Table 3: Midpoint estimate

Size: px
Start display at page:

Download "Table 3: Midpoint estimate"

Transcription

1 The function y gx.x x 1 is shown in Figure 1. Six midpoint rectangles have been drawn between the function and the x-axis over,1 ; the areas of these six rectangles are shown in Table 1. Figure 1 Let s go ahead and calculate the Riemann sum for y g x,1 using the midpoints over six over intervals of equal width. Table has been set up to facilitate this calculation. A 1 A B B B 5 B 6 Table : Areas i Area 1 A 1. 1 A.6 B.8 B 6 5 B 6 5 Table : Midpoint estimate i 1 5 * * x i i g x x * gxi x 6 B In this example, the Riemann sum absolutely, positively, unequivocally, does not add up to something we ve seen in previous examples what is this something? 6 * g xi x : i 1 What does the Riemann Sum add up to in this example? Definite Integrals - FTC 1

2 Definition b a n * lim k f x dx f x x k xk k 1 * where the interval ab, has been partitioned in n intervals of widths xk, x k is some th point on the k interval, and the mesh size ( xk ) is the largest interval width. Let s find use our calculator s graphing feature to find x x 1 dx 1, and. 1 and. x x dx, x x dx. Let s illustrate the results on figures,, Figure Figure Figure D efinite Integrals - FTC

3 Theorem b f x dx A B a where A is the area between the curve the x-axis and B is the area between the curve Below the x-axis. y f x and the x-axis that lies Above y f x and the x-axis that lies Let s use Figure 5 to help us calculate t using the integral command on the home screen of our calculator. dt. Let s verify the result using a Riemann sum and Figure 5 Definite Integrals - FTC

4 One day, long long ago, Ginger was taking a no calculator test and wrote on her paper sin d 1. Upon receiving her graded paper, Ginger saw a note gently pointing out that she should have known that writing known that was silly? sin d 1 was a silly thing to do. Why should Ginger have Meanwhile, in the next town over, Abdou was given a multiple choice question. Specifically, Abdou, who knew absolutely no trigonometry, was told that for the function y h t shown in Figure 6, the exact value of htdt was one of the numbers 5,.5,,.5, or 5. Abdou deduced the correct answer to the question using valid reasoning. Let s recreate Abdou s correct reasoning. Figure 6 D efinite Integrals - FTC

5 The next day, Moonpie was called in to tutor Ginger. Moonpie created the following exercise to help Ginger see the strong relationship, yet different meanings, between areas and integral values. Moonpie had Ginger state the indicated areas and integral values repeatedly until the proverbial light lit for Ginger. Let s recreate Ginger s enlightenment. (Note that the curves in figures 8 and 9 are each semicircular.) A 1 = Figure 7 x dx = A 1 B 1 = B 1 xdx = y x Figure 8 A = A 1 x dx = 5 x y Figure 9 B = 1 5 x dx = x y B Definite Integrals - FTC 5

6 The Net Change Theorem If ht is the height (cm) of the water in Bahram s pool t minutes after water began to run into the pool, then h t is the rate (cm/min) at which the height was changing t minutes after water began to run into the pool. Let s suppose that water was running into the pool. a. Let s draw a sketch (Figure 1) of y ht over 7 h t dt. For clarity, let s include units in our calculation. h t was constantly 1 cm/min for the first 1 minutes that,1 and use the sketch to help us calculate 7 b. What is the contextual meaning of h t dt? c. How would we use the function h (as opposed to using the function h ) to express the change in the height from the end of the third minute of filling to the end of the seventh minute of filling? 7 d. Good golly, what s the relationship between h t dt and h7 h? 6 D efinite Integrals - FTC

7 Dimitri adopted a puppy from the pound. Little did Dimitri know, the pup was in fact quite the chow hound. If wt is the weight (gm) of the pup t days after Dimitri brought it home, then w t is the rate at which the pup s weight was changing (gm/day) t days after Dimitri brought it home. z w t is shown in Figure 9. A graph of z (gm/day) Figure 9: w a. Let s use two midpoint rectangles of equal width to 1 estimate w t dt. Let s include units in our calculation to help us understand the contextual significance of the integral value and let s explicitly state the contextual significance. t (days) b. What mathematical expression would we use involving wt (as opposed to total change in the pup s weight over the first ten days of its life with Dimitri? w t ) to express the c. What s the relationship between the mathematical expressions in parts (a) and (b) of this question? Definite Integrals - FTC 7

8 The Net Change Theorem b f x dx f b f a a Suppose that f x x x 7. a. Let s draw a sketch (Figure 5) of y f x and use the sketch to help us find f x dx. 1 b. Let s use the formula for f x to find f f 1. Voila! c. If we renamed f as g, what would we rename f? Let s restate the net change theorem using these new names. 8 D efinite Integrals - FTC

