a point B, 4 m along x axis. Is re constructive or Consider interference at B if wavelength sound is destructive The path dierence between two sources

Size: px
Start display at page:

Download "a point B, 4 m along x axis. Is re constructive or Consider interference at B if wavelength sound is destructive The path dierence between two sources"

Transcription

1 214 Spring 99 Problem Set 8 Optional Problems Physics March 16, 1999 Hout Two Slit Interference 1. atwo-slit experiment, slit widths are adjusted so that intensity In light reaching screen from one slit alone is I 0 while intensity light reaching screen from or slit alone is 9I 0. When both are open, what is intensity light at interference minima slits terms I 0? The slits are very narrow. in We can get amplitude eld due to each slit by square root intensity. Ifwe call amplitude eld taking one slit E 0 n amplitude eld from or slit is 3E 0. from minimum, two amplitudes are 180 o out phase so y Atinterference to cancel. At minimum, amplitude will be 3E 0, E 0 =2E 0 tend so intensity will be 4I 0. Double Slits 2. double slit arrangement with slit separation d is illuminated by coherent A wavelength. The top slit is covered by a piece glass thickness light refractive index n. Aninterference pattern is observed on a screen t At what angle,, dowehave principal (m = 0) maximum pattern? (You may assume that is a small angle.) interference To nd phase change caused by insertion slab, consider a segment light's path length t. The glass change experienced by light intraveling this distance is given phase 2t=. Now insert a glass slab thickness t into this space; phase by light traversing slab is now 2t= glass, in which change light in glass is glass = =n. Thus, total phase wavelength between situation with no glass, one with glass shift place, in including this phase shift along with one caused by path Thus, dierence, wehave that, at angle, phase dierence between length this must equal a multiple 2 for an interference maximum. For = 0 (principal maximum) small angles (sin ) wehave that m results has its maxima where minima occured in pattern that (. Given n 0, what is minimum thickness that t 0 can be? part We nowwant to put in a second piece glass to get an phase shift. This means that additional 0, 1) 2(n light from bottom slit from top slit is: 2d sin =, 2t(n, 1)= principal maximum occurs when t(n, 1)=d You now want to put a second piece glass over top slit b) t 0 refractive index n 0 so that new interference pattern thickness 2t 0 (n 0, 1)= = distance D away, where D d. or solving for t 0 : t 0 = Sound Wave Interference 3. 1 S 2 are two coherent point sources sound that are a distance d S apart along y axis: =2t=, 2tn= =,2t(n, 1)= 1

2 a point B, 4 m along x axis. Is re constructive or Consider interference at B if wavelength sound is destructive The path dierence between two sources from a point x x axis is p d 2 + x 2, x. This must be a multiple for maximum on interference, so maxima will occur when p d 2 + x 2, x = constructive for any integer m. Destructive interference occurs when p d 2 + x 2, m, m for any integer m. x = our situation path dierence is p d 2 + x 2,x = p , in Hence Thus 4=1m. for = 1 m, constructive interference (m = 1), but (i) Three Slit Interference 4. Show that intensity for a three-slit interference pattern is I = is phase dierence between waves from two adjacent screen, (= 2d sin = for light wavelength at an angle from slits that slits The phasor for superposition waves from each three slits is amplitude eld from each slit is E, maximum where total amplitude is E 0 = 3E. From diagram, we see that total amplitude is (1 + 2 cos )E 0=3. Squaring this, to get total gives desired result. intensity, di() d Angular widths interference patterns 5. expressions for total angular width central maximum Derive ( a three-slit interference pattern, (b) a four-slit interference pattern, for (c) an N-slit interference pattern. Express your results in terms separation d between adjacent slits. Use phasors to wavelength your results, small-angle approximation to simplify m. derive The phasor diagrams appropriate to light at rst a three-slit, four-slit, N-slit interference pattern are minimum y are a distance d apart). Use phasors to compute your result. S 2 b) Use this result to verify that rst minimum occurs for =2=3. d S 1 x E 0 sources emit sound same frequency, are in phase, are The equal intensity. In analysis below, you may neglect fallo cos φ φ intensity with distance from point sources. E (i) =1m. (ii) =2m. The distance d between sources is 3 m. b) The intensity will be minimum at smallest nonzero for which, 2 sin cos /,sin vanishes. This implies cos =,0:5 or = 2=3. (ii) for = 2 m, destructive interference (m = 0). (4I 0 =9)(1=4 + cos + cos 2 ), where I 0 is intensity at center 2

