Rendering with Radiance

Size: px
Start display at page:

Download "Rendering with Radiance"

Transcription

1 Radiance Overview This section introduces some more information about Radiance and how IES have integrated it into the Virtual Environment. This document is not intended as an exhaustive study of this subject, but as an introduction to some of the concepts. More information about Radiance can be found in the book Rendering with Radiance by Greg Ward Larson & Rob Shakespeare, published by Morgan Kaufmann Publishers. Contents: Introduction The IES View of Radiance Components Luminaires Project Directory Structure Radiance Data Files Radiance Publications Page 1 of 15

2 Introduction Radiance is a software package developed by the Lighting Systems Research group at the Lawrence Berkeley Laboratory in California, USA. Radiance was developed as a research tool for predicting the distribution of visible radiation in illuminated spaces. It takes as input a three-dimensional geometric model of the physical environment, and produces a map of spectral radiance values in a photo-realistic colour image. It can be used to calculate lighting levels (LUX), Daylight Factors or Glare for daylight and/or artificial lighting. Radiance is internationally recognised as one of the leading lighting simulation tools available. IES have been using Radiance over a wide range of commercial projects for many years and to facilitate this work IES have integrated Radiance into the <Virtual Environment>. The latest version of this integration, RadianceIES, provides users with even greater ease of use through its customised Graphical User Interface (known as the <Virtual Environment> Framework), which integrates with all the other IES software packages (SunCast, Apache, etc.). Page 2 of 15

3 The IES View of Radiance The Radiance interface module RadianceIES has now been integrated into the new <Virtual Environment> Framework. This means a greater degree of compatibility between the various modules and more natural interfaces for the user to navigate. From a conceptual point of view the RadianceIES interface can be treated as a stand-alone module (as shown below). A more detailed description of the RadianceIES interface is described in the chapter The RadianceIES Interface. The following figure shows the mechanism that has been adopted as an efficient and effective way to control the manipulation of the necessary data and the creation of images. Page 3 of 15

4 The 3D geometry of the model created by ModelIT is converted by an internal module (mit2rad) which is hidden to the user. Global properties are inherited from the ModelIT database e.g. site data, and default properties are assumed for other data requirements e.g. surface colours, etc. This information is written into three data files the sky file, the map file and the rad file. In RadianceIES the user may manipulate the specific properties that are required. These 3 data files are required by the program oconv, which uses these data files to create the octree file. There are two types of picture file created by Radiance, luminance and illuminance. An illuminance picture can be used to look at Lux values and generate Lux or DF contours, a luminance picture can be used to generate glare indices or as a photo-realistic image. The interface program RadianceIES allows the user to create the two data files, the view file (*.rdv) and the parameter file (*.rdp), that control the image generation program, rpict. The raw image file is filtered and scaled by the program pfilt to create the picture file (*.pic). The interface is designed to make things as easy as possible for the user to create images by making default assumptions where possible. Radiance can be categorised as a ray-tracing algorithm, which tracks rays of light backwards from the eye and into the scene. This contrasts with the radiosity technique where the exchange of energy between surface patches is calculated. Page 4 of 15

5 Components The Component Modeller can be used to add components (3D objects used to represent elements within a zone, e.g. desks, chairs, people, etc.) into the model. The relationship between RadianceIES and the Component Modeller is as follows: The Component Modeller updates the model with the user defined components from the component library (components may be imported from standard libraries or other projects). These are filtered by an internal module (com2rad) and input to the Radiance module oconv. Subsequent steps in the process are the same as the standard Page 5 of 15

6 scenario. Luminaires The module Light-Pro can be used to add luminaires into the model. The relationship between RadianceIES and Light-Pro is as follows: Light-Pro updates the model with the luminaire data selected by the user from a database. The selected luminaires are converted to the IESNA data format, which are then converted by the program ies2rad into a format usable by Radiance (*.rad and *.dat). An extra input file (*.lum) is added to the oconv input stream, which defines the luminaries, which are active in this simulation. If no daylight is required for this simulation then the sky file is omitted from the input stream. Subsequent steps in the process are the same as in a normal daylight simulation. Page 6 of 15

7 Project Directory Structure One problem with running multiple applications or multiple simulations is keeping track of all the required data files. It is strongly recommended that a specific project directory be created for each model even where one model may be a variation on another. This allows the subdirectories (or folders), which are automatically created by ModelIT, to be unique to the particular model and avoids confusion between data files. All files associated with the Radiance view of this project - picture files, octree files, etc. are stored in the Radiance sub-directory, and is the default location when looking for files. A description of the use and contents of each of these file types follows in the next chapter. Files which use the root project name are used as default instances of the file type when creating images interactively, e.g. for the project office.mit, the files office.map, office.rdv, office.rdp, etc., are all created with default settings and are updated automatically when the relevant tabs are updated. Page 7 of 15

8 The master file is the *.mit file which is located at the Project directory level. This file contains the 3D description of the model and other information relevant to the model. It is a binary file and can only be accessed through the ModelIT framework and the applications which run under the framework i.e. RadianceIES. Also at this level is the Component Library file, the *.mcl file (it is possible to access components from other models). Certain other files store information which is used by Radiance and other applications, these are summarised in the table below. *.mtd *.mcl Apache\*.df Apache\*.loc Apache\*.mat Apache\*.pdb Apache\*.pro Apache\*.wea ModelIT template file. Component Library file. Detailed constructions. Location file. Material definitions. Profile descriptions. Profile group descriptions. Weather file. Note that when a model has to be transferred all these files are required. To help with this there is an Archive option in the main <VE> pull-down menu which allows the user to create a single compressed file of all the required model data. This is also the most efficient way for sending models by . Page 8 of 15