9 The Fundamental Theorem of Calculus If g is a function that is continuous over ab, and G is any antiderivative of g then: b a g x dx G b G a Let s use the FTC to evaluate each of the following integrals and interpret the results. 1 a. x dx Figure 1: y x b. htdt where ht 1 sin t 1 t Figure 11: y h t Definite Integrals - FTC 9

10 A function f is shown in Figure 1. Suppose that F is the antiderivative of f that passes through the point,1.5 Answer each question on the page in reference to these two functions. Where f is positive, F is and where f is negative, F is. Because f is always decreasing, F is always. Complete Table and use those values to help you plot F onto Figure 1. Table : Integral Values Integral Value 1 1 f xdx f xdx f f x dx 1 f x dx x dx Integral 5 6 f xdx f xdx f xdx f xdx f 1 5 x dx Value Figure 1: y f x Figure 1: y Fx What is the formula for f? Use that formula together with the known point on F to determine the formula for F and verify that y F x does indeed graph to what was drawn onto Figure 1. 1 D efinite Integrals - FTC

11 Answer each question on this page in reference to the function f shown in Figure 1.The areas of the three shaded regions are, from left to right, 15, 5, and 5. Assume that F is in reference to the specific antiderivative of f that passes through the point, 7. 7 a. Determine the value of f x dx. 5 1 b. Determine the value of f x dx. 5 c. Determine the value of F 7. Figure 1: y f x 1 d. Determine the value of 1 f x dx 7 e. Determine the value of x f x dx. 7 f. Which of the following is true about f x dx? 1 i The value is positive. ii The value is negative. iii The value is definitively zero. iv There is no way to conclude anything about the value with the given information. Definite Integrals - FTC 11

12 d t dt dx. x Let s verify the Second Fundamental Theorem of Calculus for sin t cos Let s fill in each blank correctly! d dt t 5 x dx d 8 5 t dx dt After the brakes are applied, a car decelerates at a constant rate of ft/s 15 s before coming to a complete stop 5 ft from the point where the brakes were first applied. How fast was the car moving when the brakes were first applied? 1 D efinite Integrals - FTC

The Fundamental Theorem of Calculus Using the Rule of Three

The Fundamental Theorem of Calculus Using the Rule of Three The Fundamental Theorem of Calculus Using the Rule of Three A. Approimations with Riemann sums. The area under a curve can be approimated through the use of Riemann (or rectangular) sums: n Area f ( k

More information

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012 Problem # Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 490 Mark Sparks 01 Finding Anti-derivatives of Polynomial-Type Functions If you had to explain to someone how to find

More information

4.7 Approximate Integration

4.7 Approximate Integration 4.7 Approximate Integration Some anti-derivatives are difficult to impossible to find. For example, 1 0 e x2 dx or 1 1 1 + x3 dx We came across this situation back in calculus I when we introduced the

More information

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0 FROM ROGAWSKI S CALCULUS (2ND ED.) SECTION 5.4 18.) Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral. f(x) = x + 1 x 2 + 9, F (7) = 28.) Find G (1), where

More information

4 Visualization and. Approximation

4 Visualization and. Approximation 4 Visualization and Approximation b A slope field for the differential equation y tan(x + y) tan(x) tan(y). It is not always possible to write down an explicit formula for the solution to a differential

More information

Section 6.1 Estimating With Finite Sums

Section 6.1 Estimating With Finite Sums Suppose that a jet takes off, becomes airborne at a velocity of 180 mph and climbs to its cruising altitude. The following table gives the velocity every hour for the first 5 hours, a time during which

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION The volume of a sphere is the limit of sums of volumes of approimating clinders. In this chapter we eplore some of the applications of the definite integral b using it to

More information

Chapter 5 Accumulating Change: Limits of Sums and the Definite Integral

Chapter 5 Accumulating Change: Limits of Sums and the Definite Integral Chapter 5 Accumulating Change: Limits of Sums and the Definite Integral 5.1 Results of Change and Area Approximations So far, we have used Excel to investigate rates of change. In this chapter we consider

More information

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. Area of a Region Between Two Curves Copyright Cengage Learning. All rights reserved. Objectives Find the area of a region between

More information

Integration. Edexcel GCE. Core Mathematics C4

Integration. Edexcel GCE. Core Mathematics C4 Edexcel GCE Core Mathematics C Integration Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your answers

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D

CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D In two dimensions we have previously used Riemann sums to approximate ( ) following steps: with the 1. Divide the region

More information

5 Applications of Definite Integrals

5 Applications of Definite Integrals 5 Applications of Definite Integrals The previous chapter introduced the concepts of a definite integral as an area and as a limit of Riemann sums, demonstrated some of the properties of integrals, introduced

More information

Chapter 8: Applications of Definite Integrals

Chapter 8: Applications of Definite Integrals Name: Date: Period: AP Calc AB Mr. Mellina Chapter 8: Applications of Definite Integrals v v Sections: 8.1 Integral as Net Change 8.2 Areas in the Plane v 8.3 Volumes HW Sets Set A (Section 8.1) Pages

More information

Area and Volume. where x right and x left are written in terms of y.