3 se pictures, phase dierence between light rays coming From adjacent slits must equal 2=N if contributions from all N slits from to cancel completely. This phase dierence is related to angle at are transmitted light is being viewed, so we have which sin 2d 2d Solving for, doubling it to get total total angular width central maximum for N slits. Thus for 3 slits, angular width is for Antenna Array 6. antenna array consists N identical antennas in a straight line one- An a wavelength apart. Each antenna serves as a source electromagnetiquarter waves. The phase dierence between successive antennas in At an angle to array, what is phase dierence between arriving from adjacent antennae? signals This problem is very similar to problem calculating interference pattern from N slits. At some arbitrary angle, phase rst term is phase dierence between each antenna in where second term is due to path dierence. (x is spacing array adjacent antennae.) We are told that x = =4, antenna between so: spacing, Calculate resulting intensity distribution, for in range,90 < b), show that for large N this scheme results in nearly all <90 concentrated in a single direction. What is that direction? Sketch power intensity as a function to show in which direction power goes. Following our derivation in class for multiple slits, we add N phasors with phase angle between m where is given in up c)for N slits, angular width is 2=Nd Note that width decreases as number slits is increased. row is45. dierence between adjacent antennae is: = =4+2xsin = = = =4+(=2) sin = 2=N (1 st minimum): width, we obtain 2=Nd 2=3d (Hints: Use a phasor diagram to calculate intensity. ) b)for 4 slits, angular width is =2d part (. From gure we see 3

4 2R sin(=2) = E 0 sin(n=2) = E 0 E sin(=2) sin 2 (N=2) 0 I 2 I = (=2) sin sin 2 (N(1 + 2 sin )=8) = 2 I 0 2 sin )=8) + ((1 sin intensity peaks in direction for which sin =0,orsin= The =,30.,0:5, At what angles in second order spectrum would you expect to two violet lines wavelengths nm? nd so we can solve for R plug into our expression for E we get or (6.1) E =2Rsin 2 = N E =2Rsin(N=2) We still need to express R in terms known quantities. φ/2 R R E 0 Diraction Grating 7. 1 cm wide diraction grating with 2000 slits is used to measure A wavelengths emitted by hydrogen gas. From gure we see that 4

5 What is resolving power grating in rst second order? b) which order would it be easier to resolve closely spaced ne structure In above, d = 1 From 2000 cm,1 =510,6 m. In second order, interference maximum occurs when 2 = d sin ) = sin,1 ( 2 d resolving power grating is R = Nn, where n is order, b)the slits. In rst order, R = 2000; in second order, R = N=number = so that it is easier to resolve ne structure in second order than smaller, rst order. in on se spectral lines? ). For = 410 nm, =9:44 ; for = 434 nm, =10:0. is The increased resolving power in second order means that 1 R 5

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location.

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Interference Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Thus, interacting electromagnetic waves also add together.

