Simulation Details for 2D

Size: px
Start display at page:

Download "Simulation Details for 2D"

Transcription

1 Appendix B Simulation Details for 2D In this appendix we add some details two-dimensional simulation method. The details provided here describe the method used to obtain results reported in Chapters 3 and 5. Brakke method The Surface Evolver program [48] developed and maintained by Ken Brakke is a powerful collection of tools to study minimal surfaces in arbitrary dimension. As such, it is often used to model grain growth in two [155, 50, 49] and three dimensions [111, 156]. In Chapter 3 we compared the numerical error involved in using Brakke s method with that involved in using the method proposed in this thesis. We briefly describe the method used by Brakke in Surface Evolver. The two options effective area and area normalization are used in order to most accurately simulate motion by curvature flow. We describe the motion of boundary nodes for this setting. This will allow us to calculate the way in which the radius of a regular polygon changes in one time step using this method, a result critical in Section 3.5 for calculating the relative and absolute errors involved in this method. We consider the motion of boundary node σ in this setting. We begin by considering two unit vectors e 1 and e 2 pointing away from σ in the direction of the two adjacent edges. Without any normalization, node σ will move with a velocity e 1 + e 2. However, in this setting there exists a resistance to this motion from the adjacent edges. We therefore scale this vector by dividing it by half of some measurement of the adjacent edges. Brakke points out that the resisting motion comes from the component of the edges that are normal to the direction of the motion. Therefore, if p = p n (edges) is the length of the projection of the adjacent edges onto the normal direction 166

2 of e 1 + e 2, then we scale the e 1 + e 2 by 1/p. Figure B.1: Regular polygonal grain with m sides and of radius r. In the case of a regular polygon with m sides and radius r, as illustrated in Figure B.1, e 1 + e 2 always points in the direction of the center of the polygon. Since each of e 1 and e 2 are unit vectors, we have e 1 + e 2 =2sin(π/m). The length of the projection of two adjacent edges onto direction normal to e 1 + e 2 is then 2 cos(π/m)sin(π/m). Therefore, we are left with a vector pointing in the direction of the center of the polygon and with a magnitude 1/(r cos(π/m)). If we take into account the mobility of the grain boundary M and the surface tension γ, then after one time step of size t, the radius changes: r = Mγ t r cos( π m ) (B.1) for a regular polygon with n sides and of radius r. This equation is used in Section 3.5. Further information about this program and the algorithms used can be found in [48]. Proposed method Data structure We use two basic data structures, one representing a node and one representing a grain. Edges are represented implicitly through these two other data structures. We provide here a pseudo-code representation of a data structure representing a node. The id number, as well as the coordinates 167

3 class CNode { int id; double x, y; double dx, dy; int valence; // classifies all nodes by valence, either 2 or 3 CGrain* neighbors[3]; // pointers to all neighboring grains } x, y and velocities dx, dy are straightforward. The valence variable stores how many neighbors (grains or nodes) a particular node has; this will provide information about whether a node is a vertex node or a boundary node. The CGrain vector stores references to all three neighboring grains. The data structure for each grain is somewhat similar. class CGrain { int id; vector <CNode*> bnodes; } For each grain with a given id, we store only an ordered list of (references to) CNodes. This information is enough to calculate all properties of interest of a given grain. As a simple example, we can calculate how many triple junctions lay on the boundary of a grain by counting the number of its associated CNodes that have valence 3. Time step, minimum and maximum edge length On each time step, we set the size of the longest l max and shortest l min allowable edges in the system. If N is the number of grains in the system, then: l max = 1 5 N (B.2) and l min = N. (B.3) We set the step size t based on this: t = l 2 min/20. (B.4) On every step, if a grain has an area smaller than 2πl 2 min then we erase it. If an edge grows to be longer than l max, then we refine it on the following step, placing an extra boundary node at its 168