Area and Volume. where x right and x left are written in terms of y. Area and Volume Area between two curves Sketch the region and determine the points of intersection. Draw a small strip either as dx or dy slicing. Use the following templates to set up a definite integral:

More information

Notice that the height of each rectangle is and the width of each rectangle is.

Notice that the height of each rectangle is and the width of each rectangle is. Math 1410 Worksheet #40: Section 6.3 Name: In some cases, computing the volume of a solid of revolution with cross-sections can be difficult or even impossible. Is there another way to compute volumes

More information

The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by

The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by Chapter 7 1) (AB/BC, calculator) The base of a solid is the region in the first quadrant bounded above by the line y =, below by y sin 1 x, and to the right by the line x = 1. For this solid, each cross-section

More information

Topic 6: Calculus Integration Volume of Revolution Paper 2

Topic 6: Calculus Integration Volume of Revolution Paper 2 Topic 6: Calculus Integration Standard Level 6.1 Volume of Revolution Paper 1. Let f(x) = x ln(4 x ), for < x

More information

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES 7 CALCULUS II DR. YOU 98 LECTURE 3- AREA OF A REGION BOUNDED BY CURVES If y = f(x) and y = g(x) are continuous on an interval [a, b] and f(x) g(x) for all x in [a, b], then the area of the region between

More information

Homework: Study 6.1 # 1, 5, 7, 13, 25, 19; 3, 17, 27, 53

Homework: Study 6.1 # 1, 5, 7, 13, 25, 19; 3, 17, 27, 53 January, 7 Goals:. Remember that the area under a curve is the sum of the areas of an infinite number of rectangles. Understand the approach to finding the area between curves.. Be able to identify the

More information

B. Examples Set up the integral(s) needed to find the area of the region bounded by

B. Examples Set up the integral(s) needed to find the area of the region bounded by Math 176 Calculus Sec. 6.1: Area Between Curves I. Area between the Curve and the x Axis A. Let f(x) 0 be continuous on [a,b]. The area of the region between the graph of f and the x-axis is A = f ( x)

More information

Chapter Seven. Chapter Seven

Chapter Seven. Chapter Seven Chapter Seven Chapter Seven ConcepTests for Section 7. CHAPTER SEVEN 7. Which of the following is an antiderivative of + 7? + 7 + 7 + 7 (e) + C. The most general antiderivative is + 7 + C, so is one possible

More information

Math 205 Test 3 Grading Guidelines Problem 1 Part a: 1 point for figuring out r, 2 points for setting up the equation P = ln 2 P and 1 point for the initial condition. Part b: All or nothing. This is really

More information

Measures of Dispersion

Measures of Dispersion Lesson 7.6 Objectives Find the variance of a set of data. Calculate standard deviation for a set of data. Read data from a normal curve. Estimate the area under a curve. Variance Measures of Dispersion

More information

MAT Business Calculus - Quick Notes

MAT Business Calculus - Quick Notes MAT 136 - Business Calculus - Quick Notes Last Updated: 4/3/16 Chapter 2 Applications of Differentiation Section 2.1 Using First Derivatives to Find Maximum and Minimum Values and Sketch Graphs THE FIRST-DERIVATIVE

More information

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving The Bisection Method and Newton s Method. If f( x ) a function, then a number r for which f( r) 0 is called a zero or a root of the function f( x ), or a solution to the equation f( x) 0. You are already

More information

Rectangle Sums

Rectangle Sums Rectangle Sums --208 You can approximate the area under a curve using rectangles. To do this, divide the base interval into pieces subintervals). Then on each subinterval, build a rectangle that goes up

More information

Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves (Part 2) Overview of Area Between Two Curves

Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves (Part 2) Overview of Area Between Two Curves Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves (Part 2) III. Overview of Area Between Two Curves With a few modifications the area under a curve represented by a definite integral can

More information

WTS TUTORING WTS CALCULUS GRADE : 12 : PROF KWV KHANGELANI SIBIYA : WTS TUTORS CELL NO. : :