9 Radiance Data Files The following data files may be found in the Radiance sub-directory: *.sky *.map *.rad *.rdv *.rdp *.oct *.raw *.pic *.log *.bat *.ies *.dat *.gmf *.glr Sky file. Materials properties file. Converted or native Radiance geometry file. View parameter file. Accuracy parameter file. Octree file. Raw data file. Picture file. Log file. Batch file. IESNA luminaire file. File associated with luminaire data. Pre-defined material properties file. Glare file Sky File (*.sky) Contains information which affects the sky conditions -date, time, site and sky. This file contains a call to the Radiance program gensky, which takes the date and time as parameters ( ) and also site data ( -a ). There are 7 standard sky conditions available: 5.+s sunny sky 6.-s standard clear sky 7.-c standard CIE overcast sky 8.+I intermediate sky with sun 9.-I intermediate sky without sun 10.-u uniform cloudy sky 11.10K_cie CIE overcast sky fixed to 10K Lux Page 9 of 15

10 Map File (*.map) Contains data on the patterns and materials that are assigned to the constructions in the model Converted Geometry File (*.rad) This file contains a geometrical description in a form that Radiance can interpret. If luminaires and/or components are also to be included in the simulation additional data files containing this information are created. In the current setup a parent file which references all these files is created View Parameter File (*.rdv) This file contains the parameters for a particular view - the type of view (perspective/plan), the eye position (x, y, z), the viewing direction, angles of view, etc. This file is created when the user saves the contents of the Eye view position dialog items. When the user creates images interactively without specifically saving the view parameters a file with the same root name as the project is created. This file is defined as a parameter to the rpict module, which generates the radiance image Page 10 of 15

11 Accuracy Parameter File (*.rdp) This file contains the simulation parameters that determine how accurate the simulation will be - ambient bounces, etc. This file is created when the user saves the contents of the Accuracy dialog items. When the user creates images interactively without specifically saving the simulation parameters a file with the same root name as the project is created. This file is defined as a parameter to the rpict module, which generates the radiance image Octree File (*.oct) A binary data file created by oconv and read by rpict, contains the octree data structure, which is used to speed up the ray-tracing algorithm. If the resultant image is a luminance image the octree file is used in the calculation of glare. For illuminance images the octree file can be discarded when the image has been created. An octree is a data structure that subdivides a cubic volume of space into eight sub-cubes, each of which may be subdivided into eight subcubes, and so on recursively. This data structure is created by the program oconv and is used to speed up ray intersection tests on the scene. This data structure is stored in the octree file. Page 11 of 15

12 Raw File (*.raw) This is an intermediate picture file created by rpict and filtered and scaled by pfilt to generate the final image. It is deleted by the batch job after the filtering process and is only found if the batch process is interrupted. It has the format and structure of a picture file. The file is created at four times (2 by 2) the picture size as defined in the Eye view position tab. The eventual size depends on the aspect ratio derived from the horizontal and vertical viewing angles (or width and height for a plan view) Image File (*.pic) The final simulated picture, a binary file written in a customized format. Created by pfilt from the raw file as the final step of the batch process, which creates the finished image. Depending on the simulation parameters can be either an illuminance or luminance image. Luminance images are used to generate glare and illuminance images are used to generate Lux values and Lux contours (and DF contours). The first image to be created has the root project name (e.g. model.pic) and subsequent images have a number appended to the root name (i.e. model1.pic, model2.pic, etc.). If images are deleted then the number sequencing may be out order, it is left to the user to rename the images Page 12 of 15

13 if required. Note that the image list in the View images tab sequences the images in the order they were created. Contour images have the labels _LC or _DF appended to the name, or if more than one contour image is created then additional numbers will be added e.g. _LC1, etc Log File The file Radiance.log keeps track of the progress of the processes involved in generating an image (this file is used to update the progress bar). Any warnings and errors are also written to this file. The file is written in append mode and it is left to the user to delete it as required Batch File (*.bat) This file is used to piece together the various files used to generate a simulation (see diagram on page 2). There are two contexts in which this occurs - when the user interactively creates an image from the Create image tab, and when the user assembles batch processes from the Files/Queues tab. In the Create image tab this process is concealed from the user and the files used are given default names (using the root project name), which are automatically updated from the current settings Page 13 of 15

14 IESNA Luminaire File This file conforms to the standard description of a luminaire as defined by the Illuminating Engineering Society of North America. It combines the data for the candlepower distribution of the luminaire with miscellaneous other data items e.g. luminaire dimensions. This file is written out by LightPro. The *.ies file is converted by the program ies2rad into a format usable by Radiance (the *.rad file and the *.dat file). Page 14 of 15

15 Radiance Publications Grynberg, A. Validation of Radiance, Lawrence Berkeley Group, July Ward, G., A Contrast-Based Scalefactor for Luminance Display, Graphics Gems IV, Edited by Paul Heckbert, Academic Press Ward, G., Measuring and Modeling Anisotropic Reflection, Computer Graphics, Chicago, July Ward, G., The Radiance Lighting Simulation System, Global Illumination, Siggraph '92 Course Notes, organized by Paul Heckbert, July Ward, G., F. Rubinstein, R. Clear, A Ray Tracing Solution for Diffuse Interreflection, Computer Graphics, Vol. 22, No. 4, August Page 15 of 15

IES <Virtual Environment> Tutorial RadianceIES (Version 6.0)

IES <Virtual Environment> Tutorial RadianceIES (Version 6.0) IES Tutorial RadianceIES (Version 6.0) Introduction In this tutorial you will use RadianceIES, IES s 3D lighting simulation tool, to perform luminance and illuminance lighting simulations.

