Project-based course of Applied Dynamics with computer simulation Tools Working Model 2D

Size: px
Start display at page:

Download "Project-based course of Applied Dynamics with computer simulation Tools Working Model 2D"

Transcription

1 Project-based course of Applied Dynamics with computer simulation Tools Working Model 2D Prof. Ti Lin, Liu Department of Manufacturing & Mechanical Engineering Technology/Packaging Science Rochester Institute of Technology, Rochester, NY Abstract: The project-based course of applied dynamics is developed in RIT mechanical and manufacturing engineering technology department for the mechanical engineering technology students to design and analyze dynamic system. The easy-to-learn Working Model 2D allows students simulate and explore dynamic behavior of their mechanical and manufacturing systems, which provides an effective and attractive learning environment and a visualization learning procedure to our students. In weekly project, it is required the comparison of simulation results with the analytical results. Some case studies will be illustrated in this paper, which includes particle, rigid body motion analysis. Key Words: Project-Based Course, Computer simulation, Working Model 2D, Learningby-doing, problem-based-learning. Introduction: Working Model 2D simulation is used to build the virtual prototypes of dynamic system, which helps student to understand the nature of dynamic process of systems. Learningby-doing is the major approach in this course which transition from the traditional classroom approach towards a free independent learning environment, which add student responsibility for their learning. Learning-by-doing promotes understanding and retention. Weekly project is a problem-based-learning mechanism to get students to think and challenges students learn to learn. The weekly project reports must be done in a professional format. This includes objective, summary, sketch, major input and output, free body diagram, calculation, tabular results, chart results, discussion, and conclusion. 1. Package System Dynamic Analysis Kinetics of Particle A 0.5x0.7m, 25kg package is moving down the 22deg chute (slope) and collides with an 18kg vessel which is at rest on the ground (Fig.1). The ground is 2.2m below the end of the chute. The friction coefficient between the package and the chute is 0.3 and the friction coefficient between the vessel and the ground is 0.1. The velocity, acceleration, and force analysis are required. The motion of the package can be illustrated and analyzed in four major stages based on its dynamic behaviors. 1. Package is running down the slope. 2. Projectile motion of package. 3. Impact between the package and

2 the vessel. 4. Package and the vessel moving on the ground. The simulation model is created in Working Model 2D. The force acceleration, work energy and impulse momentum methods are used in the analytical calculations for comparison. Fig.1. Computer simulation model and velocity results of package in Working Model 2D The tabular results of Computer simulation with analytical solutions Fig.2. Tabular results of velocity, acceleration, dynamic force of package Computer simulation versus analytical solutions

3 2. Crate-Pulley-Slope System Dynamic Analysis (Fig.3) Objective: The motion of Crate-Pulley-Slope System is investigated. Both Analytical and computer simulation approaches are used for comparison. In analytical solution both force-acceleration and work-energy methods are used. Computer Simulation Results: Fig.3. Computer Model of Crate-Pulley-Slope System 3. Four Bar Linkage (Printer Head) velocity analysis (Fig.4) The velocity and acceleration polygons of relative motion analysis are drawing inside of working model 2D which provides high accuracy of graphical results comparing with regular hand-drawing of polygons. Fig.4. Four Bar Linkage (Printer Head mechanism) velocity analysis at theta2=30, 45, and 60-deg. The velocity polygon of Four Bar Linkage at 45-deg is illustrated.

4 4. Rock-Crusher mechanism dynamic analysis (Fig.5, 6) R2=2-in, R3=3-in, R5=4-in, Omega2=-2-rad/sec, AD=3-in The coordinates of three corners of Link 3 are (0, 0), (3, 0), and (1.5, 3) respectively. The velocity, acceleration, and force polygons provide the analytical results with graphical approach inside of working model 2D, which gives very high accuracy of the results comparing with the regular solution which is drawn by hand. (Fig.5, 6) This is the middle project of this course and it takes two weeks. Fig.5. Computer model, analytical solution with graphical approach of velocity and acceleration polygons with relative motion method inside of working model 2D at theta2=75-deg

5 Fig.6. Computer model, analytical solution with graphical approach of force triangles, Torque and Power Requirement at theta2=80-deg and resistant force F=10,000-lb 5. Rigid Body Kinetics Project Fork-Lift Truck (Fig.7) Analytical Solution with D Alembert s Principle is used for comparison with computer simulation results. The reaction forces at the wheels of the fork-lift truck and tipping condition is also considered in this project. Fig. 7 Modeling of Fork-Lift Truck in Working Model 2D 6. Final Project of Dynamics: Paper Roll Delivery. The original problem is introduced in Machine Design Textbook Robert L Norton 2 nd Ed. (P.247 Prob to 4.47, P. 439 Prob to 6-47), and has be modified by author using for dynamics. In this project, the dynamic analysis of six-bar linkage, the motion of paper roll, and the dynamic analysis of fork-lift truck are included.

