1 1 Université de Technologie de Compiègne

More information

Rendering. A simple X program to illustrate rendering

Rendering. A simple X program to illustrate rendering Rendering A simple X program to illustrate rendering The programs in this directory provide a simple x based application for us to develop some graphics routines. Please notice the following: All points

More information

Efficient Search for Inputs Causing High Floating-point Errors

Efficient Search for Inputs Causing High Floating-point Errors Efficient Search for Inputs Causing High Floating-point Errors Wei-Fan Chiang, Ganesh Gopalakrishnan, Zvonimir Rakamarić, and Alexey Solovyev University of Utah Presented by Yuting Chen February 22, 2015

More information

Performance and accuracy of hardware-oriented native-, solvers in FEM simulations

Performance and accuracy of hardware-oriented native-, solvers in FEM simulations Performance and accuracy of hardware-oriented native-, emulated- and mixed-precision solvers in FEM simulations Dominik Göddeke Angewandte Mathematik und Numerik, Universität Dortmund Acknowledgments Joint

More information

Efficient Matrix Multiplication Based on Discrete Stochastic Arithmetic

Efficient Matrix Multiplication Based on Discrete Stochastic Arithmetic Efficient Matrix Multiplication Based on Discrete Stochastic Arithmetic Sethy Montan and Christophe Denis EDF R&D - Département SINETICS - 1, Avenue du général de Gaulle 92141 Clamart Cedex - France christophedenis@edffr,sethymontan@edffr

More information

How do rewritable DVDs work?

How do rewritable DVDs work? How do rewritable DVDs work? Optical properties of phase-change materials W. Wełnic, 1,2 Silvana Botti, 2,3,4 L. Reining, 2,4 and M. Wuttig 1 1 I. Physikalisches Institut IA, RWTH Aachen University, Germany

More information

Review Questions 26 CHAPTER 1. SCIENTIFIC COMPUTING

Review Questions 26 CHAPTER 1. SCIENTIFIC COMPUTING 26 CHAPTER 1. SCIENTIFIC COMPUTING amples. The IEEE floating-point standard can be found in [131]. A useful tutorial on floating-point arithmetic and the IEEE standard is [97]. Although it is no substitute

More information

First steps towards more numerical reproducibility

First steps towards more numerical reproducibility First steps towards more numerical reproducibility Fabienne Jézéquel, Philippe Langlois, Nathalie Revol To cite this version: Fabienne Jézéquel, Philippe Langlois, Nathalie Revol. First steps towards more

More information