More information

Radiance IES User Guide

Radiance IES User Guide Radiance IES User Guide IES Virtual Environment Copyright 2016 Integrated Environmental Solutions Limited. All rights reserved. No part of the manual is to be copied or reproduced in any form without the

More information

Radiance Commands User Guide

Radiance Commands User Guide Radiance Commands User Guide IES Virtual Environment Copyright 2015 Integrated Environmental Solutions Limited. All rights reserved. No part of the manual is to be copied or reproduced in any form without

More information

RadianceIES: Radiance Images

RadianceIES: Radiance Images RadianceIES: Radiance Images IES Virtual Environment Copyright 2015 Integrated Environmental Solutions Limited. All rights reserved. No part of the manual is to be copied or reproduced in any form without

More information

Priority for School Buildings Programme

Priority for School Buildings Programme www.iesve.com Priority for School Buildings Programme Daylighting Criteria DA and UDI in RadianceIES Written and Prepared by Date Revision Rosemary McLafferty and Don Stearn August 2013 Rev 01 Contents

More information

http://radsite.lbl.gov/radiance Introduction Describe Radiance system and theory. Create and simulate Radiance models via ESP-r: Generate external/internal images, Glare analysis, Generate daylight factor

More information

Comparative Daylight Glare Analysis Between Measured and Computer Simulation Predictions

Comparative Daylight Glare Analysis Between Measured and Computer Simulation Predictions Comparative Daylight Glare Analysis Between Measured and Computer Simulation Predictions MARISELA MENDOZA 1. 1 Nottingham Trent University, Nottingham, United Kingdom. ABSTRACT: The importance of daylight

More information

Lighting Simulation Tools in the process of design. Laleh Amany Autumn 2017

Lighting Simulation Tools in the process of design. Laleh Amany Autumn 2017 Lighting Simulation Tools in the process of design Laleh Amany Autumn 2017 Lighting simulation is important for architectural projects from multiple p e r s p e c t i v e f o r c o n c e p t i o n a n

More information

ARCH 447 Electrical Services - Lighting

ARCH 447 Electrical Services - Lighting ARCH 447 Electrical Services - Lighting Oct 5: Lighting Simulation I - Ecotect Daylight Factor Avoidance of Direct Sunlight Christoph Reinhart, Ph.D. Course Outline 1 Sep 7 Vision and Color, History 2

More information

Speeding Up Daylighting Design and Glare Prediction Workflows with Accelerad

Speeding Up Daylighting Design and Glare Prediction Workflows with Accelerad Speeding Up Daylighting Design and Glare Prediction Workflows with Accelerad Nathaniel Jones DIVA Day 2016 Massachusetts Institute of Technology Sustainable Design Lab 138,844,405 rays 49 minutes 41,010,721

More information

Lighting Simulations: A Parametric Perspective. Sarith Subramaniam

Lighting Simulations: A Parametric Perspective. Sarith Subramaniam Lighting Simulations: A Parametric Perspective Sarith Subramaniam 1 Thinking parametrically 2 How many reflections are required to simulate venetian blinds? Should I use venetian blinds? 1 2 4 6 3 Which

More information

Interior. Exterior. Daylight

Interior. Exterior. Daylight Interior Exterior Daylight Page 2 ElumTools is a fully-integrated lighting calculation Add-in for Autodesk Revit authored by Lighting Analysts, Inc. The growth of BIM (Building Information Modeling) software

More information

Comparison of radiosity and ray-tracing techniques with a practical design procedure for the prediction of daylight levels in atria

Comparison of radiosity and ray-tracing techniques with a practical design procedure for the prediction of daylight levels in atria Renewable Energy 28 (2003) 2157 2162 www.elsevier.com/locate/renene Technical note Comparison of radiosity and ray-tracing techniques with a practical design procedure for the prediction of daylight levels

More information

IES Virtual Environment 2014 Release Notes

IES Virtual Environment 2014 Release Notes www.iesve.com IES Integrated Environmental Solutions Limited Developers of the IES Virtual Environment May 2014 VE 2014 VE 2014 Changes... 3 page 2 VE 2014 VE 2014 Changes General Improved generated room

More information

Using Daylighting Performance to Optimise Façade Design. Colin Rees Consultancy Manager

Using Daylighting Performance to Optimise Façade Design. Colin Rees Consultancy Manager Using Daylighting Performance to Optimise Façade Design Colin Rees Consultancy Manager About IES IES was founded over 20 years ago and headquartered in Glasgow is recognised as a world leader in 3D performance

More information

AECOsim Building Designer Quick Start Guide

AECOsim Building Designer Quick Start Guide AECOsim Building Designer Quick Start Guide Chapter A17 Rendering 2012 Bentley Systems, Incorporated www.bentley.com/aecosim Table of Contents Rendering...3 The Camera... 3 Materials... 5 Material Palettes...

More information

Lighting: FlucsDL (daylighting)

Lighting: FlucsDL (daylighting) Lighting: FlucsDL (daylighting) User Guide IES Virtual Environment Copyright 2015 Integrated Environmental Solutions Limited. All rights reserved. No part of the manual is to be copied or reproduced in

More information

Prediction of vertical irradiance on building surfaces: an empirical comparison of two models

Prediction of vertical irradiance on building surfaces: an empirical comparison of two models Prediction of vertical irradiance on building surfaces: an empirical comparison of two models Ehsan Vazifeh Vienna University of Technology, Austria ehsan.mahmoudzadehvazifeh@tuwien.ac.at Matthias Schuss

More information

version: 11/22/2006 ADVANCED DAYLIGHT SIMULATIONS USING ECOTECT // RADIANCE // DAYSIM GETTING STARTED ECOTECT GUIDO PETINELLI CHRISTOPH REINHART

version: 11/22/2006 ADVANCED DAYLIGHT SIMULATIONS USING ECOTECT // RADIANCE // DAYSIM GETTING STARTED ECOTECT GUIDO PETINELLI CHRISTOPH REINHART ADVANCED DAYLIGHT SIMULATIONS USING ECOTECT // RADIANCE // DAYSIM GETTING STARTED ECOTECT RADIANCE DAYSIM GUIDO PETINELLI CHRISTOPH REINHART OVERVIEW This document is a guide for daylight simulation beginners.