6 Fig. 8. Paper Roll Project description and modeling in Working Model 2D Fig. 9 Velocity and acceleration polygons at theta2=200-deg of Six-Bar Linkage in Working Model 2D:

7 Force analysis of Six-Bar Linkage Fig. 10. Force analysis of Six-Bar Linkage at theta2=200-deg Fig.11. Velocity, acceleration, and force analysis of Paper Roll in Working Model 2D

8 Fig.12. Computer Simulation Tracking of the System Fig. 13. Dynamic Force analysis of Folk-Lift Wheels

9 Fig.14. Computer Simulation Measurement of Impact Results between Paper Roll and Forklift in Working Model 2D 7. Introduction of First Degree of Freedom Vibration One degree-of-freedom free vibration, under-damping vibration, and force vibration of mass-spring system are introduced at the end of this course with Working Model 2D tool.

10 Fig. 15. One degree-of-freedom free vibration, under-damping vibration, and force vibration of mass-spring system Conclusion: The project-based study of applied dynamics with Model 2D simulation provides an effective and an attractive learning environment for engineering technology student. Learning-by-doing is the major approach in this course which transition from the traditional classroom approach towards a free independent learning environment, which add student responsibility for their learning. Learning-by-doing promotes understanding and retention. Most of students work in teams where they are working cooperatively in groups to seek solutions to real world problems. These problems are used to engage student curiosity and initiate learning the subject matter, help students to think critically and analytically, and to find and use appropriate learning resources.

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s CENG 732 Computer Animation This week Inverse Kinematics (continued) Rigid Body Simulation Bodies in free fall Bodies in contact Spring 2006-2007 Week 5 Inverse Kinematics Physically Based Rigid Body Simulation

More information

Working Model. The world s most popular 2D computer aided engineering tool

Working Model. The world s most popular 2D computer aided engineering tool Working Model 2D The world s most popular 2D computer aided engineering tool Use automatic collision detection and friction to accurately model real-life mechanical systems Track the motion of an object

More information

WEEKS 1-2 MECHANISMS

WEEKS 1-2 MECHANISMS References WEEKS 1-2 MECHANISMS (METU, Department of Mechanical Engineering) Text Book: Mechanisms Web Page: http://www.me.metu.edu.tr/people/eres/me301/in dex.ht Analitik Çözümlü Örneklerle Mekanizma

More information

OCR Maths M2. Topic Questions from Papers. Projectiles

OCR Maths M2. Topic Questions from Papers. Projectiles OCR Maths M2 Topic Questions from Papers Projectiles PhysicsAndMathsTutor.com 21 Aparticleisprojectedhorizontallywithaspeedof6ms 1 from a point 10 m above horizontal ground. The particle moves freely under

More information

SolidWorks Motion Study Tutorial

SolidWorks Motion Study Tutorial SolidWorks Motion Study Tutorial By: Mohamed Hakeem Mohamed Nizar Mechanical Engineering Student- May 2015 South Dakota School of Mines & Technology August 2013 Getting Started This tutorial is for you

More information

Fig [1] Fig v =...[4]

Fig [1] Fig v =...[4] 1 (a) (i) On Fig. 3.1, draw a graph of extension against load for a spring which obeys Hooke s law. [1] extension load Fig. 3.1 (ii) State the word used to describe the energy stored in a spring that has

More information

Development of Equipment Performance Visualization Techniques Based on Distinct Element Method (DEM)

Development of Equipment Performance Visualization Techniques Based on Distinct Element Method (DEM) Technical Paper Development of Equipment Performance Visualization Techniques Based on Distinct Element Method (DEM) Shinichi Mutou Toshihide Shibuya With dump trucks for mining and other applications

More information

1 in = 25.4 mm 1 m = ft g = 9.81 m/s 2

1 in = 25.4 mm 1 m = ft g = 9.81 m/s 2 ENGR 122 Section Instructor: Name: Form#: 52 Allowed materials include calculator (without wireless capability), pencil or pen. Honor Statement: On my honor, I promise that I have not received any outside

More information

Alternative approach for teaching multibody dynamics

Alternative approach for teaching multibody dynamics Rochester Institute of Technology RIT Scholar Works Articles 2009 Alternative approach for teaching multibody dynamics George Sutherland Follow this and additional works at: http://scholarworks.rit.edu/article

More information

[3] Rigid Body Analysis

[3] Rigid Body Analysis [3] Rigid Body Analysis Page 1 of 53 [3] Rigid Body Analysis [3.1] Equilibrium of a Rigid Body [3.2] Equations of Equilibrium [3.3] Equilibrium in 3-D [3.4] Simple Trusses [3.5] The Method of Joints [3.6]

More information

ACTIVITY FIVE-A NEWTON S SECOND LAW: THE ATWOOD MACHINE

ACTIVITY FIVE-A NEWTON S SECOND LAW: THE ATWOOD MACHINE 1 ACTIVITY FIVE-A NEWTON S SECOND LAW: THE ATWOOD MACHINE PURPOSE For this experiment, the Motion Visualizer (MV) is used to capture the motion of two masses which are suspended above the ground and connected

More information

Engineering Mechanics. Equilibrium of Rigid Bodies

Engineering Mechanics. Equilibrium of Rigid Bodies Engineering Mechanics Equilibrium of Rigid Bodies System is in equilibrium if and only if the sum of all the forces and moment (about any point) equals zero. Equilibrium Supports and Equilibrium Any structure