More information

Single Slit Diffraction *

Single Slit Diffraction * OpenStax-CNX module: m42515 1 Single Slit Diffraction * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Discuss the single slit diraction

More information

Chapter 8: Physical Optics

Chapter 8: Physical Optics Chapter 8: Physical Optics Whether light is a particle or a wave had puzzled physicists for centuries. In this chapter, we only analyze light as a wave using basic optical concepts such as interference

More information

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1 Lecture 6: Waves Review and Examples PLEASE REVEW ON YOUR OWN Lecture 6, p. 1 Single-Slit Diffraction (from L4) Slit of width a. Where are the minima? Use Huygens principle: treat each point across the

More information

Lecture 39. Chapter 37 Diffraction

Lecture 39. Chapter 37 Diffraction Lecture 39 Chapter 37 Diffraction Interference Review Combining waves from small number of coherent sources double-slit experiment with slit width much smaller than wavelength of the light Diffraction

More information

Optics Vac Work MT 2008

Optics Vac Work MT 2008 Optics Vac Work MT 2008 1. Explain what is meant by the Fraunhofer condition for diffraction. [4] An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent of x. It is

More information

Chapter 38 Wave Optics (II)

Chapter 38 Wave Optics (II) Chapter 38 Wave Optics (II) Initiation: Young s ideas on light were daring and imaginative, but he did not provide rigorous mathematical theory and, more importantly, he is arrogant. Progress: Fresnel,

More information

Lab 5: Diffraction and Interference

Lab 5: Diffraction and Interference Lab 5: Diffraction and Interference Light is a wave, an electromagnetic wave, and under the proper circumstances, it exhibits wave phenomena, such as constructive and destructive interference. The wavelength

More information

CHAPTER 26 INTERFERENCE AND DIFFRACTION

CHAPTER 26 INTERFERENCE AND DIFFRACTION CHAPTER 26 INTERFERENCE AND DIFFRACTION INTERFERENCE CONSTRUCTIVE DESTRUCTIVE YOUNG S EXPERIMENT THIN FILMS NEWTON S RINGS DIFFRACTION SINGLE SLIT MULTIPLE SLITS RESOLVING POWER 1 IN PHASE 180 0 OUT OF

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1975-4 (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as

More information

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1 Lecture 6: Waves Review and Examples PLEASE REVEW ON YOUR OWN Lecture 6, p. 1 Single-Slit Slit Diffraction (from L4) Slit of width a. Where are the minima? Use Huygens principle: treat each point across

More information

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER

MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER Warsaw University of Technology Faculty of Physics Physics Laboratory I P Irma Śledzińska 4 MEASUREMENT OF THE WAVELENGTH WITH APPLICATION OF A DIFFRACTION GRATING AND A SPECTROMETER 1. Fundamentals Electromagnetic

More information

14 Chapter. Interference and Diffraction

14 Chapter. Interference and Diffraction 14 Chapter Interference and Diffraction 14.1 Superposition of Waves... 14-14.1.1 Interference Conditions for Light Sources... 14-4 14. Young s Double-Slit Experiment... 14-4 Example 14.1: Double-Slit Experiment...

More information

WAVE SUPERPOSITION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

WAVE SUPERPOSITION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe WVE SUPERPOSITION hallenging MQ questions by The Physics afe ompiled and selected by The Physics afe 1 Two coherent monochromatic waves of equal amplitude are brought together to form an interference pattern

More information

Interference of Light

Interference of Light Interference of Light Review: Principle of Superposition When two or more waves interact they interfere. Wave interference is governed by the principle of superposition. The superposition principle says

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 37 Interference Spring 2016 Semester Matthew Jones Multiple Beam Interference In many situations, a coherent beam can interfere with itself multiple times Consider

More information

EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics 2 Name 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person who was credited

More information

Single slit diffraction

Single slit diffraction Single slit diffraction Book page 364-367 Review double slit Core Assume paths of the two rays are parallel This is a good assumption if D >>> d PD = R 2 R 1 = dsin θ since sin θ = PD d Constructive interference

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Name Date Time to Complete h m Partner Course/ Section / Grade Interference and Diffraction of Light Reflection by mirrors and refraction by prisms and lenses can be analyzed using the simple ray model

More information

Matthew Schwartz Lecture 19: Diffraction and resolution

Matthew Schwartz Lecture 19: Diffraction and resolution Matthew Schwartz Lecture 19: Diffraction and resolution 1 Huygens principle Diffraction refers to what happens to a wave when it hits an obstacle. The key to understanding diffraction is a very simple