WTS TUTORING WTS CALCULUS GRADE : 12 : PROF KWV KHANGELANI SIBIYA : WTS TUTORS CELL NO. : : WTS TUTORING 1 WTS TUTORING WTS CALCULUS GRADE : 12 COMPILED BY : PROF KWV KHANGELANI SIBIYA : WTS TUTORS CELL NO. : 0826727928 EMAIL FACEBOOK P. : kwvsibiya@gmail.com : WTS MATHS & SCEINCE TUTORING WTS

More information

NAME: Section # SSN: X X X X

NAME: Section # SSN: X X X X Math 155 FINAL EXAM A May 5, 2003 NAME: Section # SSN: X X X X Question Grade 1 5 (out of 25) 6 10 (out of 25) 11 (out of 20) 12 (out of 20) 13 (out of 10) 14 (out of 10) 15 (out of 16) 16 (out of 24)

More information

6th Grade Math. Parent Handbook

6th Grade Math. Parent Handbook 6th Grade Math Benchmark 3 Parent Handbook This handbook will help your child review material learned this quarter, and will help them prepare for their third Benchmark Test. Please allow your child to

More information

Objectives. Materials

Objectives. Materials Activity 13 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the

More information

You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the = 46

You ll use the six trigonometric functions of an angle to do this. In some cases, you will be able to use properties of the = 46 Math 1330 Section 6.2 Section 7.1: Right-Triangle Applications In this section, we ll solve right triangles. In some problems you will be asked to find one or two specific pieces of information, but often

More information

Math 250A (Fall 2009) - Lab I: Estimate Integrals Numerically with Matlab. Due Date: Monday, September 21, INSTRUCTIONS

Math 250A (Fall 2009) - Lab I: Estimate Integrals Numerically with Matlab. Due Date: Monday, September 21, INSTRUCTIONS Math 250A (Fall 2009) - Lab I: Estimate Integrals Numerically with Matlab Due Date: Monday, September 21, 2009 4:30 PM 1. INSTRUCTIONS The primary purpose of this lab is to understand how go about numerically

More information

x=2 26. y 3x Use calculus to find the area of the triangle with the given vertices. y sin x cos 2x dx 31. y sx 2 x dx

x=2 26. y 3x Use calculus to find the area of the triangle with the given vertices. y sin x cos 2x dx 31. y sx 2 x dx 4 CHAPTER 6 APPLICATIONS OF INTEGRATION 6. EXERCISES 4 Find the area of the shaded region.. =5-. (4, 4) =. 4. = - = (_, ) = -4 =œ + = + =.,. sin,. cos, sin,, 4. cos, cos, 5., 6., 7.,, 4, 8., 8, 4 4, =_

More information

Unit 6 Quadratic Functions

Unit 6 Quadratic Functions Unit 6 Quadratic Functions 12.1 & 12.2 Introduction to Quadratic Functions What is A Quadratic Function? How do I tell if a Function is Quadratic? From a Graph The shape of a quadratic function is called

More information

AP Calculus. Areas and Volumes. Student Handout

AP Calculus. Areas and Volumes. Student Handout AP Calculus Areas and Volumes Student Handout 016-017 EDITION Use the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss Copyright

More information

Blue 21 Extend and Succeed Brain Growth Senior Phase. Trigonometry. Graphs and Equations

Blue 21 Extend and Succeed Brain Growth Senior Phase. Trigonometry. Graphs and Equations Blue 21 Extend and Succeed Brain Growth Senior Phase Trigonometry Graphs and Equations Trig Graphs O1 Trig ratios of angles of all sizes 1. Given the diagram above, find sin 130, cos 130 and tan 130 correct

More information

minutes/question 26 minutes

minutes/question 26 minutes st Set Section I (Multiple Choice) Part A (No Graphing Calculator) 3 problems @.96 minutes/question 6 minutes. What is 3 3 cos cos lim? h hh (D) - The limit does not exist.. At which of the five points

More information

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31 CHAPTER Quadratic Functions Arches are used to support the weight of walls and ceilings in buildings. Arches were first used in architecture by the Mesopotamians over 4000 years ago. Later, the Romans

More information

Graphical Presentation for Statistical Data (Relevant to AAT Examination Paper 4: Business Economics and Financial Mathematics) Introduction

Graphical Presentation for Statistical Data (Relevant to AAT Examination Paper 4: Business Economics and Financial Mathematics) Introduction Graphical Presentation for Statistical Data (Relevant to AAT Examination Paper 4: Business Economics and Financial Mathematics) Y O Lam, SCOPE, City University of Hong Kong Introduction The most convenient

More information

In this chapter, we will investigate what have become the standard applications of the integral:

In this chapter, we will investigate what have become the standard applications of the integral: Chapter 8 Overview: Applications of Integrals Calculus, like most mathematical fields, began with trying to solve everyday problems. The theory and operations were formalized later. As early as 70 BC,