More information

Projectile Trajectory Scenarios

Projectile Trajectory Scenarios Projectile Trajectory Scenarios Student Worksheet Name Class Note: Sections of this document are numbered to correspond to the pages in the TI-Nspire.tns document ProjectileTrajectory.tns. 1.1 Trajectories

More information

AP Physics 1 and 2 Summer Assignment

AP Physics 1 and 2 Summer Assignment AP Physics 1 and 2 Summer Assignment Due: First Day of Class Welcome to AP Physics! You are responsible for the material covered in the first three chapters of your textbook. The questions that follow

More information

Kinematic and Dynamic Analysis of Stephenson Six Bar Mechanism Using HyperWorks

Kinematic and Dynamic Analysis of Stephenson Six Bar Mechanism Using HyperWorks Kinematic and Dynamic Analysis of Stephenson Six Bar Mechanism Using HyperWorks Kailash Chaudhary Phd Scholar Malaviya National Institute of Technology,Jaipur JLN Marg, Jaipur - 302 017, India Dr. Himanshu

More information

AC : AN ALTERNATIVE APPROACH FOR TEACHING MULTIBODY DYNAMICS

AC : AN ALTERNATIVE APPROACH FOR TEACHING MULTIBODY DYNAMICS AC 2009-575: AN ALTERNATIVE APPROACH FOR TEACHING MULTIBODY DYNAMICS George Sutherland, Rochester Institute of Technology DR. GEORGE H. SUTHERLAND is a professor in the Manufacturing & Mechanical Engineering

More information

Lesson 1: Introduction to Pro/MECHANICA Motion

Lesson 1: Introduction to Pro/MECHANICA Motion Lesson 1: Introduction to Pro/MECHANICA Motion 1.1 Overview of the Lesson The purpose of this lesson is to provide you with a brief overview of Pro/MECHANICA Motion, also called Motion in this book. Motion

More information

GPU Modeling of Ship Operations in Pack Ice

GPU Modeling of Ship Operations in Pack Ice Modeling of Ship Operations in Pack Ice Claude Daley cdaley@mun.ca Shadi Alawneh Dennis Peters Bruce Quinton Bruce Colbourne ABSTRACT The paper explores the use of an event-mechanics approach to assess

More information

Principles of Engineering PLTW Scope and Sequence Year at a Glance First Semester

Principles of Engineering PLTW Scope and Sequence Year at a Glance First Semester PLTW Scope and Sequence Year at a Glance First Semester Three Weeks 1 st 3 weeks 2 nd 3 weeks 3 rd 3 weeks 4 th 3 weeks 5 th 3 weeks 6 th 3 weeks Topics/ Concepts 1.1 Energy Forms 1.2 Energy, Work, & Power

More information

A Simplified Vehicle and Driver Model for Vehicle Systems Development

A Simplified Vehicle and Driver Model for Vehicle Systems Development A Simplified Vehicle and Driver Model for Vehicle Systems Development Martin Bayliss Cranfield University School of Engineering Bedfordshire MK43 0AL UK Abstract For the purposes of vehicle systems controller

More information

Connection Elements and Connection Library

Connection Elements and Connection Library Connection Elements and Connection Library Lecture 2 L2.2 Overview Introduction Defining Connector Elements Understanding Connector Sections Understanding Connection Types Understanding Connector Local

More information

Rigid Body Dynamics, Collision Response, & Deformation

Rigid Body Dynamics, Collision Response, & Deformation Rigid Body Dynamics, Collision Response, & Deformation Pop Worksheet! Teams of 2. SOMEONE YOU HAVEN T ALREADY WORKED WITH What are the horizontal and face velocities after 1, 2, and many iterations of

More information

Model Library Mechanics

Model Library Mechanics Model Library Mechanics Using the libraries Mechanics 1D (Linear), Mechanics 1D (Rotary), Modal System incl. ANSYS interface, and MBS Mechanics (3D) incl. CAD import via STL and the additional options

More information

VEHICLE DYNAMICS AND DESIGN Spring Semester 2010

VEHICLE DYNAMICS AND DESIGN Spring Semester 2010 EIDGENOSSISCHE TECHNISCHE HOCHSCHULE (ETH) SWISS FEDERAL INTITUTE OF TECHNOLOGY, ZURICH INSTITUTE FOR DYNAMC SYSTEMS AND CONTROL Department of Mechanical and Process Engineering VEHICLE DYNAMICS AND DESIGN

More information

Lab 4 Projectile Motion

Lab 4 Projectile Motion b Lab 4 Projectile Motion What You Need To Know: x = x v = v v o ox = v + v ox ox + at 1 t + at + a x FIGURE 1 Linear Motion Equations The Physics So far in lab you ve dealt with an object moving horizontally

More information

Recitation Handout 10: Experiments in Calculus-Based Kinetics

Recitation Handout 10: Experiments in Calculus-Based Kinetics Math 120 Winter 2009 Recitation Handout 10: Experiments in Calculus-Based Kinetics Today s recitation will focus on curve sketching. These are problems where you information about the first and second

More information

Math 8 Module 3 End of Module Study Guide

Math 8 Module 3 End of Module Study Guide Name ANSWER KEY Date 3/21/14 Lesson 8: Similarity 1. In the picture below, we have a triangle DEF that has been dilated from center O, by scale factor r = ½. The dilated triangle is noted by D E F. We