More information

Physics 214 Midterm Fall 2003 Form A

Physics 214 Midterm Fall 2003 Form A 1. A ray of light is incident at the center of the flat circular surface of a hemispherical glass object as shown in the figure. The refracted ray A. emerges from the glass bent at an angle θ 2 with respect

More information

Physics 202 Homework 9

Physics 202 Homework 9 Physics 202 Homework 9 May 29, 2013 1. A sheet that is made of plastic (n = 1.60) covers one slit of a double slit 488 nm (see Figure 1). When the double slit is illuminated by monochromatic light (wavelength

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

More information

Diffraction at a single slit and double slit Measurement of the diameter of a hair

Diffraction at a single slit and double slit Measurement of the diameter of a hair Diffraction at a single slit and double slit Measurement of the diameter of a hair AREEJ AL JARB Background... 3 Objects of the experiments 4 Principles Single slit... 4 Double slit.. 6 Setup. 7 Procedure

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24 AP Physics-B Physical Optics Introduction: We have seen that the reflection and refraction of light can be understood in terms of both rays and wave fronts of light. Light rays are quite compatible with

More information

Diffraction. Factors that affect Diffraction

Diffraction. Factors that affect Diffraction Diffraction What is one common property the four images share? Diffraction: Factors that affect Diffraction TELJR Publications 2017 1 Young s Experiment AIM: Does light have properties of a particle? Or

More information

Young s Double Slit Experiment

Young s Double Slit Experiment Young s Double Slit Experiment Light as a Wave? If light behaves like a wave, an experiment similar to a ripple tank using two light sources should reveal bright areas (constructive interference) and dark

More information

Interference, Diffraction & Polarization

Interference, Diffraction & Polarization Interference, Diffraction & Polarization PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html light as waves so far, light has been treated as

More information

Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference

Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference Effects 6.2 Two-Slit Thin film is a general property of waves. A condition for is that the wave source is coherent. between two waves gives characteristic patterns due to constructive and destructive.

More information

Understanding Fraunhofer Diffraction

Understanding Fraunhofer Diffraction [ Assignment View ] [ Eðlisfræði 2, vor 2007 36. Diffraction Assignment is due at 2:00am on Wednesday, January 17, 2007 Credit for problems submitted late will decrease to 0% after the deadline has passed.

More information

DEMONSTRATE THE WAVE NATURE OF LIGHT AND DETERMINE THE WAVELENGTH.

DEMONSTRATE THE WAVE NATURE OF LIGHT AND DETERMINE THE WAVELENGTH. Optics Wave Optics Diffraction by Multiple Slits and Gratings DEMONSTRATE THE WAVE NATURE OF IGHT AND DETERMINE THE WAVEENGTH. Investigate diffraction at a pair of slits with different distances between

More information

Diffraction. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit.

Diffraction. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit. Diffraction amount depends on λ/a proportion If a >> λ diffraction is negligible

More information

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE 58 UNIT VI OPTICS ALL THE POSSIBLE FORMULAE Relation between focal length and radius of curvature of a mirror/lens, f = R/2 Mirror formula: Magnification produced by a mirror: m = - = - Snell s law: 1

More information

Models of Light The wave model: The ray model: The photon model:

Models of Light The wave model: The ray model: The photon model: Models of Light The wave model: under many circumstances, light exhibits the same behavior as sound or water waves. The study of light as a wave is called wave optics. The ray model: The properties of

More information

mywbut.com Diffraction

mywbut.com Diffraction Diffraction If an opaque obstacle (or aperture) is placed between a source of light and screen, a sufficiently distinct shadow of opaque (or an illuminated aperture) is obtained on the screen.this shows