More information

AP Calculus AB. a.) Midpoint rule with 4 subintervals b.) Trapezoid rule with 4 subintervals

AP Calculus AB. a.) Midpoint rule with 4 subintervals b.) Trapezoid rule with 4 subintervals AP Calculus AB Unit 6 Review Name: Date: Block: Section : RAM and TRAP.) Evaluate using Riemann Sums L 4, R 4 for the following on the interval 8 with four subintervals. 4.) Approimate ( )d using a.) Midpoint

More information

height VUD x = x 1 + x x N N 2 + (x 2 x) 2 + (x N x) 2. N

height VUD x = x 1 + x x N N 2 + (x 2 x) 2 + (x N x) 2. N Math 3: CSM Tutorial: Probability, Statistics, and Navels Fall 2 In this worksheet, we look at navel ratios, means, standard deviations, relative frequency density histograms, and probability density functions.

More information

a b c d e f Guided practice worksheet Questions are targeted at the grades indicated Areas and perimeters

a b c d e f Guided practice worksheet Questions are targeted at the grades indicated Areas and perimeters 2 14.1 14.2 Areas and perimeters 1 Work out the area of the following shapes. 8 cm 7 cm 11 cm......... d e f 6 cm 6 cm 10 cm 9 cm......... 2 Work out the area of the following shapes. a b c 3 mm 3 mm 10

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? There are 2 ways to describe it: x 2 + y 2 = 1 and x = cos θ y = sin θ When

More information

P1 REVISION EXERCISE: 1

P1 REVISION EXERCISE: 1 P1 REVISION EXERCISE: 1 1. Solve the simultaneous equations: x + y = x +y = 11. For what values of p does the equation px +4x +(p 3) = 0 have equal roots? 3. Solve the equation 3 x 1 =7. Give your answer

More information

AP CALCULUS BC PACKET 2 FOR UNIT 4 SECTIONS 6.1 TO 6.3 PREWORK FOR UNIT 4 PT 2 HEIGHT UNDER A CURVE

AP CALCULUS BC PACKET 2 FOR UNIT 4 SECTIONS 6.1 TO 6.3 PREWORK FOR UNIT 4 PT 2 HEIGHT UNDER A CURVE AP CALCULUS BC PACKET FOR UNIT 4 SECTIONS 6. TO 6.3 PREWORK FOR UNIT 4 PT HEIGHT UNDER A CURVE Find an expression for the height of an vertical segment that can be drawn into the shaded region... = x =

More information

6.G.1. SELECTED RESPONSE Select the correct answer. CONSTRUCTED RESPONSE. 3. What is the area of this shape?

6.G.1. SELECTED RESPONSE Select the correct answer. CONSTRUCTED RESPONSE. 3. What is the area of this shape? 6.G.1 SELECTED RESPONSE Select the correct answer. 3. What is the area of this shape? 1. What is the area of the triangle below? 5.65 cm 10.9375 cm 11.5 cm 1.875 cm 48 in 144 in 96 in 88 in 4. What is

More information

Math 116 First Midterm February 6, 2012

Math 116 First Midterm February 6, 2012 Math 6 First Midterm Februar 6, 202 Name: Instructor: Section:. Do not open this exam until ou are told to do so. 2. This exam has 0 pages including this cover. There are 9 problems. Note that the problems

More information

CALCULUS LABORATORY ACTIVITY: Numerical Integration, Part 1

CALCULUS LABORATORY ACTIVITY: Numerical Integration, Part 1 CALCULUS LABORATORY ACTIVITY: Numerical Integration, Part 1 Required tasks: Tabulate values, create sums Suggested Technology: Goals Spreadsheet: Microsoft Excel or Google Docs Spreadsheet Maple or Wolfram

More information

MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 October/November 2016 MARK SCHEME Maximum Mark: 100. Published

MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 October/November 2016 MARK SCHEME Maximum Mark: 100. Published Cambridge International Examinations Cambridge Ordinary Level MATHEMATICS (SYLLABUS D) 404/ Paper October/November 06 MARK SCHEME Maximum Mark: 00 Published This mark scheme is published as an aid to teachers

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

AB Calculus: Extreme Values of a Function

AB Calculus: Extreme Values of a Function AB Calculus: Extreme Values of a Function Name: Extrema (plural for extremum) are the maximum and minimum values of a function. In the past, you have used your calculator to calculate the maximum and minimum

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral More on Area More on Area Integrating the vertical separation gives Riemann Sums of the form More on Area Example Find the area A of the set shaded in Figure