4 midpoint. If an edge shrinks to be shorter than l min then we remove one of its nodes, and move the other node to the midpoint of that edge segment. Node motions We begin by explaining how we move individual boundary nodes. Figure B.2 illustrates a typical boundary node σ, adjacent to two edges e 1 and e 2. Here we consider the edges as edges and also as Figure B.2: A typical boundary node σ, adjacent to two edges e 1 and e 2. vectors, pointing away from the boundary node σ. The area of the shaded parallelogram is e 1 e 2. For reasons of numerical stability, we choose to move boundary nodes in the direction of e 1 + e 2.If we moved node σ by exactly e 1 + e 2, then we would change the areas of the two adjacent grains by ± e 1 e 2. However, we only want to change the area of the adjacent grains by ±α t, as described in Chapter 3. Therefore, in one time step of size t, wemoveσ with a displacement vector: σ = α t e 1 e 2 (e 1 + e 2 ). (B.5) Determining the motion of a triple point is very similar. Figure B.3 shows a triple point τ and three neighboring edges and grains. We need to move the triple node τ in such a way that changes Figure B.3: A triple-node τ where Grains 1, 2, and 3 meet, where e i are the vectors from the triple-node to the nearest nodes on each of the three boundaries, and α i are the turning angles, or exterior angles with respect to each of the three grains. 169

5 the areas of each grain by an amount α i π/3, where α i is the turning angle of that grain at that triple point. We can make similar calculations to those we made for boundary nodes. We are then left with a system of three equations in two unknown spatial variables: e 1 e 2 e 2 e 3 dv =2Mγ t α 1 π 3 α 2 π 3 (B.6) e 3 e 1 α 3 π 3 This system is not overdetermined because only two equations are independent. This leaves us then: 1 τ =2Mγ t e 1 e 2 α 1 π 3 (B.7) e 3 e 1 α 3 π 3 Removing small faces When the area of a face is less than 2πlmin 2, then we delete it. Most of the time, this face has only two or three sides. If it has more than three sides, then we remove sides one at a time until only three are left. When there are three sides left to a face, then we remove it by collapsing its three corners to one triple node. This topological change is illustrated in Figure B.4. Figure B.4: The collapse of a three-sided face to a triple point. First we remove all edge nodes; next, a new point is placed at the geometric average of the three triple-points. Other neighboring boundary nodes are left in place. Removing a two-sided face is done in a very similar manner. This topological change is illustrated in Figure B.5. Figure B.5: The collapse of a two-sided face to an edge. We begin by removing the edge nodes and then remove two triple nodes, leaving the other neighboring nodes in place. 170

Level Set Method in a Finite Element Setting

Level Set Method in a Finite Element Setting Level Set Method in a Finite Element Setting John Shopple University of California, San Diego November 6, 2007 Outline 1 Level Set Method 2 Solute-Solvent Model 3 Reinitialization 4 Conclusion Types of

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Appendix E. Plane Geometry

Appendix E. Plane Geometry Appendix E Plane Geometry A. Circle A circle is defined as a closed plane curve every point of which is equidistant from a fixed point within the curve. Figure E-1. Circle components. 1. Pi In mathematics,

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

EE 701 ROBOT VISION. Segmentation

EE 701 ROBOT VISION. Segmentation EE 701 ROBOT VISION Regions and Image Segmentation Histogram-based Segmentation Automatic Thresholding K-means Clustering Spatial Coherence Merging and Splitting Graph Theoretic Segmentation Region Growing

More information

Unit 10 Study Guide: Plane Figures

Unit 10 Study Guide: Plane Figures Unit 10 Study Guide: Plane Figures *Be sure to watch all videos within each lesson* You can find geometric shapes in art. Whether determining the amount of leading or the amount of glass needed for a piece

More information

Subdivision Curves and Surfaces: An Introduction

Subdivision Curves and Surfaces: An Introduction Subdivision Curves and Surfaces: An Introduction Corner Cutting De Casteljau s and de Boor s algorithms all use corner-cutting procedures. Corner cutting can be local or non-local. A cut is local if it

More information

The Three Dimensional Coordinate System

The Three Dimensional Coordinate System The Three-Dimensional Coordinate System The Three Dimensional Coordinate System You can construct a three-dimensional coordinate system by passing a z-axis perpendicular to both the x- and y-axes at the

More information

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology Shape and Structure An explanation of Mathematical terminology 2005 1 POINT A dot Dots join to make lines LINE A line is 1 dimensional (length) A line is a series of points touching each other and extending

More information

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Spline Curves Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Problem: In the previous chapter, we have seen that interpolating polynomials, especially those of high degree, tend to produce strong

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

Principles and Goals

Principles and Goals Simulations of foam rheology Simon Cox Principles and Goals Use knowledge of foam structure to predict response when experiments are not easy to isolate causes of certain effects to save time in designing