More information

Introduction. Chapter Computer Graphics

Introduction. Chapter Computer Graphics Chapter 1 Introduction 1.1. Computer Graphics Computer graphics has grown at an astounding rate over the last three decades. In the 1970s, frame-buffers capable of displaying digital images were rare and

More information

DAYLIGHTING SIMULATION OF JAPANESE ARCHITECTURE USING ALL SKY MODEL

DAYLIGHTING SIMULATION OF JAPANESE ARCHITECTURE USING ALL SKY MODEL Seventh International IBPSA Conference Rio de Janeiro, Brazil August 3-5, 2 DAYLIGHTING SIMULATION OF JAPANESE ARCHITECTURE USING ALL SKY MODEL Masaki MANABE, Hitoshi YAMAZAKI and Shoich KOJIMA Oita University

More information

Daylight Simulation: Validation, Sky Models and Daylight Coefficients. John Mardaljevic

Daylight Simulation: Validation, Sky Models and Daylight Coefficients. John Mardaljevic Daylight Simulation: Validation, Sky Models and Daylight Coefficients John Mardaljevic Daylight Simulation: Validation, Sky Models and Daylight Coefficients John Mardaljevic A thesis submitted in partial

More information

FlucsPro: Artificial Lighting and Daylighting

FlucsPro: Artificial Lighting and Daylighting FlucsPro: Artificial Lighting and Daylighting User Guide IES Virtual Environment Copyright 2015 Integrated Environmental Solutions Limited. All rights reserved. No part of the manual is to be copied or

More information

Practical use of new visual discomfort probability index in the control strategy for solar shading devices Johnsen, Kjeld

Practical use of new visual discomfort probability index in the control strategy for solar shading devices Johnsen, Kjeld Aalborg Universitet Practical use of new visual discomfort probability index in the control strategy for solar shading devices Johnsen, Kjeld Published in: Indoor Air 28 Publication date: 28 Document Version

More information

Final Report. Abstract

Final Report. Abstract Submitted to...california Institute for Energy Efficiency, Southern California Edison Date...April 30, 2002 Project Title...Improving Lighting and Daylighting Decision Making to Facilitate the Design of

More information

INTRODUCTION 1. SIMULATION MODELS Physical Modelling

INTRODUCTION 1. SIMULATION MODELS Physical Modelling COMPARISON OF COMPUTER AND MODEL SIMULATIONS OF A DAYLIT INTERIOR WITH REALITY Dave Jarvis, Mike Donn School of Architecture, Victoria University of Wellington PO Box 6, Wellington, New Zealand: ph: +6--8

More information

FlucsDL User Guide <VE> 6.0

FlucsDL User Guide <VE> 6.0 INTEGRATED ENVIRONMENTAL SOLUTIONS LIMITED International Sustainability Consulting Developers of the IES BOSTON, MA GLASGOW, SCOTLAND DUBLIN, IRELAND LONDON, ENGLAND MELBOURNE, AUSTRALIA

More information

Global Rendering. Ingela Nyström 1. Effects needed for realism. The Rendering Equation. Local vs global rendering. Light-material interaction

Global Rendering. Ingela Nyström 1. Effects needed for realism. The Rendering Equation. Local vs global rendering. Light-material interaction Effects needed for realism Global Rendering Computer Graphics 1, Fall 2005 Lecture 7 4th ed.: Ch 6.10, 12.1-12.5 Shadows Reflections (Mirrors) Transparency Interreflections Detail (Textures etc.) Complex

More information

Greg Ward / SIGGRAPH 2003

Greg Ward / SIGGRAPH 2003 Global Illumination Global Illumination & HDRI Formats Greg Ward Anyhere Software Accounts for most (if not all) visible light interactions Goal may be to maximize realism, but more often visual reproduction

More information

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T

S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T S U N G - E U I YO O N, K A I S T R E N D E R I N G F R E E LY A VA I L A B L E O N T H E I N T E R N E T Copyright 2018 Sung-eui Yoon, KAIST freely available on the internet http://sglab.kaist.ac.kr/~sungeui/render

More information

Majid Miri, August 2017

Majid Miri, August 2017 Majid Miri, August 2017 majid.miri@sweco.se Daylight Simulation Program scene - scene geometry - optical material properties - surrounding landscape - ground reflectance - status of electrical lighting

More information

SunCast - User Guide. IES Virtual Environment 2013

SunCast - User Guide. IES Virtual Environment 2013 SunCast - User Guide IES Virtual Environment 2013 Contents 1 Introduction to SunCast... 3 1.1 SunCast Features...3 1.2 Getting Help...3 2 Starting SunCast... 3 2.1 Application Bar...3 2.2 Mode...4 3 The

More information

FlucsPro User Guide <Virtual Environment> 5.9

FlucsPro User Guide <Virtual Environment> 5.9 FlucsPro User Guide 5.9 Page 1 of 80 Contents 1. Introduction to FlucsPro...7 1.1. Calculations... 7 2. Menus...8 2.1. File Menu... 8 2.1.1. Save... 8 2.1.2. Copy Bitmap... 8 2.1.3.

More information

Solar Optical Properties of Roller Shades: Modeling Approaches, Measured Results and Impact on Daylighting Performance and Visual Comfort

Solar Optical Properties of Roller Shades: Modeling Approaches, Measured Results and Impact on Daylighting Performance and Visual Comfort Solar Optical Properties of Roller Shades: Modeling Approaches, Measured Results and Impact on Daylighting Performance and Visual Comfort Ying Chieh Chan Athanasios Tzempelikos, PhD Brent Protzmman, PhD

More information

FlucsDL User Guide IES Virtual Environment 6.4. Lighting

FlucsDL User Guide IES Virtual Environment 6.4. Lighting FlucsDL User Guide IES Virtual Environment Lighting 1. Introduction to FlucsDL... 8 1.1. What s new in this version... 8 1.2. Calculations... 8 2. Menus... 9 2.1. File Menu... 9 2.1.1. Save Project, Save