More information

SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs

SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs TOM - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Theory of Machines GATE, IES & PSUs TOM - ME GATE, IES, PSU 2 C O N T E N T TOPIC 1. MACHANISMS AND

More information

Analysis of Hydraulic Turbine using MecaFlux Heliciel

Analysis of Hydraulic Turbine using MecaFlux Heliciel Analysis of Hydraulic Turbine using MecaFlux Heliciel Suppose that we have a stream of water with no head available then for getting power out of it we can just only use the kinetic energy of water. P

More information

Motion Capture & Simulation

Motion Capture & Simulation Motion Capture & Simulation Motion Capture Character Reconstructions Joint Angles Need 3 points to compute a rigid body coordinate frame 1 st point gives 3D translation, 2 nd point gives 2 angles, 3 rd

More information

Design procedures of seismic-isolated container crane at port

Design procedures of seismic-isolated container crane at port Design procedures of seismic-isolated container crane at port T.Sugano 1, M.Takenobu 1, T.Suzuki 1, and Y.Shiozaki 2 1 Port and Airport Research Institute,Yokosuka, Japan 2 JFE R&D Corporation,Kawasaki,Japan

More information

An Educational Rigid-Body Dynamics Physics Engine TJHSST Senior Research Project Proposal Computer Systems Lab

An Educational Rigid-Body Dynamics Physics Engine TJHSST Senior Research Project Proposal Computer Systems Lab An Educational Rigid-Body Dynamics Physics Engine TJHSST Senior Research Project Proposal Computer Systems Lab 2009-2010 Neal Milstein April 9, 2010 Abstract The goal of this project is to create a rigid-body

More information

MDP646: ROBOTICS ENGINEERING. Mechanical Design & Production Department Faculty of Engineering Cairo University Egypt. Prof. Said M.

MDP646: ROBOTICS ENGINEERING. Mechanical Design & Production Department Faculty of Engineering Cairo University Egypt. Prof. Said M. MDP646: ROBOTICS ENGINEERING Mechanical Design & Production Department Faculty of Engineering Cairo University Egypt Prof. Said M. Megahed APPENDIX A: PROBLEM SETS AND PROJECTS Problem Set # Due 3 rd week

More information

SUPPORTING LINEAR MOTION: A COMPLETE GUIDE TO IMPLEMENTING DYNAMIC LOAD SUPPORT FOR LINEAR MOTION SYSTEMS

SUPPORTING LINEAR MOTION: A COMPLETE GUIDE TO IMPLEMENTING DYNAMIC LOAD SUPPORT FOR LINEAR MOTION SYSTEMS SUPPORTING LINEAR MOTION: A COMPLETE GUIDE TO IMPLEMENTING DYNAMIC LOAD SUPPORT FOR LINEAR MOTION SYSTEMS Released by: Keith Knight Catalyst Motion Group Engineering Team Members info@catalystmotiongroup.com

More information

Mechanisms. Updated: 18Apr16 v7

Mechanisms. Updated: 18Apr16 v7 Mechanisms Updated: 8Apr6 v7 Mechanism Converts input motion or force into a desired output with four combinations of input and output motion Rotational to Oscillating Rotational to Rotational Rotational

More information

Dimensional Optimization for the Crank-Rocker Mechanism using TK Solver

Dimensional Optimization for the Crank-Rocker Mechanism using TK Solver Int. J. Engng Ed. Vol. 13, No. 6, p. 417±425, 1997 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 1997 TEMPUS Publications. Dimensional Optimization for the Crank-Rocker Mechanism using TK Solver

More information

Design of Spider Mechanism for Extraterrestrial Rover

Design of Spider Mechanism for Extraterrestrial Rover Design of Spider Mechanism for Extraterrestrial Rover Abin Simon 1, Kailash Dutt 1, Praveen Basil 1, Sreekuttan TK 1, Adithye Suresh 1, Arun M 1, Dr.Ganesh Udupa 2, Pramod Sreedharan 3 U.G. Student, Dept.

More information

Mechanism Simulation With Working Model

Mechanism Simulation With Working Model Mechanism Simulation With Working Model Shih-Liang Wang Department of Mechanical Engineering North Carolina A&T State University Greensboro, NC 27411 Introduction Kinematics is a study of motion and force

More information

Module 4: Fluid Dynamics Lecture 9: Lagrangian and Eulerian approaches; Euler's acceleration formula. Fluid Dynamics: description of fluid-motion

Module 4: Fluid Dynamics Lecture 9: Lagrangian and Eulerian approaches; Euler's acceleration formula. Fluid Dynamics: description of fluid-motion Fluid Dynamics: description of fluid-motion Lagrangian approach Eulerian approach (a field approach) file:///d /Web%20Course/Dr.%20Nishith%20Verma/local%20server/fluid_mechanics/lecture9/9_1.htm[5/9/2012

More information

2.007 Design and Manufacturing I Spring 2009

2.007 Design and Manufacturing I Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 2.007 Design and Manufacturing I Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 2.007 Design and Manufacturing

More information

DYNAMIC MODELING OF WORKING SECTIONS OF GRASSLAND OVERSOWING MACHINE MSPD-2.5

DYNAMIC MODELING OF WORKING SECTIONS OF GRASSLAND OVERSOWING MACHINE MSPD-2.5 DYNAMIC MODELING OF WORKING SECTIONS OF GRASSLAND OVERSOWING MACHINE MSPD-2.5 Florin Loghin, Simion Popescu, Florean Rus Transilvania University of Brasov, Romania loghinflorin@unitbv.ro, simipop@unitbv.ro,

More information

Kinematics, Dynamics, and Design of Machinery, 3 nd Ed.