More information

8 Special Models for Animation. Chapter 8. Special Models for Animation. Department of Computer Science and Engineering 8-1

8 Special Models for Animation. Chapter 8. Special Models for Animation. Department of Computer Science and Engineering 8-1 Special Models for Animation 8-1 L-Systems 8-2 L-Systems Branching Structures Botany Display geometric substitution turtle graphics Animating plants, animals 8-3 Plant examples http://algorithmicbotany.org/papers/#abop

More information

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F:

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: CS 177 Homework 1 Julian Panetta October, 009 1 Euler Characteristic 1.1 Polyhedral Formula We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: V E + F = 1 First,

More information

Surface Curvature Estimation for Edge Spinning Algorithm *

Surface Curvature Estimation for Edge Spinning Algorithm * Surface Curvature Estimation for Edge Spinning Algorithm * Martin Cermak and Vaclav Skala University of West Bohemia in Pilsen Department of Computer Science and Engineering Czech Republic {cermakm skala}@kiv.zcu.cz

More information

EE 584 MACHINE VISION

EE 584 MACHINE VISION EE 584 MACHINE VISION Binary Images Analysis Geometrical & Topological Properties Connectedness Binary Algorithms Morphology Binary Images Binary (two-valued; black/white) images gives better efficiency

More information

High School Geometry. Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics

High School Geometry. Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics High School Geometry Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics Standard 5 : Graphical Representations = ALEKS course topic that addresses

More information

Unit Number of Days Dates. 1 Angles, Lines and Shapes 14 8/2 8/ Reasoning and Proof with Lines and Angles 14 8/22 9/9

Unit Number of Days Dates. 1 Angles, Lines and Shapes 14 8/2 8/ Reasoning and Proof with Lines and Angles 14 8/22 9/9 8 th Grade Geometry Curriculum Map Overview 2016-2017 Unit Number of Days Dates 1 Angles, Lines and Shapes 14 8/2 8/19 2 - Reasoning and Proof with Lines and Angles 14 8/22 9/9 3 - Congruence Transformations

More information

ACT Math test Plane Geometry Review

ACT Math test Plane Geometry Review Plane geometry problems account for 14 questions on the ACT Math Test that s almost a quarter of the questions on the Subject Test. If you ve taken high school geometry, you ve probably covered all of

More information

Pre-AP Geometry Year-at-a-Glance Year-at-a-Glance

Pre-AP Geometry Year-at-a-Glance Year-at-a-Glance Pre-AP Geometry Year-at-a-Glance 2018-2019 Year-at-a-Glance FIRST SEMESTER SECOND SEMESTER Unit 1 Foundations of Geometry Unit 2 Equations of Lines, Angle-Pairs, Triangles Unit 3 Right Triangles, Polygons,

More information

Using Semi-Regular 4 8 Meshes for Subdivision Surfaces

Using Semi-Regular 4 8 Meshes for Subdivision Surfaces Using Semi-Regular 8 Meshes for Subdivision Surfaces Luiz Velho IMPA Instituto de Matemática Pura e Aplicada Abstract. Semi-regular 8 meshes are refinable triangulated quadrangulations. They provide a

More information

Henneberg construction

Henneberg construction Henneberg construction Seminar über Algorithmen FU-Berlin, WS 2007/08 Andrei Haralevich Abstract: In this work will be explained two different types of steps of Henneberg construction. And how Henneberg

More information

ACT SparkNotes Test Prep: Plane Geometry

ACT SparkNotes Test Prep: Plane Geometry ACT SparkNotes Test Prep: Plane Geometry Plane Geometry Plane geometry problems account for 14 questions on the ACT Math Test that s almost a quarter of the questions on the Subject Test If you ve taken

More information

Measuring Lengths The First Fundamental Form

Measuring Lengths The First Fundamental Form Differential Geometry Lia Vas Measuring Lengths The First Fundamental Form Patching up the Coordinate Patches. Recall that a proper coordinate patch of a surface is given by parametric equations x = (x(u,

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

Vocabulary. Term Page Definition Clarifying Example. apothem. center of a circle. center of a regular polygon. central angle of a regular polygon