More information

Activity 9.1 The Diffraction Grating

Activity 9.1 The Diffraction Grating PHY385H1F Introductory Optics Practicals Day 9 Diffraction November 29, 2010 Please work in a team of 3 or 4 students. All members should find a way to contribute. Two members have a particular role, and

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 27 Chapter 33 sec. 7-8 Fall 2017 Semester Professor Koltick Clicker Question Bright light of wavelength 585 nm is incident perpendicularly on a soap film (n =

More information

Chapter 82 Example and Supplementary Problems

Chapter 82 Example and Supplementary Problems Chapter 82 Example and Supplementary Problems Nature of Polarized Light: 1) A partially polarized beam is composed of 2.5W/m 2 of polarized and 4.0W/m 2 of unpolarized light. Determine the degree of polarization

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Physics 123 Optics Review

Physics 123 Optics Review Physics 123 Optics Review I. Definitions & Facts concave converging convex diverging real image virtual image real object virtual object upright inverted dispersion nearsighted, farsighted near point,

More information

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Early Booklet E.C.: + 1 Unit 5.C Hwk. Pts.: / 25 Unit 5.C Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N 1. Light reflects

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information

Interference and Diffraction of Light

Interference and Diffraction of Light [International Campus Lab] Objective Observe interference and diffraction patterns for various slits and diffraction gratings, and find the wavelengths of laser sources. Theory -----------------------------

More information

Second Year Optics 2017 Problem Set 1

Second Year Optics 2017 Problem Set 1 Second Year Optics 2017 Problem Set 1 Q1 (Revision of first year material): Two long slits of negligible width, separated by a distance d are illuminated by monochromatic light of wavelength λ from a point

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter The Wave Nature of Light - Interference and Di raction Name: Lab Partner: Section:. Purpose This experiment will demonstrate that light can be considered as a wave. If light is a wave, then interference

More information

Chapter 36 Diffraction

Chapter 36 Diffraction Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single slit flares diffracts in Young's

More information

Physics 122 Spring 2013 Test 1

Physics 122 Spring 2013 Test 1 Name: Instructions: Physics 122 Spring 2013 Test 1 All answers should be decimal numbers (not functions or fractions) using scientific notation to three significant figures. SI units must be included on

More information

Interference of Light

Interference of Light Interference of Light Young s Double-Slit Experiment If light is a wave, interference effects will be seen, where one part of wavefront can interact with another part. One way to study this is to do a

More information

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007 Name: Date: 1. If we increase the wavelength of the light used to form a double-slit diffraction pattern: A) the width of the central diffraction peak increases and the number of bright fringes within

More information

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 33 Lecture RANDALL D. KNIGHT Chapter 33 Wave Optics IN THIS CHAPTER, you will learn about and apply the wave model of light. Slide

More information

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch )

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch ) Physics 272 Lecture 27 Interference (Ch 35.4-5) Diffraction (Ch 36.1-3) Thin Film Interference 1 2 n 0 =1 (air) t n 1 (thin film) n 2 Get two waves by reflection off of two different interfaces. Ray 2

More information

Lecture 16 Diffraction Ch. 36

Lecture 16 Diffraction Ch. 36 Lecture 16 Diffraction Ch. 36 Topics Newtons Rings Diffraction and the wave theory Single slit diffraction Intensity of single slit diffraction Double slit diffraction Diffraction grating Dispersion and

More information

Final Exam and End Material Test Friday, May 12, 10:00-12:00

Final Exam and End Material Test Friday, May 12, 10:00-12:00 Final Exam and End Material Test Friday, May 12, 10:00-12:00 Test rooms: Instructor Sections Room Dr. Hale F, H 104 Physics Dr. Kurter B, N 125 BCH Dr. Madison K, M B-10 Bertelsmeyer Dr. Parris J St. Pats

More information

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009 Introduction An important property of waves is interference. You are familiar with some simple examples of interference of sound waves. This interference effect produces positions having large amplitude