Kinematics, Dynamics, and Design of Machinery, 3 nd Ed. MATLAB KINEMATIC PROGRAMS To Supplement the Textbook Kinematics, Dynamics, and Design of Machinery, 3 nd Ed. By K. J. Waldron, G. L. Kinzel, and S. Agrawal 2016 by G. Kinzel Department of Mechanical and

More information

Static force analysis of planar mechanisms in MechAnalyzer software

Static force analysis of planar mechanisms in MechAnalyzer software Static force analysis of planar mechanisms in MechAnalyzer software Sachin Kumar Verma 1, Janani Swaminathan 2, Rajeevlochana G. Chittawadigi 3, Subir Kumar Saha 4 1,2 Department of Mechanical Engineering,

More information

3D SolidWorks Tutorial

3D SolidWorks Tutorial ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING 3D SolidWorks Tutorial Dr. Lynn Fuller webpage: http://people.rit.edu/lffeee Electrical and Microelectronic Engineering Rochester Institute

More information

Core practical 10: Use ICT to analyse collisions between small spheres

Core practical 10: Use ICT to analyse collisions between small spheres Core practical 10 Teacher sheet Core practical 10: between small To investigate the conservation of momentum in two dimensions To determine whether a collision is elastic Specification links Procedure

More information

AP Calculus AB Summer Assignment 2018

AP Calculus AB Summer Assignment 2018 AP Calculus AB Summer Assignment 2018 Welcome to AP Calculus. In order to accomplish our goals this year, we will need to begin a little in the summer. Your Algebra skills are important in Calculus. Things

More information

Using Classical Mechanism Concepts to Motivate Modern Mechanism Analysis and Synthesis Methods

Using Classical Mechanism Concepts to Motivate Modern Mechanism Analysis and Synthesis Methods Using Classical Mechanism Concepts to Motivate Modern Mechanism Analysis and Synthesis Methods Robert LeMaster, Ph.D. 1 Abstract This paper describes a methodology by which fundamental concepts in the

More information

Geometry Honors Unit 2: Transformations, Triangles & Congruence (Gr. 9-10)

Geometry Honors Unit 2: Transformations, Triangles & Congruence (Gr. 9-10) Geometry Honors Unit 2: Transformations, Triangles & Congruence (Gr. 9-10) Content Area: Course(s): Time Period: Length: Status: Mathematics Generic Course, Geometry 1st Marking Period 8 Weeks Published

More information

Barbie Bungee Teacher Pages

Barbie Bungee Teacher Pages 90 Minutes Objective Students will differentiate between speed, velocity and acceleration Students will compare and contrast Newton s three laws. TEKS 8.6A Demonstrate and calculate how unbalanced forces

More information

Applications. Human and animal motion Robotics control Hair Plants Molecular motion

Applications. Human and animal motion Robotics control Hair Plants Molecular motion Multibody dynamics Applications Human and animal motion Robotics control Hair Plants Molecular motion Generalized coordinates Virtual work and generalized forces Lagrangian dynamics for mass points

More information

Theory of Machines Course # 1

Theory of Machines Course # 1 Theory of Machines Course # 1 Ayman Nada Assistant Professor Jazan University, KSA. arobust@tedata.net.eg March 29, 2010 ii Sucess is not coming in a day 1 2 Chapter 1 INTRODUCTION 1.1 Introduction Mechanisms

More information

Virtual Testing Methodology for TPL Lifting Capacity of Agricultural Tractor TPL

Virtual Testing Methodology for TPL Lifting Capacity of Agricultural Tractor TPL Virtual Testing Methodology for TPL Lifting Capacity of Agricultural Tractor TPL Dheeraj Pandey AM CAE International Tractors Limited Jalandhar Road, Hoshiarpur 146001 - India dheerajpandey@sonalika.com

More information

2. Motion Analysis - Sim-Mechanics

2. Motion Analysis - Sim-Mechanics 2 Motion Analysis - Sim-Mechanics Figure 1 - The RR manipulator frames The following table tabulates the summary of different types of analysis that is performed for the RR manipulator introduced in the

More information

Speedway. Motion Study. Step 2. If necessary, turn on SolidWorks Motion. To turn on SolidWorks Motion, click Tools Menu > Add-Ins.