Vocabulary. Term Page Definition Clarifying Example. apothem. center of a circle. center of a regular polygon. central angle of a regular polygon CHAPTER 9 Vocabulary The table contains important vocabulary terms from Chapter 9. As you work through the chapter, fill in the page number, definition, and a clarifying example. apothem Term Page Definition

More information

Supporting Information

Supporting Information Supporting Information January 2, 2008 1 Quantities Studied In this section we shall describe each of the spatial characteristic quantities with which we will be concerned: the radius of gyration, average

More information

Developer s Tip. An Introduction to the Theory of Planar Failure. Concepts of Planar Rock Slope Failure

Developer s Tip. An Introduction to the Theory of Planar Failure. Concepts of Planar Rock Slope Failure Developer s Tip An Introduction to the Theory of Planar Failure In this article we explain the basic concepts behind planar failure analysis of rock slopes. We also discuss the geometric conditions that

More information

Section 12.1 Translations and Rotations

Section 12.1 Translations and Rotations Section 12.1 Translations and Rotations Any rigid motion that preserves length or distance is an isometry. We look at two types of isometries in this section: translations and rotations. Translations A

More information

Editing Operations for Irregular Vertices in Triangle Meshes

Editing Operations for Irregular Vertices in Triangle Meshes Editing Operations for Irregular Vertices in Triangle Meshes Yuanyuan Li Arizona State University Eugene Zhang Oregon State University Yoshihiro Kobayashi Arizona State University Peter Wonka Arizona State

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

2003/2010 ACOS MATHEMATICS CONTENT CORRELATION GEOMETRY 2003 ACOS 2010 ACOS

2003/2010 ACOS MATHEMATICS CONTENT CORRELATION GEOMETRY 2003 ACOS 2010 ACOS CURRENT ALABAMA CONTENT PLACEMENT G.1 Determine the equation of a line parallel or perpendicular to a second line through a given point. G.2 Justify theorems related to pairs of angles, including angles

More information

Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary

Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary Curvature-Adaptive Remeshing with Feature Preservation of Manifold Triangle Meshes with Boundary Master s Project Tanja Munz Master of Science Computer Animation and Visual Effects 24th August, 2015 Abstract

More information

Point Cloud Simplification and Processing for Path-Planning. Master s Thesis in Engineering Mathematics and Computational Science DAVID ERIKSSON

Point Cloud Simplification and Processing for Path-Planning. Master s Thesis in Engineering Mathematics and Computational Science DAVID ERIKSSON Point Cloud Simplification and Processing for Path-Planning Master s Thesis in Engineering Mathematics and Computational Science DAVID ERIKSSON Department of Mathematical Sciences Chalmers University of

More information

Solution Notes. COMP 151: Terms Test

Solution Notes. COMP 151: Terms Test Family Name:.............................. Other Names:............................. ID Number:............................... Signature.................................. Solution Notes COMP 151: Terms

More information

BD separates ABC into two parts ( 1 and 2 ),then the measure

BD separates ABC into two parts ( 1 and 2 ),then the measure M 1312 section 3.5 1 Inequalities in a Triangle Definition: Let a and b be real numbers a > b if and only if there is a positive number p for which a = b + p Example 1: 7 > 2 and 5 is a positive number

More information

MADISON ACADEMY GEOMETRY PACING GUIDE

MADISON ACADEMY GEOMETRY PACING GUIDE MADISON ACADEMY GEOMETRY PACING GUIDE 2018-2019 Standards (ACT included) ALCOS#1 Know the precise definitions of angle, circle, perpendicular line, parallel line, and line segment based on the undefined

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Geometry: Angle Relationships

Geometry: Angle Relationships Geometry: Angle Relationships I. Define the following angles (in degrees) and draw an example of each. 1. Acute 3. Right 2. Obtuse 4. Straight Complementary angles: Supplementary angles: a + b = c + d

More information

Lecture 3 Mesh. Dr. Shuang LIANG. School of Software Engineering Tongji University Spring 2013

Lecture 3 Mesh. Dr. Shuang LIANG. School of Software Engineering Tongji University Spring 2013 Lecture 3 Mesh Dr. Shuang LIANG School of Software Engineering Tongji University Spring 2013 Today s Topics Overview Mesh Acquisition Mesh Data Structures Subdivision Surfaces Today s Topics Overview Mesh