More information

MEI Desmos Tasks for AS Pure

MEI Desmos Tasks for AS Pure Task 1: Coordinate Geometry Intersection of a line and a curve 1. Add a quadratic curve, e.g. y = x² 4x + 1 2. Add a line, e.g. y = x 3 3. Select the points of intersection of the line and the curve. What

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

I IS II. = 2y"\ V= n{ay 2 l 3 -\y 2 )dy. Jo n [fy 5 ' 3 1

I IS II. = 2y\ V= n{ay 2 l 3 -\y 2 )dy. Jo n [fy 5 ' 3 1 r Exercises 5.2 Figure 530 (a) EXAMPLE'S The region in the first quadrant bounded by the graphs of y = i* and y = 2x is revolved about the y-axis. Find the volume of the resulting solid. SOLUTON The region

More information

An Introduction to Double Integrals Math Insight

An Introduction to Double Integrals Math Insight An Introduction to Double Integrals Math Insight Suppose that you knew the hair density at each point on your head and you wanted to calculate the total number of hairs on your head. In other words, let

More information

3.1 Maxima/Minima Values

3.1 Maxima/Minima Values 3.1 Maxima/Minima Values Ex 1: Find all critical points for the curve given by f (x)=x 5 25 3 x3 +20x 1 on the interval [-3, 2]. Identify the min and max values. We're guaranteed max and min points if

More information

2.1 Solutions to Exercises

2.1 Solutions to Exercises Last edited 9/6/17.1 Solutions to Exercises 1. P(t) = 1700t + 45,000. D(t) = t + 10 5. Timmy will have the amount A(n) given by the linear equation A(n) = 40 n. 7. From the equation, we see that the slope

More information

1. Fill in the right hand side of the following equation by taking the derivative: (x sin x) =

1. Fill in the right hand side of the following equation by taking the derivative: (x sin x) = 7.1 What is x cos x? 1. Fill in the right hand side of the following equation by taking the derivative: (x sin x = 2. Integrate both sides of the equation. Instructor: When instructing students to integrate

More information

Winter 2012 Math 255 Section 006. Problem Set 7

Winter 2012 Math 255 Section 006. Problem Set 7 Problem Set 7 1 a) Carry out the partials with respect to t and x, substitute and check b) Use separation of varibles, i.e. write as dx/x 2 = dt, integrate both sides and observe that the solution also

More information

practice: quadratic functions [102 marks]

practice: quadratic functions [102 marks] practice: quadratic functions [102 marks] A quadratic function, f(x) = a x 2 + bx, is represented by the mapping diagram below. 1a. Use the mapping diagram to write down two equations in terms of a and

More information

Math Exam 2a. 1) Take the derivatives of the following. DO NOT SIMPLIFY! 2 c) y = tan(sec2 x) ) b) y= , for x 2.

Math Exam 2a. 1) Take the derivatives of the following. DO NOT SIMPLIFY! 2 c) y = tan(sec2 x) ) b) y= , for x 2. Math 111 - Exam 2a 1) Take the derivatives of the following. DO NOT SIMPLIFY! a) y = ( + 1 2 x ) (sin(2x) - x- x 1 ) b) y= 2 x + 1 c) y = tan(sec2 x) 2) Find the following derivatives a) Find dy given

More information

Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes

Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes 1 of 11 1) Give f(g(1)), given that Calculators ARE NOT Permitted On This Portion Of The Exam 28 Questions - 55 Minutes 2) Find the slope of the tangent line to the graph of f at x = 4, given that 3) Determine

More information

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 9 4 95570362* ADDITIONAL MATHEMATICS 4037/12 Paper 1 May/June 2010 Additional Materials: Answer Booklet/Paper

More information

THE UNIVERSITY OF AKRON Mathematics and Computer Science Article: Applications to Definite Integration

THE UNIVERSITY OF AKRON Mathematics and Computer Science Article: Applications to Definite Integration THE UNIVERSITY OF AKRON Mathematics and Computer Science Article: Applications to Definite Integration calculus menu Directory Table of Contents Begin tutorial on Integration Index Copyright c 1995 1998

More information

WebAssign Lesson 1-2a Area Between Curves (Homework)

WebAssign Lesson 1-2a Area Between Curves (Homework) WebAssign Lesson 1-2a Area Between Curves (Homework) Current Score : / 30 Due : Thursday, June 26 2014 11:00 AM MDT Jaimos Skriletz Math 175, section 31, Summer 2 2014 Instructor: Jaimos Skriletz 1. /3

More information

Contemporary Calculus Dale Hoffman (2012)

Contemporary Calculus Dale Hoffman (2012) 5.1: Introduction to Integration Previous chapters dealt with Differential Calculus. They started with the "simple" geometrical idea of the slope of a tangent line to a curve, developed it into a combination

More information

Classwork. Opening Exercise. Example 1: Using Ratios and Unit Rate to Determine Volume. Determine the volume of the aquarium. 12 in. 10 in. 20 in.