Speedway. Motion Study. Step 2. If necessary, turn on SolidWorks Motion. To turn on SolidWorks Motion, click Tools Menu > Add-Ins. Chapter 8 Speedway Motion Study A. Enable SolidWorks Motion. Step 1. If necessary, open your Speedway Assembly file. Step 2. If necessary, turn on SolidWorks Motion. To turn on SolidWorks Motion, click

More information

Transformations Reflections, and Rotations

Transformations Reflections, and Rotations Grade level: 9-12 Subject: mathematics Time required: 30 minutes Transformations Reflections, and Rotations by Lynne B. Uebelhoer Activity overview This activity is designed to be used in a middle-school

More information

UNDERSTANDING MOTION SIMULATION

UNDERSTANDING MOTION SIMULATION W H I T E P A P E R UNDERSTANDING MOTION SIMULATION Overview What is motion simulation? What problems can it solve? How can it benefit the product design process? This paper addresses some of these issues

More information

MSMS (02PCYQW)

MSMS (02PCYQW) MSMS (02PCYQW) 2016-2017 Organization: the course is composed of two parts: the first part is devoted to the Lagrange (LAG) approach the second part is devoted to the Bond-Graph (BG) approach Each part

More information

Chapter 5 Modeling and Simulation of Mechanism

Chapter 5 Modeling and Simulation of Mechanism Chapter 5 Modeling and Simulation of Mechanism In the present study, KED analysis of four bar planar mechanism using MATLAB program and ANSYS software has been carried out. The analysis has also been carried

More information

Modeling Mechanical System using SIMULINK

Modeling Mechanical System using SIMULINK Modeling Mechanical System using SIMULINK Mechanical System We will consider a toy train consisting of an engine and a car as shown in Figure. Assuming that the train only travels in one direction, we

More information

Understanding Motion Simulation

Understanding Motion Simulation white paper Understanding Motion Simulation inspiration SUMMARY What is motion simulation? What problems can it solve? How can it benefit the product design process? This paper addresses some of these

More information

Introduction to Solid Modeling Using SolidWorks 2008 COSMOSMotion Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2008 COSMOSMotion Tutorial Page 1 Introduction to Solid Modeling Using SolidWorks 2008 COSMOSMotion Tutorial Page 1 In this tutorial, we will learn the basics of performing motion analysis using COSMOSMotion. Although the tutorial can

More information

Lab 12: Joint Driver and Force Creation Lab

Lab 12: Joint Driver and Force Creation Lab Page 1 Lab 12: Joint Driver and Force Creation Lab Objective This lab will continue to introduce the definition of Joint Drivers. These drivers will prescribe the motion in the three translational degrees

More information

GRAPH MATCHING EQUIPMENT/MATERIALS

GRAPH MATCHING EQUIPMENT/MATERIALS GRAPH MATCHING LAB MECH 6.COMP. From Physics with Computers, Vernier Software & Technology, 2000. Mathematics Teacher, September, 1994. INTRODUCTION One of the most effective methods of describing motion

More information

Computer based comparison analysis of single and double connecting rod slider crank linkages

Computer based comparison analysis of single and double connecting rod slider crank linkages Agronomy Research Biosystem Engineering Special Issue 1, 3-10, 2012 Computer based comparison analysis of single and double connecting rod slider crank linkages A. Aan and M. Heinloo Institute of Technology,

More information

Computational Design + Fabrication: 4D Analysis

Computational Design + Fabrication: 4D Analysis Computational Design + Fabrication: 4D Analysis Jonathan Bachrach EECS UC Berkeley October 6, 2015 Today 1 News Torque and Work Simple Machines Closed Chains Analysis Paper Review Lab 3 Critique News 2

More information

AMass Tutorial. Introduction to the 2.20 Java AMass applet

AMass Tutorial. Introduction to the 2.20 Java AMass applet AMass Tutorial Introduction to the 2.20 Java AMass applet The purpose of this document is to familiarize you with the 2.20 Java AMass applet. This applet can be found at http://ocw.mit.edu/ocwweb/mechanical-engineering/2-20spring-

More information

Methodology for Prediction of Sliding and Rocking of Rigid Bodies Using Fast Non-Linear Analysis (FNA) Formulation

Methodology for Prediction of Sliding and Rocking of Rigid Bodies Using Fast Non-Linear Analysis (FNA) Formulation Methodology for Prediction of Sliding and Rocking of Rigid Bodies Using Fast Non-Linear Analysis (FNA) Formulation Sohrab Esfandiari - ENOVA Engineering Services Robert P. Kennedy- RPK Structural Consulting

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.2: Sensors Jürgen Sturm Technische Universität München Sensors IMUs (inertial measurement units) Accelerometers

More information

TR Scaling Analysis of a Penalty Approach For Multibody Dynamics with Friction and Contact. Luning Fang, Dan Negrut

TR Scaling Analysis of a Penalty Approach For Multibody Dynamics with Friction and Contact. Luning Fang, Dan Negrut TR -2013-02 Scaling Analysis of a Penalty Approach For Multibody Dynamics with Friction and Contact Luning Fang, Dan Negrut June, 2013 Abstract Currently, the most common modeling and simulation software

More information

NUMERICAL COUPLING BETWEEN DEM (DISCRETE ELEMENT METHOD) AND FEA (FINITE ELEMENTS ANALYSIS).