More information

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY

13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY 13.472J/1.128J/2.158J/16.940J COMPUTATIONAL GEOMETRY Lecture 23 Dr. W. Cho Prof. N. M. Patrikalakis Copyright c 2003 Massachusetts Institute of Technology Contents 23 F.E. and B.E. Meshing Algorithms 2

More information

Measurement and Geometry (M&G3)

Measurement and Geometry (M&G3) MPM1DE Measurement and Geometry (M&G3) Please do not write in this package. Record your answers to the questions on lined paper. Make notes on new definitions such as midpoint, median, midsegment and any

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

Einführung in Visual Computing

Einführung in Visual Computing Einführung in Visual Computing 186.822 Rasterization Werner Purgathofer Rasterization in the Rendering Pipeline scene objects in object space transformed vertices in clip space scene in normalized device

More information

Curriki Geometry Glossary

Curriki Geometry Glossary Curriki Geometry Glossary The following terms are used throughout the Curriki Geometry projects and represent the core vocabulary and concepts that students should know to meet Common Core State Standards.

More information

Scanning Real World Objects without Worries 3D Reconstruction

Scanning Real World Objects without Worries 3D Reconstruction Scanning Real World Objects without Worries 3D Reconstruction 1. Overview Feng Li 308262 Kuan Tian 308263 This document is written for the 3D reconstruction part in the course Scanning real world objects

More information

Vector Integration : Surface Integrals

Vector Integration : Surface Integrals Vector Integration : Surface Integrals P. Sam Johnson April 10, 2017 P. Sam Johnson Vector Integration : Surface Integrals April 10, 2017 1/35 Overview : Surface Area and Surface Integrals You know how

More information

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5 Voronoi Diagrams and Delaunay Triangulations O Rourke, Chapter 5 Outline Preliminaries Properties and Applications Computing the Delaunay Triangulation Preliminaries Given a function f: R 2 R, the tangent

More information

Surface Mesh Generation

Surface Mesh Generation Surface Mesh Generation J.-F. Remacle Université catholique de Louvain September 22, 2011 0 3D Model For the description of the mesh generation process, let us consider the CAD model of a propeller presented

More information

Visualization of Hyperbolic Tessellations

Visualization of Hyperbolic Tessellations Visualization of Hyperbolic Tessellations Jakob von Raumer April 9, 2013 KARLSRUHE INSTITUTE OF TECHNOLOGY KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

More information

An angle that has a measure less than a right angle.

An angle that has a measure less than a right angle. Unit 1 Study Strategies: Two-Dimensional Figures Lesson Vocab Word Definition Example Formed by two rays or line segments that have the same 1 Angle endpoint. The shared endpoint is called the vertex.

More information

All tunnels of all tunnel number 1 knots

All tunnels of all tunnel number 1 knots All tunnels of all tunnel number 1 knots Darryl McCullough University of Oklahoma Geometric Topology Conference Beijing University June 22, 27 1 (joint work with Sangbum Cho, in The tree of knot tunnels,

More information

Curve Corner Cutting

Curve Corner Cutting Subdivision ision Techniqueses Spring 2010 1 Curve Corner Cutting Take two points on different edges of a polygon and join them with a line segment. Then, use this line segment to replace all vertices

More information

Pick up some wrapping paper.

Pick up some wrapping paper. Pick up some wrapping paper. What is the area of the following Christmas Tree? There is a nice theorem that allows one to compute the area of any simply-connected (i.e. no holes) grid polygon quickly.

More information

Lower Bounds on Mean Curvature of Closed Curves Contained in Convex Boundaries

Lower Bounds on Mean Curvature of Closed Curves Contained in Convex Boundaries Lower Bounds on Mean Curvature of Closed Curves Contained in Convex Boundaries Greg McNulty, Robert King, Haijian Lin, Sarah Mall August 13, 24 Abstract We investigate a geometric inequality that states

More information

CURVILINEAR MESH GENERATION IN 3D

CURVILINEAR MESH GENERATION IN 3D CURVILINEAR MESH GENERATION IN 3D Saikat Dey, Robert M. O'Bara 2 and Mark S. Shephard 2 SFA Inc. / Naval Research Laboratory, Largo, MD., U.S.A., dey@cosmic.nrl.navy.mil 2 Scientific Computation Research