More information

GERONIMO The CFS Daylighting Wizard

GERONIMO The CFS Daylighting Wizard Edward S. Curtis, 1905. GERONIMO The CFS Daylighting Wizard *** GERONIMO is a computer graphical tool based on the RADIANCE ray tracing software for the visualization of the impact of complex fenestration

More information

Raytracing & Epsilon. Today. Last Time? Forward Ray Tracing. Does Ray Tracing Simulate Physics? Local Illumination

Raytracing & Epsilon. Today. Last Time? Forward Ray Tracing. Does Ray Tracing Simulate Physics? Local Illumination Raytracing & Epsilon intersects light @ t = 25.2 intersects sphere1 @ t = -0.01 & Monte Carlo Ray Tracing intersects sphere1 @ t = 10.6 Solution: advance the ray start position epsilon distance along the

More information

Simulating Complex Window Systems using BSDF Data

Simulating Complex Window Systems using BSDF Data Simulating Complex Window Systems using BSDF Data MARIA KONSTANTOGLOU 1, JACOB C. JONSSON 2, ELEANOR LEE 3 1 Department of Architecture, University of Thessaly, Volos, Greece 2,3 Environmental Energy Technologies

More information

5.1 Exercise: Daylighting Analysis of a Single Office

5.1 Exercise: Daylighting Analysis of a Single Office 5.1 Exercise: Daylighting Analysis of a Single Office This first exercise introduces you to the DAYSIM JAVA interface and guides you through the steps necessary to setup and run a daylighting analysis

More information

A DETAILED METHODOLOGY FOR CLOUD-BASED DAYLIGHT ANALYSIS

A DETAILED METHODOLOGY FOR CLOUD-BASED DAYLIGHT ANALYSIS 218 Building Performance Analysis Conference and SimBuild co-organized by ASHRAE and IBPSA-USA Chicago, IL September 26-28, 218 A DETAILED METHODOLOGY FOR CLOUD-BASED DAYLIGHT ANALYSIS Kerger Truesdell

More information

Control of an Adaptive Light Shelf Using Multi-Objective Optimization

Control of an Adaptive Light Shelf Using Multi-Objective Optimization The 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC 2014) Control of an Adaptive Light Shelf Using Multi-Objective Optimization Benny Raphael a a Civil Engineering

More information

Overview. VO Rendering SS Radiance Workflow 1. Radiance. Radiance Workflow 2. Radiance in Practice. Unit 8: Rendering Systems

Overview. VO Rendering SS Radiance Workflow 1. Radiance. Radiance Workflow 2. Radiance in Practice. Unit 8: Rendering Systems Overview VO Rendering SS 2005 Unit 8: Rendering Systems Radiance Maya 3DS Brazil RenderPark Lightwave ART 2 Radiance Development started 1988 Major systems paper: SIGGRAPH 1994 Principal author: Greg Ward-Larson

More information

A Parametric Analysis for the Impact of Facade Design Options on the Daylighting Performance of Office Spaces

A Parametric Analysis for the Impact of Facade Design Options on the Daylighting Performance of Office Spaces Purdue University Purdue e-pubs International High Performance Buildings Conference School of Mechanical Engineering 2010 A Parametric Analysis for the Impact of Facade Design Options on the Daylighting

More information

Lighting/Daylighting Software Current State of the Art Report

Lighting/Daylighting Software Current State of the Art Report Lighting/Daylighting Software Current State of the Art Report A Report for GPIC Task 2.2 by Richard G. Mistrick, PhD, PE, FIES Associate Professor of Architectural Engineering RMistrick@psu.edu, 814-863-2086

More information

Photorealism vs. Non-Photorealism in Computer Graphics

Photorealism vs. Non-Photorealism in Computer Graphics The Art and Science of Depiction Photorealism vs. Non-Photorealism in Computer Graphics Fredo Durand MIT- Lab for Computer Science Global illumination How to take into account all light inter-reflections

More information

Computer Graphics. Lecture 14 Bump-mapping, Global Illumination (1)

Computer Graphics. Lecture 14 Bump-mapping, Global Illumination (1) Computer Graphics Lecture 14 Bump-mapping, Global Illumination (1) Today - Bump mapping - Displacement mapping - Global Illumination Radiosity Bump Mapping - A method to increase the realism of 3D objects

More information

Consider a partially transparent object that is illuminated with two lights, one visible from each side of the object. Start with a ray from the eye

Consider a partially transparent object that is illuminated with two lights, one visible from each side of the object. Start with a ray from the eye Ray Tracing What was the rendering equation? Motivate & list the terms. Relate the rendering equation to forward ray tracing. Why is forward ray tracing not good for image formation? What is the difference

More information

Ray Tracing. CSCI 420 Computer Graphics Lecture 15. Ray Casting Shadow Rays Reflection and Transmission [Ch ]

Ray Tracing. CSCI 420 Computer Graphics Lecture 15. Ray Casting Shadow Rays Reflection and Transmission [Ch ] CSCI 420 Computer Graphics Lecture 15 Ray Tracing Ray Casting Shadow Rays Reflection and Transmission [Ch. 13.2-13.3] Jernej Barbic University of Southern California 1 Local Illumination Object illuminations

More information

VALIDATION OF GPU LIGHTING SIMULATION IN NATURALLY AND ARTIFICIALLY LIT SPACES

VALIDATION OF GPU LIGHTING SIMULATION IN NATURALLY AND ARTIFICIALLY LIT SPACES VALIDATION OF GPU LIGHTING SIMULATION IN NATURALLY AND ARTIFICIALLY LIT SPACES Nathaniel L Jones and Christoph F Reinhart Massachusetts Institute of Technology, Cambridge, MA, USA ABSTRACT Daylight in

More information

FlucsLDB: Lighting Database

FlucsLDB: Lighting Database FlucsLDB: Lighting Database User Guide IES Virtual Environment Copyright 2014 Integrated Environmental Solutions Limited. All rights reserved. No part of the manual is to be copied or reproduced in any

More information

Starting this chapter

Starting this chapter Computer Vision 5. Source, Shadow, Shading Department of Computer Engineering Jin-Ho Choi 05, April, 2012. 1/40 Starting this chapter The basic radiometric properties of various light sources Develop models

More information

Evaluation of four artificial lighting simulation tools with virtual building reference

Evaluation of four artificial lighting simulation tools with virtual building reference Loughborough University Institutional Repository Evaluation of four artificial lighting simulation tools with virtual building reference This item was submitted to Loughborough University's Institutional

More information

Ray Tracer Due date: April 27, 2011

Ray Tracer Due date: April 27, 2011 Computer graphics Assignment 4 1 Overview Ray Tracer Due date: April 27, 2011 In this assignment you will implement the camera and several primitive objects for a ray tracer, and a basic ray tracing algorithm.