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS Level 3 Physics: Demonstrate understanding of Waves Waves Behaviour - Answers In 03, AS 953 replaced AS 9050. The Mess that is NCEA Assessment Schedules. In AS 9050 there was an Evidence column with the

More information

Chapter 36. Diffraction. Dr. Armen Kocharian

Chapter 36. Diffraction. Dr. Armen Kocharian Chapter 36 Diffraction Dr. Armen Kocharian Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This phenomena

More information

College Physics 150. Chapter 25 Interference and Diffraction

College Physics 150. Chapter 25 Interference and Diffraction College Physics 50 Chapter 5 Interference and Diffraction Constructive and Destructive Interference The Michelson Interferometer Thin Films Young s Double Slit Experiment Gratings Diffraction Resolution

More information

LECTURE 14 PHASORS & GRATINGS. Instructor: Kazumi Tolich

LECTURE 14 PHASORS & GRATINGS. Instructor: Kazumi Tolich LECTURE 14 PHASORS & GRATINGS Instructor: Kazumi Tolich Lecture 14 2 Reading chapter 33-5 & 33-8 Phasors n Addition of two harmonic waves n Interference pattern from multiple sources n Single slit diffraction

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena 4.1 DIFFRACTION Suppose a light wave incident on a slit AB of sufficient width b, as shown in Figure 1. According to concept of rectilinear propagation of light the region A B on the screen should be uniformly

More information

Wallace Hall Academy

Wallace Hall Academy Wallace Hall Academy CfE Higher Physics Unit 2 - Waves Notes Name 1 Waves Revision You will remember the following equations related to Waves from National 5. d = vt f = n/t v = f T=1/f They form an integral

More information

22.4. (a) (b) (c) (d)

22.4. (a) (b) (c) (d) mλl 22.2. Because ym = increasing λ and L increases the fringe spacing. Increasing d decreases the fringe d spacing. Submerging the experiment in water decreases λ and decreases the fringe spacing. So

More information

Wave Optics. April 9, 2014 Chapter 34 1

Wave Optics. April 9, 2014 Chapter 34 1 Wave Optics April 9, 2014 Chapter 34 1 Announcements! Remainder of this week: Wave Optics! Next week: Last of biweekly exams, then relativity! Last week: Review of entire course, no exam! Final exam Wednesday,

More information

Wave Properties of Light

Wave Properties of Light 1 Wave Properties of Light Notice! You will be using laser light. Never look directly into the laser or at the reflected light! Part One: The Single Slit. You will be using real equipment in this laboratory

More information

25-1 Interference from Two Sources

25-1 Interference from Two Sources 25-1 Interference from Two Sources In this chapter, our focus will be on the wave behavior of light, and on how two or more light waves interfere. However, the same concepts apply to sound waves, and other

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS Level 3 Physics: Demonstrate understanding of Waves Waves Behaviour - Answers In 203, AS 9523 replaced AS 90520. The Mess that is NCEA Assessment Schedules. In AS 90520 there was an Evidence column with

More information

Lab 8. Interference of Light

Lab 8. Interference of Light Lab 8. Interference of Light Goals To observe the interference patterns for laser light passing through a single narrow slit, through two closely spaced slits, and through multiple closely spaced slits,

More information

Chapter 15. Light Waves

Chapter 15. Light Waves Chapter 15 Light Waves Chapter 15 is finished, but is not in camera-ready format. All diagrams are missing, but here are some excerpts from the text with omissions indicated by... After 15.1, read 15.2

More information

Physics 1C DIFFRACTION AND INTERFERENCE Rev. 2-AH. Introduction

Physics 1C DIFFRACTION AND INTERFERENCE Rev. 2-AH. Introduction Introduction The material for this chapter is discussed in Hecht, Chapter 25. Light exhibits many of the properties of a transverse wave. Waves that overlap with other waves can reinforce each other or

More information

Update on the Gravitational-Wave Observatory project? Wikipedia OPL length questions: We ll go over this in lecture. Through the optics section, many