Classwork. Opening Exercise. Example 1: Using Ratios and Unit Rate to Determine Volume. Determine the volume of the aquarium. 12 in. 10 in. 20 in. Classwork Opening Exercise Determine the volume of this aquarium. 12 in. 20 in. 10 in. Example 1: Using Ratios and Unit Rate to Determine Volume For his environmental science project, Jamie is creating

More information

MATH 122 FINAL EXAM WINTER March 15, 2011

MATH 122 FINAL EXAM WINTER March 15, 2011 MATH 1 FINAL EXAM WINTER 010-011 March 15, 011 NAME: SECTION: ONLY THE CORRECT ANSWER AND ALL WORK USED TO REACH IT WILL EARN FULL CREDIT. Simplify all answers as much as possible unless explicitly stated

More information

Tuesday 22 January 2008 Afternoon Time: 1 hour 30 minutes

Tuesday 22 January 2008 Afternoon Time: 1 hour 30 minutes Paper Reference(s) 6666/0 Edexcel GCE Core Mathematics C4 Advanced Level Tuesday 22 January 2008 Afternoon Time: hour 30 minutes Materials required for examination Mathematical Formulae (Green) Items included

More information

. The differential of y f (x)

. The differential of y f (x) Calculus I - Prof D Yuen Exam Review version 11/14/01 Please report any typos Derivative Rules Of course you have to remember all your derivative rules Implicit Differentiation Differentiate both sides

More information

AP Calculus AB Unit 2 Assessment

AP Calculus AB Unit 2 Assessment Class: Date: 203-204 AP Calculus AB Unit 2 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. A calculator may NOT be used on this part of the exam.

More information

Calculus (Math 1A) Lecture 1

Calculus (Math 1A) Lecture 1 Calculus (Math 1A) Lecture 1 Vivek Shende August 23, 2017 Hello and welcome to class! I am Vivek Shende I will be teaching you this semester. My office hours Starting next week: 1-3 pm on tuesdays; 2-3

More information

Name Class. (a) (b) (c) 2. Find the volume of the solid formed by revolving the region bounded by the graphs of

Name Class. (a) (b) (c) 2. Find the volume of the solid formed by revolving the region bounded by the graphs of Applications of Integration Test Form A. Determine the area of the region bounded by the graphs of y x 4x and y x 4. (a) 9 9 (b) 6 (c). Find the volume of the solid formed by revolving the region bounded

More information

ESTIMATING AND CALCULATING AREAS OF REGIONS BETWEEN THE X-AXIS AND THE GRAPH OF A CONTINUOUS FUNCTION v.07

ESTIMATING AND CALCULATING AREAS OF REGIONS BETWEEN THE X-AXIS AND THE GRAPH OF A CONTINUOUS FUNCTION v.07 ESTIMATING AND CALCULATING AREAS OF REGIONS BETWEEN THE X-AXIS AND THE GRAPH OF A CONTINUOUS FUNCTION v.7 In this activity, you will explore techniques to estimate the "area" etween a continuous function

More information

3.7. Vertex and tangent

3.7. Vertex and tangent 3.7. Vertex and tangent Example 1. At the right we have drawn the graph of the cubic polynomial f(x) = x 2 (3 x). Notice how the structure of the graph matches the form of the algebraic expression. The

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

4. Describe the correlation shown by the scatter plot. 8. Find the distance between the lines with the equations and.

4. Describe the correlation shown by the scatter plot. 8. Find the distance between the lines with the equations and. Integrated Math III Summer Review Packet DUE THE FIRST DAY OF SCHOOL The problems in this packet are designed to help you review topics from previous mathematics courses that are essential to your success

More information

Section 4.1: Introduction to Trigonometry

Section 4.1: Introduction to Trigonometry Section 4.1: Introduction to Trigonometry Review of Triangles Recall that the sum of all angles in any triangle is 180. Let s look at what this means for a right triangle: A right angle is an angle which

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS In this section, we assume that you have access to a graphing calculator or a computer with graphing software. FUNCTIONS AND MODELS 1.4 Graphing Calculators

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

GEOMETRY. slide #3. 6th Grade Math Unit 7. 6th Grade Unit 7: GEOMETRY. Name: Table of Contents. Area of Rectangles

GEOMETRY. slide #3. 6th Grade Math Unit 7. 6th Grade Unit 7: GEOMETRY. Name: Table of Contents. Area of Rectangles Name: 6th Grade Math Unit 7 GEOMETRY 2012 10 17 www.njctl.org 1 Table of Contents Area of Rectangles Area of Parallelograms Area of Triangles Area of Trapezoids Mixed Review Area of Irregular Figures Area