More information

Discussion. Smoothness of Indirect Lighting. History and Outline. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Spring 2013)

Discussion. Smoothness of Indirect Lighting. History and Outline. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Spring 2013) Advanced Computer Graphics (Spring 2013 CS 283, Lecture 12: Recent Advances in Monte Carlo Offline Rendering Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/sp13 Some slides/ideas courtesy Pat Hanrahan,

More information

Global Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller

Global Illumination. CMPT 361 Introduction to Computer Graphics Torsten Möller. Machiraju/Zhang/Möller Global Illumination CMPT 361 Introduction to Computer Graphics Torsten Möller Reading Foley, van Dam (better): Chapter 16.7-13 Angel: Chapter 5.11, 11.1-11.5 2 Limitation of local illumination A concrete

More information

version: 3/16/2009 A Design Sequence for Diffuse Daylighting Tiffany Otis Christoph Reinhart Harvard Graduate School of Design

version: 3/16/2009 A Design Sequence for Diffuse Daylighting Tiffany Otis Christoph Reinhart Harvard Graduate School of Design A Design Sequence for Diffuse Daylighting DAYLIGHTING RULES OF THUMB Tiffany Otis Christoph Reinhart Harvard Graduate School of Design WHAT IS IT? - This document presents a sequence of simple equations

More information

Lightscape A Tool for Design, Analysis and Presentation. Architecture Integrated Building Systems

Lightscape A Tool for Design, Analysis and Presentation. Architecture Integrated Building Systems Lightscape A Tool for Design, Analysis and Presentation Architecture 4.411 Integrated Building Systems Lightscape A Tool for Design, Analysis and Presentation Architecture 4.411 Building Technology Laboratory

More information

CONVR 2006 Application of 3D Modeling Software for Daylighting Simulation of Shading Devices

CONVR 2006 Application of 3D Modeling Software for Daylighting Simulation of Shading Devices CONVR 2006 Application of 3D Modeling Software for Daylighting Simulation of Shading Devices Svetlana Olbina University of Florida Gainesville, FL 32611-5703 solbina@ufl.edu Yvan Beliveau Virginia Polytechnic

More information

Parametric Daylight Envelope: shading for maximum performance

Parametric Daylight Envelope: shading for maximum performance Parametric Daylight Envelope: shading for maximum performance Danijel Rusovan and Luisa Brotas International Radiance Workshop 2012 Summary Introduction Case study Screen Geometry and Parametric Variation

More information

Daylighting. Note: Daylight is typically defined as diffuse light and is very different from sunlight (direct solar radiation).

Daylighting. Note: Daylight is typically defined as diffuse light and is very different from sunlight (direct solar radiation). systems can significantly reduce both lighting consumption and cooling-energy consumption by reducing the electric-lighting heat gain in the building. However, daylighting can also cause increased heating-energy

More information

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1 MIT 6.837 Monte-Carlo Ray Tracing MIT EECS 6.837, Cutler and Durand 1 Schedule Review Session: Tuesday November 18 th, 7:30 pm bring lots of questions! Quiz 2: Thursday November 20 th, in class (one weeks

More information

Natural Light in Design: IAP 2009

Natural Light in Design: IAP 2009 ECOTECT TUTORIAL --Si Siân Kleindienst-- 1 Getting Started 1.1 -- Entering the License The first time you start Ecotect, it will present you with this screen: You should begin by clicking on activate license

More information

Daysim 3.0 DDS, New Validation Study

Daysim 3.0 DDS, New Validation Study Daysim 3.0 DDS, New Validation Study and Annual Daylight Glare Probability Schedules (Part 1) Rules of Thumb Energy New DC file format for Daysim 3.0 Daysim 3.0/3ds Max Design 2009 Validation Occupant

More information

Components User Guide Component Modeller

Components User Guide Component Modeller Components User Guide Component Modeller IES Virtual Environment Copyright 2015 Integrated Environmental Solutions Limited. All rights reserved. No part of the manual is to be copied or reproduced in any

More information

DYNAMIC RADIANCE PREDICTING ANNUAL DAYLIGHTING WITH VARIABLE FENESTRATION OPTICS USING BSDFS

DYNAMIC RADIANCE PREDICTING ANNUAL DAYLIGHTING WITH VARIABLE FENESTRATION OPTICS USING BSDFS August 11 13, DYNAMIC RADIANCE PREDICTING ANNUAL DAYLIGHTING WITH VARIABLE FENESTRATION OPTICS USING BSDFS Mudit Saxena 1, Greg Ward 2, Timothy Perry 1, Lisa Heschong 1 and Randall Higa 3 1 Heschong Mahone

More information

Global Illumination CS334. Daniel G. Aliaga Department of Computer Science Purdue University

Global Illumination CS334. Daniel G. Aliaga Department of Computer Science Purdue University Global Illumination CS334 Daniel G. Aliaga Department of Computer Science Purdue University Recall: Lighting and Shading Light sources Point light Models an omnidirectional light source (e.g., a bulb)

More information

Lighting Database User Guide <Virtual Environment> 5.9

Lighting Database User Guide <Virtual Environment> 5.9 Lighting Database User Guide 5.9 Page 1 of 54 Contents 1. Lighting Database Overview...6 1.1. Access to the Lighting Database... 6 1.1.1. Select Light Fitting Command... 6 1.1.2.