Update on the Gravitational-Wave Observatory project? Wikipedia OPL length questions: We ll go over this in lecture. Through the optics section, many More Interference Update on the Gravitational-Wave Observatory project? Wikipedia OPL length questions: We ll go over this in lecture. Through the optics section, many of the equations we use don't use

More information

Lecture 24 (Diffraction I Single-Slit Diffraction) Physics Spring 2018 Douglas Fields

Lecture 24 (Diffraction I Single-Slit Diffraction) Physics Spring 2018 Douglas Fields Lecture 24 (Diffraction I Single-Slit Diffraction) Physics 262-01 Spring 2018 Douglas Fields Single-Slit Diffraction As we have already hinted at, and seen, waves don t behave as we might have expected

More information

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 36 Diffraction Copyright 36-1 Single-Slit Diffraction Learning Objectives 36.01 Describe the diffraction of light waves by a narrow opening and an edge, and also describe the resulting interference

More information

Wave Optics. April 11, 2014 Chapter 34 1

Wave Optics. April 11, 2014 Chapter 34 1 Wave Optics April 11, 2014 Chapter 34 1 Announcements! Exam tomorrow! We/Thu: Relativity! Last week: Review of entire course, no exam! Final exam Wednesday, April 30, 8-10 PM Location: WH B115 (Wells Hall)

More information

Physical Optics. 1 st year physics laboratories. University of Ottawa.

Physical Optics. 1 st year physics laboratories. University of Ottawa. Physical Optics 1 st year physics laboratories University of Ottawa https://uottawa.brightspace.com/d2l/home INTRODUCTION Physical optics deals with light as a wave which can bend around obstacles (diffraction)

More information

Class 34. Diffraction Grating. Adding sources. Adding sources. Adding sources, II. Adding sources, II. Adding slits

Class 34. Diffraction Grating. Adding sources. Adding sources. Adding sources, II. Adding sources, II. Adding slits Class Adding sources Diffraction Grating What happens to the interference pattern when we add more sources? Let's start by switching from two sources d apart to three sources d apart. Do we still get maxima

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 4-7 DIFFRACTION Assessment Statements AHL Topic 11.3. and SL Option A-4 Diffraction: 11.3.1. Sketch the variation with angle of diffraction

More information

Page 2. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size.

Page 2. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size. Q1.Electrons and protons in two beams are travelling at the same speed. The beams are diffracted by objects of the same size. Which correctly compares the de roglie wavelength λ e of the electrons with

More information

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Fall 2012 Diffraction Lectures 28-29 Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through

More information

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website:

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website: Lecture 23 Chapter 23 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Let s finish talking about a diffraction grating Diffraction Grating Let s improve (more

More information

UNIT 102-9: INTERFERENCE AND DIFFRACTION

UNIT 102-9: INTERFERENCE AND DIFFRACTION Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 102-9: INTERFERENCE AND DIFFRACTION Patterns created by interference of light in a thin film. OBJECTIVES 1. Understand the creation of double-slit

More information

Chapter 5 Example and Supplementary Problems

Chapter 5 Example and Supplementary Problems Chapter 5 Example and Supplementary Problems Single-Slit Diffraction: 1) A beam of monochromatic light (550 nm) is incident on a single slit. On a screen 3.0 meters away the distance from the central and

More information

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive.

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive. 1.1 INTERFERENCE When two (or more than two) waves of the same frequency travel almost in the same direction and have a phase difference that remains constant with time, the resultant intensity of light

More information

LC-1: Interference and Diffraction

LC-1: Interference and Diffraction Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. You must use complete sentences and clearly explain your reasoning to receive full credit. The lab setup has been

More information

Chapter 17. Superposition of waves

Chapter 17. Superposition of waves Chapter 17 Superposition of waves Combining waves In Chapter 15 and Chapter 16, we looked at how to describe the behaviour of waves. We saw how they can be reflected, refracted and polarised. In this chapter