More information

CS4733 Class Notes. 1 2-D Robot Motion Planning Algorithm Using Grown Obstacles

CS4733 Class Notes. 1 2-D Robot Motion Planning Algorithm Using Grown Obstacles CS4733 Class Notes 1 2-D Robot Motion Planning Algorithm Using Grown Obstacles Reference: An Algorithm for Planning Collision Free Paths Among Poyhedral Obstacles by T. Lozano-Perez and M. Wesley. This

More information

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations The Level Set Method Lecture Notes, MIT 16.920J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations Per-Olof Persson persson@mit.edu March 7, 2005 1 Evolving Curves and Surfaces Evolving

More information

Geometry GEOMETRY. Congruence

Geometry GEOMETRY. Congruence Geometry Geometry builds on Algebra I concepts and increases students knowledge of shapes and their properties through geometry-based applications, many of which are observable in aspects of everyday life.

More information

Geometry/Trigonometry Unit 5: Polygon Notes Period:

Geometry/Trigonometry Unit 5: Polygon Notes Period: Geometry/Trigonometry Unit 5: Polygon Notes Name: Date: Period: # (1) Page 270 271 #8 14 Even, #15 20, #27-32 (2) Page 276 1 10, #11 25 Odd (3) Page 276 277 #12 30 Even (4) Page 283 #1-14 All (5) Page

More information

Uniform edge-c-colorings of the Archimedean Tilings

Uniform edge-c-colorings of the Archimedean Tilings Discrete & Computational Geometry manuscript No. (will be inserted by the editor) Uniform edge-c-colorings of the Archimedean Tilings Laura Asaro John Hyde Melanie Jensen Casey Mann Tyler Schroeder Received:

More information

Statistical Topology of Embedded Graphs

Statistical Topology of Embedded Graphs Statistical Topology of Embedded Graphs Benjamin Schweinhart A Dissertation Presented to the Faculty of Princeton University in Candidacy for the Degree of Doctor of Philosophy Recommended for Acceptance

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

An Efficient Data Structure for Representing Trilateral/Quadrilateral Subdivision Surfaces

An Efficient Data Structure for Representing Trilateral/Quadrilateral Subdivision Surfaces BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 3, No 3 Sofia 203 Print ISSN: 3-9702; Online ISSN: 34-408 DOI: 0.2478/cait-203-0023 An Efficient Data Structure for Representing

More information

ACT Math and Science - Problem Drill 11: Plane Geometry

ACT Math and Science - Problem Drill 11: Plane Geometry ACT Math and Science - Problem Drill 11: Plane Geometry No. 1 of 10 1. Which geometric object has no dimensions, no length, width or thickness? (A) Angle (B) Line (C) Plane (D) Point (E) Polygon An angle

More information

Chapter 24. Creating Surfaces for Displaying and Reporting Data

Chapter 24. Creating Surfaces for Displaying and Reporting Data Chapter 24. Creating Surfaces for Displaying and Reporting Data FLUENT allows you to select portions of the domain to be used for visualizing the flow field. The domain portions are called surfaces, and

More information

CS133 Computational Geometry

CS133 Computational Geometry CS133 Computational Geometry Voronoi Diagram Delaunay Triangulation 5/17/2018 1 Nearest Neighbor Problem Given a set of points P and a query point q, find the closest point p P to q p, r P, dist p, q dist(r,

More information

STANDARDS OF LEARNING CONTENT REVIEW NOTES GEOMETRY. 3 rd Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES GEOMETRY. 3 rd Nine Weeks, STANDARDS OF LEARNING CONTENT REVIEW NOTES GEOMETRY 3 rd Nine Weeks, 2016-2017 1 OVERVIEW Geometry Content Review Notes are designed by the High School Mathematics Steering Committee as a resource for

More information

Warm-Up 3/30/ What is the measure of angle ABC.