More information

Calculating and Applying BSDFs in Radiance. Greg Ward Anyhere Software

Calculating and Applying BSDFs in Radiance. Greg Ward Anyhere Software Calculating and Applying BSDFs in Radiance Greg Ward Anyhere Software Goals n Support WINDOW 6 BSDF output (XML) n Create WINDOW 6 BSDFs from geometric models using freeware (i.e., Radiance) n Render accurate

More information

DYNAMIC DAYLIGHT GLARE EVALUATION. Jan Wienold 1.

DYNAMIC DAYLIGHT GLARE EVALUATION. Jan Wienold 1. Eleventh International IBPSA Conference Glasgow, Scotland July 27-30, 2009 DYNAMIC DAYLIGHT GLARE EVALUATION Jan Wienold Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, D-790 Freiburg,

More information

Lighting. Figure 10.1

Lighting. Figure 10.1 We have learned to build three-dimensional graphical models and to display them. However, if you render one of our models, you might be disappointed to see images that look flat and thus fail to show the

More information

The primary goal of daylighting analysis is the reliable evaluation of the potential

The primary goal of daylighting analysis is the reliable evaluation of the potential CHAPTER 6 Daylight Simulation by John Mardaljevic The primary goal of daylighting analysis is the reliable evaluation of the potential of a design to provide useful levels of natural illumination. This

More information

Access from the University of Nottingham repository: unmarked.

Access from the University of Nottingham repository:  unmarked. Sun, Yanyi and Wu, Yupeng and Wilson, Robin (01) Analysis of the daylight performance of a glazing system with Parallel Slat Transparent Insulation Material (PS- TIM). Energy and Buildings, 1. pp. 1-.

More information

INTEGRATED BUILDING ENERGY AND LIGHTING SIMULATION IN THE FRAMEWORK OF EU PV LIGHT PROJECT

INTEGRATED BUILDING ENERGY AND LIGHTING SIMULATION IN THE FRAMEWORK OF EU PV LIGHT PROJECT Eleventh International IBPSA Conference Glasgow, Scotland July 27-30, 2009 INTEGRATED BUILDING ENERGY AND LIGHTING SIMULATION IN THE FRAMEWORK OF EU PV LIGHT PROJECT Milan Janak 1 and Reinhard Kainberger

More information

COS 116 The Computational Universe Laboratory 10: Computer Graphics

COS 116 The Computational Universe Laboratory 10: Computer Graphics COS 116 The Computational Universe Laboratory 10: Computer Graphics As mentioned in lecture, computer graphics has four major parts: imaging, rendering, modeling, and animation. In this lab you will learn

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS SESSION 15 RAY TRACING 1 Announcements Programming Assignment 3 out today - overview @ end of the class Ray Tracing 2 Lecture Overview Review of last class Ray Tracing 3 Local

More information

Two Optimization Methods for Raytracing. W. Sturzlinger and R. F. Tobler

Two Optimization Methods for Raytracing. W. Sturzlinger and R. F. Tobler Two Optimization Methods for Raytracing by W. Sturzlinger and R. F. Tobler Johannes Kepler University of Linz Institute for Computer Science Department for graphical and parallel Processing Altenbergerstrae

More information

Predicting Daylight for Energy Savings

Predicting Daylight for Energy Savings Predicting Daylight for Energy Savings Ian Ashdown, FIES, P. Eng. President, byheart Consultants Limited #psf11 Daylight Harvesting Daylighting use is critical if we are to achieve huge leaps in building

More information

Hybrid Scheduling for Realistic Image Synthesis

Hybrid Scheduling for Realistic Image Synthesis Hybrid Scheduling for Realistic Image Synthesis Erik Reinhard 1 Alan Chalmers 1 Frederik W. Jansen 2 Abstract Rendering a single high quality image may take several hours, or even days. The complexity

More information

Evolution of Imaging Technology in Computer Graphics. Related Areas

Evolution of Imaging Technology in Computer Graphics. Related Areas Evolution of Imaging Technology in Computer Graphics Jonas Gomes Rio de Janeiro http://www.visgraf.impa.br Image computation Related Areas 1 Related Areas An integrated view Problems on the frontiers Graphical

More information

Chapter 11 Global Illumination. Part 1 Ray Tracing. Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11.

Chapter 11 Global Illumination. Part 1 Ray Tracing. Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11. Chapter 11 Global Illumination Part 1 Ray Tracing Reading: Angel s Interactive Computer Graphics (6 th ed.) Sections 11.1, 11.2, 11.3 CG(U), Chap.11 Part 1:Ray Tracing 1 Can pipeline graphics renders images

More information

To Do. Real-Time High Quality Rendering. Motivation for Lecture. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing

To Do. Real-Time High Quality Rendering. Motivation for Lecture. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing Real-Time High Quality Rendering CSE 274 [Fall 2015], Lecture 5 Tour of Modern Offline Rendering To Do Project milestone (1-2 pages), final project proposal Due on Oct 27 Please get in touch with me if

More information

OptisWorks. SolidWorks - integrated solutions for the modeling and perception of light

OptisWorks. SolidWorks - integrated solutions for the modeling and perception of light OptisWorks SolidWorks - integrated solutions for the modeling and perception of light OptisWorks for SolidWorks The complete simulation solution for the design, analysis, optimization and virtual prototyping

More information

AV Using Autodesk 3ds Max Design, Autodesk Revit, and iray to Render Compelling Photographic Scenes

AV Using Autodesk 3ds Max Design, Autodesk Revit, and iray to Render Compelling Photographic Scenes AV4672 - Using Autodesk 3ds Max Design, Autodesk Revit, and iray to Render Compelling Photographic Scenes Steven Schain Autodesk Certified Instructor AV4672 This virtual class introduces designers to the

More information

Queen s University CISC 454 Final Exam. April 19, :00pm Duration: 3 hours. One two sided aid sheet allowed. Initial of Family Name:

Queen s University CISC 454 Final Exam. April 19, :00pm Duration: 3 hours. One two sided aid sheet allowed. Initial of Family Name: Page 1 of 11 Queen s University CISC 454 Final Exam April 19, 2005 2:00pm Duration: 3 hours One two sided aid sheet allowed. Initial of Family Name: Student Number: (Write this at the top of every page.)