More information

Single Slit Diffraction

Single Slit Diffraction Name: Date: PC1142 Physics II Single Slit Diffraction 5 Laboratory Worksheet Part A: Qualitative Observation of Single Slit Diffraction Pattern L = a 2y 0.20 mm 0.02 mm Data Table 1 Question A-1: Describe

More information

Interference of Light

Interference of Light Lab 11. Interference of Light Goals To observe the interference patterns for laser light passing through a single narrow slit, through two closely spaced slits, and through multiple closely spaced slits,

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 9-2 SINGLE-SLIT DIFFRACTION Essential Idea: Single-slit diffraction occurs when a wave is incident upon a slit of approximately the same

More information

Chapter 37. Wave Optics

Chapter 37. Wave Optics Chapter 37 Wave Optics Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics. Sometimes called physical optics These phenomena include:

More information

Problem Solving 10: Double-Slit Interference

Problem Solving 10: Double-Slit Interference MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of hysics roblem Solving 10: Double-Slit Interference OBJECTIVES 1. To introduce the concept of interference. 2. To find the conditions for constructive

More information

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves Print Your Name Print Your Partners' Names Instructions April 17, 2015 Before lab, read the

More information

Diffraction Challenge Problem Solutions

Diffraction Challenge Problem Solutions Diffraction Challenge Problem Solutions Problem 1: Measuring the Wavelength of Laser Light Suppose you shine a red laser through a pair of narrow slits (a = 40 μm) separated by a known distance and allow

More information

Fresnel's biprism and mirrors

Fresnel's biprism and mirrors Fresnel's biprism and mirrors 1 Table of Contents Section Page Back ground... 3 Basic Experiments Experiment 1: Fresnel's mirrors... 4 Experiment 2: Fresnel's biprism... 7 2 Back ground Interference of

More information

Experiment 8 Wave Optics

Experiment 8 Wave Optics Physics 263 Experiment 8 Wave Optics In this laboratory, we will perform two experiments on wave optics. 1 Double Slit Interference In two-slit interference, light falls on an opaque screen with two closely

More information

Thin Lenses 4/16/2018 1

Thin Lenses 4/16/2018 1 Thin Lenses f 4/16/2018 1 Thin Lenses: Converging Lens C 2 F 1 F 2 C 1 r 2 f r 1 Parallel rays refract twice Converge at F 2 a distance f from center of lens F 2 is a real focal pt because rays pass through

More information

Physics Midterm I

Physics Midterm I Phys121 - February 6, 2009 1 Physics 121 - Midterm I Last Name First Name Student Number Signature Tutorial T.A. (circle one): Ricky Chu Firuz Demir Maysam Emadi Alireza Jojjati Answer ALL 10 questions.

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

Dr. Quantum. General Physics 2 Light as a Wave 1

Dr. Quantum. General Physics 2 Light as a Wave 1 Dr. Quantum General Physics 2 Light as a Wave 1 The Nature of Light When studying geometric optics, we used a ray model to describe the behavior of light. A wave model of light is necessary to describe

More information

A 4. An electromagnetic wave travelling through a transparent medium is given by y. in S units. Then what is the refractive index of the medium?

A 4. An electromagnetic wave travelling through a transparent medium is given by y. in S units. Then what is the refractive index of the medium? SECTION (A) : PRINCIPLE OF SUPERPOSITION, PATH DIFFERENCE, WAVEFRONTS, AND COHERENCE A 1. Two sources of intensity I & 4I are used in an interference experiment. Find the intensity at points where the

More information

LECTURE 12 INTERFERENCE OF LIGHT. Instructor: Kazumi Tolich

LECTURE 12 INTERFERENCE OF LIGHT. Instructor: Kazumi Tolich LECTURE 12 INTERFERENCE OF LIGHT Instructor: Kazumi Tolich Lecture 12 2 17.2 The interference of light Young s double-slit experiment Analyzing double-slit interference 17.3 The diffraction grating Spectroscopy

More information