Warm-Up 3/30/ What is the measure of angle ABC. enchmark #3 Review Warm-Up 3/30/15 1. 2. What is the measure of angle. Warm-Up 3/31/15 1. 2. Five exterior angles of a convex hexagon have measure 74, 84, 42, 13, 26. What is the measure of the 6 th exterior

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

The National Strategies Secondary Mathematics exemplification: Y8, 9

The National Strategies Secondary Mathematics exemplification: Y8, 9 Mathematics exemplification: Y8, 9 183 As outcomes, Year 8 pupils should, for example: Understand a proof that the sum of the angles of a triangle is 180 and of a quadrilateral is 360, and that the exterior

More information

3 Identify shapes as two-dimensional (lying in a plane, flat ) or three-dimensional ( solid ).

3 Identify shapes as two-dimensional (lying in a plane, flat ) or three-dimensional ( solid ). Geometry Kindergarten Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). 1 Describe objects in the environment using names of shapes,

More information

LESSON SUMMARY. Properties of Shapes

LESSON SUMMARY. Properties of Shapes LESSON SUMMARY CXC CSEC MATHEMATICS UNIT Seven: Geometry Lesson 13 Properties of Shapes Textbook: Mathematics, A Complete Course by Raymond Toolsie, Volume 1 and 2. (Some helpful exercises and page numbers

More information

Review for Mastery Using Graphs and Tables to Solve Linear Systems

Review for Mastery Using Graphs and Tables to Solve Linear Systems 3-1 Using Graphs and Tables to Solve Linear Systems A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations

More information

3D Rendering and Ray Casting

3D Rendering and Ray Casting 3D Rendering and Ray Casting Michael Kazhdan (601.457/657) HB Ch. 13.7, 14.6 FvDFH 15.5, 15.10 Rendering Generate an image from geometric primitives Rendering Geometric Primitives (3D) Raster Image (2D)

More information

A hybrid level-set method in two and three dimensions for modeling detonation and combustion problems in complex geometries

A hybrid level-set method in two and three dimensions for modeling detonation and combustion problems in complex geometries and Applied Mechanics University of Illinois at Urbana-Champaign TAM Report No. 1040 UILU-ENG-2004-6001 ISSN 0073-5264 A hybrid level-set method in two and three dimensions for modeling detonation and

More information

STANDARDS OF LEARNING CONTENT REVIEW NOTES HONORS GEOMETRY. 3 rd Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES HONORS GEOMETRY. 3 rd Nine Weeks, STANDARDS OF LEARNING CONTENT REVIEW NOTES HONORS GEOMETRY 3 rd Nine Weeks, 2016-2017 1 OVERVIEW Geometry Content Review Notes are designed by the High School Mathematics Steering Committee as a resource

More information

Chapter 3. Sukhwinder Singh

Chapter 3. Sukhwinder Singh Chapter 3 Sukhwinder Singh PIXEL ADDRESSING AND OBJECT GEOMETRY Object descriptions are given in a world reference frame, chosen to suit a particular application, and input world coordinates are ultimately

More information

MAT175 Overview and Sample Problems

MAT175 Overview and Sample Problems MAT175 Overview and Sample Problems The course begins with a quick review/overview of one-variable integration including the Fundamental Theorem of Calculus, u-substitutions, integration by parts, and

More information

Space Subdivision for the Adaptive Edge Spinning Polygonization

Space Subdivision for the Adaptive Edge Spinning Polygonization Space Subdivision for the Adaptive Edge Spinning Polygonization MARTIN CERMAK 1, VACLAV SKALA Department of Computer Science and Engineering University of West Bohemia in Pilsen Univerzitni 8, 306 14 Plzen

More information

Geometry Kaleidoscope. the sum of the distances from each point to AB and to CD equals to the sum of the distances from the same point to BC and AD.

Geometry Kaleidoscope. the sum of the distances from each point to AB and to CD equals to the sum of the distances from the same point to BC and AD. Geometry Kaleidoscope October 25, 2014 Problem set 1: squares and circles 1. Given a square ABCD, find the set of all points on the plane such that the sum of the distances from each point to AB and to

More information

UPEM Master 2 Informatique SIS. Digital Geometry. Topic 2: Digital topology: object boundaries and curves/surfaces. Yukiko Kenmochi.

UPEM Master 2 Informatique SIS. Digital Geometry. Topic 2: Digital topology: object boundaries and curves/surfaces. Yukiko Kenmochi. UPEM Master 2 Informatique SIS Digital Geometry Topic 2: Digital topology: object boundaries and curves/surfaces Yukiko Kenmochi October 5, 2016 Digital Geometry : Topic 2 1/34 Opening Representations

More information

On-Line Computer Graphics Notes CLIPPING

On-Line Computer Graphics Notes CLIPPING On-Line Computer Graphics Notes CLIPPING Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis 1 Overview The primary use of clipping in

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

This controller extract information about Faces,Edges and Vertices of an Editable Mesh or Editable Poly object.