More information

Global Illumination with Glossy Surfaces

Global Illumination with Glossy Surfaces Global Illumination with Glossy Surfaces Wolfgang Stürzlinger GUP, Johannes Kepler Universität, Altenbergerstr.69, A-4040 Linz, Austria/Europe wrzl@gup.uni-linz.ac.at Abstract Photorealistic rendering

More information

Daysim and Photonmapping Jan Wienold

Daysim and Photonmapping Jan Wienold Daysim and Photonmapping Jan Wienold Fraunhofer Institute for Solar Energy Systems Freiburg, Germany 1 Daysim pmap - overview Introduction Photon mapping Current restrictions Implementation into daysim

More information

A Scalable Lighting Simulation Tool for Integrated Building Design

A Scalable Lighting Simulation Tool for Integrated Building Design The Third National Conference of IBPSA-USA (SimBuild 2008) July 30-August 1, 2008 Berkeley, CA A Scalable Lighting Simulation Tool for Integrated Building Design A NIST ATP Project Integrated Concurrent

More information

Global Illumination. CSCI 420 Computer Graphics Lecture 18. BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch

Global Illumination. CSCI 420 Computer Graphics Lecture 18. BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch CSCI 420 Computer Graphics Lecture 18 Global Illumination Jernej Barbic University of Southern California BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch. 13.4-13.5] 1 Global Illumination

More information

The RADIANCE Lighting Simulation and Rendering System

The RADIANCE Lighting Simulation and Rendering System The RADIANCE Lighting Simulation and Rendering System Gregory J. Ward Lighting Group Building Technologies Program Lawrence Berkeley Laboratory (e-mail: GJWard@Lbl.Gov) ABSTRACT This paper describes a

More information

Houdini Light, Shade, Render

Houdini Light, Shade, Render Houdini Light, Shade, Render M06: Creating a Light Rig Ari Danesh ari@sidefx.com Agenda More Managing Desktop (A Diversion) Looking at Existing Light Rig Digital Assets (Three Point Light) Creating our

More information

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows.

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows. CSCI 480 Computer Graphics Lecture 18 Global Illumination BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch. 13.4-13.5] March 28, 2012 Jernej Barbic University of Southern California

More information

Scene Modeling for a Single View

Scene Modeling for a Single View Scene Modeling for a Single View René MAGRITTE Portrait d'edward James with a lot of slides stolen from Steve Seitz and David Brogan, Breaking out of 2D now we are ready to break out of 2D And enter the

More information

Dynamic Ambient Occlusion and Indirect Lighting. Michael Bunnell NVIDIA Corporation

Dynamic Ambient Occlusion and Indirect Lighting. Michael Bunnell NVIDIA Corporation Dynamic Ambient Occlusion and Indirect Lighting Michael Bunnell NVIDIA Corporation Environment Lighting Environment Map + Ambient Occlusion + Indirect Lighting New Radiance Transfer Algorithm Useful for

More information

IMAGE BASED RENDERING: Using High Dynamic Range Photographs to Light Architectural Scenes

IMAGE BASED RENDERING: Using High Dynamic Range Photographs to Light Architectural Scenes IMAGE BASED RENDERING 1 IMAGE BASED RENDERING: Using High Dynamic Range Photographs to Light Architectural Scenes KATHLEEN CHENEY MEHLIKA INANICI University of Washington Abstract Image Based Rendering

More information

Computer Graphics Disciplines. Grading. Textbooks. Course Overview. Assignment Policies. Computer Graphics Goals I

Computer Graphics Disciplines. Grading. Textbooks. Course Overview. Assignment Policies. Computer Graphics Goals I CSCI 480 Computer Graphics Lecture 1 Course Overview January 10, 2011 Jernej Barbic University of Southern California Administrative Issues Modeling Animation Rendering OpenGL Programming Course Information

More information

Assignment 6: Ray Tracing

Assignment 6: Ray Tracing Assignment 6: Ray Tracing Programming Lab Due: Monday, April 20 (midnight) 1 Introduction Throughout this semester you have written code that manipulated shapes and cameras to prepare a scene for rendering.

More information

Irradiance Caching in Pixar s RenderMan

Irradiance Caching in Pixar s RenderMan Practical Global Illumination With Irradiance Caching (SIGGRAPH 2008 Class) Irradiance Caching in Pixar s RenderMan Pixar Animation Studios Overview Irradiance caching in Pixar s RenderMan: simpler than

More information

COM337 COMPUTER GRAPHICS Other Topics

COM337 COMPUTER GRAPHICS Other Topics COM337 COMPUTER GRAPHICS Other Topics Animation, Surface Details, Global Illumination Kurtuluş Küllü based on the book by Hearn, Baker, and Carithers There are some other important issues and topics that

More information

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows.

Global Illumination. Global Illumination. Direct Illumination vs. Global Illumination. Indirect Illumination. Soft Shadows. CSCI 420 Computer Graphics Lecture 18 Global Illumination Jernej Barbic University of Southern California BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Angel Ch. 11] 1 Global Illumination

More information

VE-Pro User Guide IES Virtual Environment 6.4

VE-Pro User Guide IES Virtual Environment 6.4 -Pro User Guide IES Virtual Environment General Contents 1 Registration... 4 1.1 Activate Software... 5 1.1.1 Receive confirmation email...5 1.1.2 Click Activate software...5 1.1.3 Read and accept license

More information