NUMERICAL COUPLING BETWEEN DEM (DISCRETE ELEMENT METHOD) AND FEA (FINITE ELEMENTS ANALYSIS). NUMERICAL COUPLING BETWEEN DEM (DISCRETE ELEMENT METHOD) AND FEA (FINITE ELEMENTS ANALYSIS). Daniel Schiochet Nasato - ESSS Prof. Dr. José Roberto Nunhez Unicamp Dr. Nicolas Spogis - ESSS Fabiano Nunes

More information

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

ROSE-HULMAN INSTITUTE OF TECHNOLOGY Introduction to Working Model Welcome to Working Model! What is Working Model? It's an advanced 2-dimensional motion simulation package with sophisticated editing capabilities. It allows you to build and

More information

Deployment and Latching Simulation of Large Reflectors

Deployment and Latching Simulation of Large Reflectors Deployment and Latching Simulation of Large Reflectors Sidharth Tiwary [1], B. Lakshmi Narayana [1], B.P. Nagaraj [1], G. Nagesh [2] and C.D. Sridhara [3] [1] Engineer, SMG [2] Project Director, Chandrayaan-2,

More information

COSMOS. Understanding Motion Simulation ---- SolidWorks Corporation. Introduction 1. Motion simulation for mechanism analysis and synthesis 1-6

COSMOS. Understanding Motion Simulation ---- SolidWorks Corporation. Introduction 1. Motion simulation for mechanism analysis and synthesis 1-6 ---- WHITE PAPER Understanding Motion Simulation CONTENTS Introduction 1 Motion simulation for mechanism analysis and synthesis 1-6 Using motion simulation along with FEA 6-9 Motion simulation and test

More information

Design of a Three-Axis Rotary Platform

Design of a Three-Axis Rotary Platform Design of a Three-Axis Rotary Platform William Mendez, Yuniesky Rodriguez, Lee Brady, Sabri Tosunoglu Mechanics and Materials Engineering, Florida International University 10555 W Flagler Street, Miami,

More information

Inherently Balanced Double Bennett Linkage

Inherently Balanced Double Bennett Linkage Inherently Balanced Double Bennett Linkage V. van der Wijk Delft University of Technology - Dep. of Precision and Microsystems Engineering Mechatronic System Design, e-mail: v.vanderwijk@tudelft.nl Abstract.

More information

COSMOS. Vehicle Suspension Analysis ---- SolidWorks Corporation. Introduction 1. Role of vehicle suspension 2. Motion analysis 2

COSMOS. Vehicle Suspension Analysis ---- SolidWorks Corporation. Introduction 1. Role of vehicle suspension 2. Motion analysis 2 ---- WHITE PAPER Vehicle Suspension Analysis CONTENTS Introduction 1 Role of vehicle suspension 2 Motion analysis 2 Motion analysis using COSMOSMotion 3 Real-life example 4-5 Exporting loads to COSMOSWorks

More information

2-1 Transformations and Rigid Motions. ENGAGE 1 ~ Introducing Transformations REFLECT

2-1 Transformations and Rigid Motions. ENGAGE 1 ~ Introducing Transformations REFLECT 2-1 Transformations and Rigid Motions Essential question: How do you identify transformations that are rigid motions? ENGAGE 1 ~ Introducing Transformations A transformation is a function that changes

More information

Bi-directional seismic vibration control of spatial structures using passive mass damper consisting of compliant mechanism

Bi-directional seismic vibration control of spatial structures using passive mass damper consisting of compliant mechanism Bi-directional seismic vibration control of spatial structures using passive mass damper consisting of compliant mechanism Seita TSUDA 1 and Makoto OHSAKI 2 1 Department of Design, Okayama Prefectural

More information

Graph Matching. walk back and forth in front of Motion Detector

Graph Matching. walk back and forth in front of Motion Detector Graph Matching Experiment 1 One of the most effective methods of describing motion is to plot graphs of distance, velocity, and acceleration vs. time. From such a graphical representation, it is possible

More information

Wheels and Axle. Chapter 7. Simples Machines. A. Save As. Step 1. If necessary, open your Track Assembly 15 file. B. Insert Truck Assembly.

Wheels and Axle. Chapter 7. Simples Machines. A. Save As. Step 1. If necessary, open your Track Assembly 15 file. B. Insert Truck Assembly. Chapter 7 Simples Machines Wheels and Axle A. Save As. Step 1. If necessary, open your Track Assembly 15 file. Step 2. Click File Menu > Save As. Step 3. Key-in WHEELS AND AXLE ASSEMBLY for the filename

More information

ACTIVITY 8. The Bouncing Ball. You ll Need. Name. Date. 1 CBR unit 1 TI-83 or TI-82 Graphing Calculator Ball (a racquet ball works well)

ACTIVITY 8. The Bouncing Ball. You ll Need. Name. Date. 1 CBR unit 1 TI-83 or TI-82 Graphing Calculator Ball (a racquet ball works well) . Name Date ACTIVITY 8 The Bouncing Ball If a ball is dropped from a given height, what does a Height- Time graph look like? How does the velocity change as the ball rises and falls? What affects the shape

More information

ROSE-HULMAN INSTITUTE OF TECHNOLOGY

ROSE-HULMAN INSTITUTE OF TECHNOLOGY More Working Model Today we are going to look at even more features of Working Model. Specifically, we are going to 1) Learn how to add ropes and rods. 2) Learn how to connect object using joints and slots.

More information

Name: SID: LAB Section:

Name: SID: LAB Section: Name: SID: LAB Section: Lab 9 - Part 1: Particle Simulations In particle simulations, each particle s dynamic state (position, velocity, acceleration, etc) is modeled independently of the particle s visual

More information

Chapter One. Quadratics. Many real-life situations involve non-linear relationships and functions.