This controller extract information about Faces,Edges and Vertices of an Editable Mesh or Editable Poly object. Mesh Controller How to use: Filtering methods: Geometry: Pick Object: Reference Object: Use Sub-Object Selection: Use methods of : Search in: Vertex: Scalar Output: Vector Output: Matrix outputs: Edge

More information

RPDP Geometry Seminar Quarter 1 Handouts

RPDP Geometry Seminar Quarter 1 Handouts RPDP Geometry Seminar Quarter 1 Handouts Geometry lassifying Triangles: State Standard 4.12.7 4.12.9 Syllabus Objectives: 5.11, 6.1, 6.4, 6.5 enchmarks: 2 nd Quarter - November Find the distance between:

More information

A NON-TRIGONOMETRIC, PSEUDO AREA PRESERVING, POLYLINE SMOOTHING ALGORITHM

A NON-TRIGONOMETRIC, PSEUDO AREA PRESERVING, POLYLINE SMOOTHING ALGORITHM A NON-TRIGONOMETRIC, PSEUDO AREA PRESERVING, POLYLINE SMOOTHING ALGORITHM Wayne Brown and Leemon Baird Department of Computer Science The United States Air Force Academy 2354 Fairchild Dr., Suite 6G- USAF

More information

A Grid Based Particle Method for Evolution of Open Curves and Surfaces

A Grid Based Particle Method for Evolution of Open Curves and Surfaces A Grid Based Particle Method for Evolution of Open Curves and Surfaces Shingyu Leung a,, Hongkai Zhao b a Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Hong

More information

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples :

3. Voronoi Diagrams. 3.1 Definitions & Basic Properties. Examples : 3. Voronoi Diagrams Examples : 1. Fire Observation Towers Imagine a vast forest containing a number of fire observation towers. Each ranger is responsible for extinguishing any fire closer to her tower

More information

Computer Graphics. Lecture 2. Doç. Dr. Mehmet Gokturk

Computer Graphics. Lecture 2. Doç. Dr. Mehmet Gokturk Computer Graphics Lecture 2 Doç. Dr. Mehmet Gokturk Mathematical Foundations l Hearn and Baker (A1 A4) appendix gives good review l Some of the mathematical tools l Trigonometry l Vector spaces l Points,

More information

GEOMETRY is the study of points in space

GEOMETRY is the study of points in space CHAPTER 5 Logic and Geometry SECTION 5-1 Elements of Geometry GEOMETRY is the study of points in space POINT indicates a specific location and is represented by a dot and a letter R S T LINE is a set of

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Bellman s Escape Problem for Convex Polygons

Bellman s Escape Problem for Convex Polygons Bellman s Escape Problem for Convex Polygons Philip Gibbs philegibbs@gmail.com Abstract: Bellman s challenge to find the shortest path to escape from a forest of known shape is notoriously difficult. Apart

More information

COMP30019 Graphics and Interaction Scan Converting Polygons and Lines

COMP30019 Graphics and Interaction Scan Converting Polygons and Lines COMP30019 Graphics and Interaction Scan Converting Polygons and Lines Department of Computer Science and Software Engineering The Lecture outline Introduction Scan conversion Scan-line algorithm Edge coherence

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1. Define Graph. A graph G = (V, E) consists

More information

Lesson 3: Solving for Unknown Angles using Equations

Lesson 3: Solving for Unknown Angles using Equations Classwork Opening Exercise Two lines meet at the common vertex of two rays; the measurement of. Set up and solve an equation to find the value of and. Example 1 Set up and solve an equation to find the

More information

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical With no gravity the projectile would follow the straight-line path (dashed line).

More information

Extension of half-edges for the representation of

Extension of half-edges for the representation of The Visual Computer manuscript No. (will be inserted by the editor) Pierre Kraemer David Cazier Dominique Bechmann Extension of half-edges for the representation of multiresolution subdivision surfaces

More information

Geometry/Pre AP Geometry Common Core Standards

Geometry/Pre AP Geometry Common Core Standards 1st Nine Weeks Transformations Transformations *Rotations *Dilation (of figures and lines) *Translation *Flip G.CO.1 Experiment with transformations in the plane. Know precise definitions of angle, circle,

More information