More information

Higher tier unit 6a check in test. Calculator

Higher tier unit 6a check in test. Calculator Higher tier unit 6a check in test Calculator Q1. The point A has coordinates (2, 3). The point B has coordinates (6, 8). M is the midpoint of the line AB. Find the coordinates of M. Q2. The points A, B

More information

Covering & Surrounding

Covering & Surrounding Covering & Surrounding Two-Dimensional Measurement and Three-Dimensional Measurement Name: Hour: Table of Contents Investigation 1 Investigation 1.1 page 3 Investigation 1.2 page 7 Investigation 1.3 page

More information

4.2 and 4.6 filled in notes.notebook. December 08, Integration. Copyright Cengage Learning. All rights reserved.

4.2 and 4.6 filled in notes.notebook. December 08, Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 1 4.2 Area Copyright Cengage Learning. All rights reserved. 2 Objectives Use sigma notation to write and evaluate a sum. Understand the concept

More information

MINI LESSON. Lesson 1a Introduction to Functions

MINI LESSON. Lesson 1a Introduction to Functions MINI LESSON Lesson 1a Introduction to Functions Lesson Objectives: 1. Define FUNCTION 2. Determine if data sets, graphs, statements, or sets of ordered pairs define functions 3. Use proper function notation

More information

If ( ) is approximated by a left sum using three inscribed rectangles of equal width on the x-axis, then the approximation is

If ( ) is approximated by a left sum using three inscribed rectangles of equal width on the x-axis, then the approximation is More Integration Page 1 Directions: Solve the following problems using the available space for scratchwork. Indicate your answers on the front page. Do not spend too much time on any one problem. Note:

More information

Differentiation and Integration

Differentiation and Integration Edexcel GCE Core Mathematics C Advanced Subsidiary Differentiation and Integration Materials required for examination Mathematical Formulae (Pink or Green) Items included with question papers Nil Advice

More information

Unit 1 Quadratic Functions

Unit 1 Quadratic Functions Unit 1 Quadratic Functions This unit extends the study of quadratic functions to include in-depth analysis of general quadratic functions in both the standard form f ( x) = ax + bx + c and in the vertex

More information

Review Guide for MAT220 Final Exam Part I. Thursday December 6 th during regular class time.

Review Guide for MAT220 Final Exam Part I. Thursday December 6 th during regular class time. Review Guide for MAT0 Final Exam Part I. Thursday December 6 th during regular class time. Part is worth 50% of your Final Exam grade. YOUR Syllabus approved calculator can be used on this part of the

More information

Houston County School System Mathematics

Houston County School System Mathematics Student Name: Teacher Name: Grade: 6th Unit #: 5 Unit Title: Area and Volume Approximate Start Date of Unit: Approximate End Date (and Test Date) of Unit: The following Statements and examples show the

More information

MEI GeoGebra Tasks for AS Pure

MEI GeoGebra Tasks for AS Pure Task 1: Coordinate Geometry Intersection of a line and a curve 1. Add a quadratic curve, e.g. y = x 2 4x + 1 2. Add a line, e.g. y = x 3 3. Use the Intersect tool to find the points of intersection of

More information

G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 2 0 S )

G r a d e 1 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 2 0 S ) G r a d e 0 I n t r o d u c t i o n t o A p p l i e d a n d P r e - C a l c u l u s M a t h e m a t i c s ( 0 S ) Midterm Practice Exam Answer Key G r a d e 0 I n t r o d u c t i o n t o A p p l i e d

More information

Precalculus, Quarter 2, Unit 2.1. Trigonometry Graphs. Overview

Precalculus, Quarter 2, Unit 2.1. Trigonometry Graphs. Overview 13 Precalculus, Quarter 2, Unit 2.1 Trigonometry Graphs Overview Number of instructional days: 12 (1 day = 45 minutes) Content to be learned Convert between radian and degree measure. Determine the usefulness

More information

A Pedi for the Lady... And Other Area/Volume Activities

A Pedi for the Lady... And Other Area/Volume Activities A Pedi for the Lady... And Other Area/Volume Activities Investigations that provide a foundation for Calculus Deedee Henderson Oxford, Alabama dhenderson.oh@oxford.k12.al.us Did you know that D=RxT is

More information

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas 16 Vector Calculus 16.6 and Their Areas Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and Their Areas Here we use vector functions to describe more general

More information

Exercises C-Programming

Exercises C-Programming Exercises C-Programming Claude Fuhrer (claude.fuhrer@bfh.ch) 0 November 016 Contents 1 Serie 1 1 Min function.................................. Triangle surface 1............................... 3 Triangle

More information