Chapter One. Quadratics. Many real-life situations involve non-linear relationships and functions. Chapter One Quadratics Many real-life situations involve non-linear relationships and functions. Businesses use quadratic relationships to maximize profits. Physicists use quadratic functions to describe

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

Control of Industrial and Mobile Robots

Control of Industrial and Mobile Robots Control of Industrial and Mobile Robots Prof. Rocco, Bascetta January 29, 2019 name: university ID number: signature: Warnings This file consists of 10 pages (including cover). During the exam you are

More information

2 Ranking Task: complete this section and submit it to your instructor before you begin the lab.

2 Ranking Task: complete this section and submit it to your instructor before you begin the lab. Experiment 2 Ranking Task: complete this section and submit it to your instructor before you begin the lab. The position vs. time graph below was made by a moving object. During certain times, the object

More information

Triangles Ramps and Energy

Triangles Ramps and Energy The College at Brockport: State University of New York Digital Commons @Brockport Lesson Plans CMST Institute 8-12-2004 Triangles Ramps and Energy The College at Brockport Fayne Winter The College at Brockport

More information

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion

Preview. Two-Dimensional Motion and Vectors Section 1. Section 1 Introduction to Vectors. Section 2 Vector Operations. Section 3 Projectile Motion Two-Dimensional Motion and Vectors Section 1 Preview Section 1 Introduction to Vectors Section 2 Vector Operations Section 3 Projectile Motion Section 4 Relative Motion Two-Dimensional Motion and Vectors

More information

Measuring Triangles. 1 cm 2. 1 cm. 1 cm

Measuring Triangles. 1 cm 2. 1 cm. 1 cm 3 Measuring Triangles You can find the area of a figure by drawing it on a grid (or covering it with a transparent grid) and counting squares, but this can be very time consuming. In Investigation 1, you

More information

Homework No. 6 (40 points). Due on Blackboard before 8:00 am on Friday, October 13th.

Homework No. 6 (40 points). Due on Blackboard before 8:00 am on Friday, October 13th. ME 35 - Machine Design I Fall Semester 017 Name of Student: Lab Section Number: Homework No. 6 (40 points). Due on Blackboard before 8:00 am on Friday, October 13th. The important notes for this homework

More information

Columbus State Community College Mathematics Department Public Syllabus. Course and Number: MATH 1172 Engineering Mathematics A

Columbus State Community College Mathematics Department Public Syllabus. Course and Number: MATH 1172 Engineering Mathematics A Columbus State Community College Mathematics Department Public Syllabus Course and Number: MATH 1172 Engineering Mathematics A CREDITS: 5 CLASS HOURS PER WEEK: 5 PREREQUISITES: MATH 1151 with a C or higher

More information

ADVANCED LINEAR MOTION KIT. Make It Real CAD Engineering Challenge

ADVANCED LINEAR MOTION KIT. Make It Real CAD Engineering Challenge ADVANCED LINEAR MOTION KIT Make It Real CAD Engineering Challenge Yeray Pabon Engineering Freaks Team EFR 12/28/2017 2 1. Table of Contents Page Table of Contents... 2 Introduction... 3 Functionality...

More information

Example 12 - Jumping Bicycle

Example 12 - Jumping Bicycle Example 12 - Jumping Bicycle Summary The purpose of this example is to illustrate how to use the RADIOSS description when resolving a demonstration example. The particularities of the example can be summarized

More information

Computer Aided Dynamic Simulation of Six- Legged Robot

Computer Aided Dynamic Simulation of Six- Legged Robot Computer Aided Dynamic Simulation of Six- Legged Robot Abhijit Mahapatra 1, and Shibendu Shekhar Roy 2 1 Virtual Prototyping & Immersive Visualization Laboratory, Central Mechanical Engineering Research

More information

Projectile Motion. Photogate 2 Photogate 1 Ramp and Marble. C-clamp. Figure 1

Projectile Motion. Photogate 2 Photogate 1 Ramp and Marble. C-clamp. Figure 1 Projectile Motion Purpose Apply concepts from two-dimensional kinematics to predict the impact point of a ball in projectile motion, and compare the result with direct measurement. Introduction and Theory

More information

Using RecurDyn. Contents

Using RecurDyn. Contents Using RecurDyn Contents 1.0 Multibody Dynamics Overview... 2 2.0 Multibody Dynamics Applications... 3 3.0 What is RecurDyn and how is it different?... 4 4.0 Types of RecurDyn Analysis... 5 5.0 MBD Simulation

More information

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Deformable Objects. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Deformable Objects Matthias Teschner Computer Science Department University of Freiburg Outline introduction forces performance collision handling visualization University

More information

A MECHATRONIC APPROACH OF THE WINDSHIELD WIPER MECHANISMS

A MECHATRONIC APPROACH OF THE WINDSHIELD WIPER MECHANISMS A MECHATRONIC APPROACH OF THE WINDSHIELD WIPER MECHANISMS Alexandru Cătălin Transilvania University of Braşov calex@unitbv.ro Keywords: windshield wiper mechanism, dynamic simulation, control system, virtual

More information