4.2 and 4.6 filled in notes.notebook. December 08, Integration. Copyright Cengage Learning. All rights reserved.

Size: px
Start display at page:

Download "4.2 and 4.6 filled in notes.notebook. December 08, Integration. Copyright Cengage Learning. All rights reserved."

Transcription

1 4 Integration Copyright Cengage Learning. All rights reserved. 1

2 4.2 Area Copyright Cengage Learning. All rights reserved. 2

3 Objectives Use sigma notation to write and evaluate a sum. Understand the concept of area. Approximate the area of a plane region. 3

4 Sigma Notation is used in figuring the area under a curve, so let's review it... 4

5 Sigma Notation This section begins by introducing a concise notation for sums. This notation is called sigma notation because it uses the uppercase Greek letter sigma, written as 5

6 Examples of Sigma Notation From parts (a) and (b), notice that the same sum can be represented in different ways using sigma notation. 6

7 Sigma Notation The following properties of summation can be derived using the associative and commutative properties of addition and the distributive property of addition over multiplication. (In the first property, k is a constant.) 7

8 Sigma Notation Examples = 8 8

9 Area 9

10 Area In Euclidean geometry, the simplest type of plane region is a rectangle. The definition for the area of a rectangle is A = bh. From this definition, you can develop formulas for the areas of many other plane regions. 10

11 Area For example, to determine the area of a triangle, you can form a rectangle whose area is twice that of the triangle, as shown in Figure 4.5. Figure

12 Area Once you know how to find the area of a triangle, you can determine the area of any polygon by subdividing the polygon into triangular regions, as shown in Figure 4.6. Figure

13 Area Finding the areas of regions other than polygons is more difficult. To find the area of a plane region, we will use the area of rectangles and the limiting process. 13

14 Upper and Lower Sums 14

15 Example Approximating the Area of a Plane Region Use five rectangles to find two approximations of the area of the region lying between the graph of f(x) = x and the x axis between x = 0 and x = 2. 15

16 Example Approximating the Area of a Plane Region Use five rectangles to find two approximations of the area of the region lying between the graph of f(x) = x and the x axis between x = 0 and x = 2. On the left there are 5 rectangles below the graph (lower sum). On the right, there are 5 rectangles above the graph, (upper sum). Figure

17 Example Lower Sum The lower sum is obtained by finding the area of each rectangle and adding them together. What is the width of each rectangle? How do we find it? What is the height of each rectangle? How do we find them? 17

18 Example Lower Sum The lower sum is obtained by finding the area of each rectangle and adding them together. The width of each rectangle is, and the height of each rectangle can be obtained by evaluating f at the right endpoint of each interval. 18

19 Example Lower Sum 19

20 Example Lower Sum Solution The sum of the areas of the five rectangles is Because each of the five rectangles lies inside the parabolic region, you can conclude that the area of the parabolic region is greater than

21 Example Upper Sum The upper sum is obtained by finding the area of each rectangle and adding them together. How do we find the width of each rectangle? How do we find the height of each rectangle? 21

22 Example Upper Sum The upper sum is obtained by finding the area of each rectangle and adding them together. The width of each rectangle is, and the height of each rectangle can be obtained by evaluating f at the left endpoint of each interval. 22

23 Example Upper Sum 23

24 Example Upper Sum Solution So, the sum is Because the parabolic region lies within the union of the five rectangular regions, you can conclude that the area of the parabolic region is less than By combining the results in parts (a) and (b), you can conclude that 6.48 < (Area of region) <

25 Upper and Lower Sums Consider a plane region bounded above by the graph of a nonnegative, continuous function y = f (x), as shown in Figure 4.9. The region is bounded below by the x axis, and the left and right boundaries of the region are the vertical lines x = a and x = b. Figure

26 Upper and Lower Sums To approximate the area of the region, begin by subdividing the interval [a, b] into n subintervals, each of width Δx = (b a)/n, as shown in Figure Figure

27 Upper and Lower Sums The sum of the areas of the inscribed rectangles is called a lower sum, and the sum of the areas of the circumscribed rectangles is called an upper sum. 27

28 Upper and Lower Sums From Figure 4.11, you can see that the lower sum s(n) is less than or equal to the upper sum S(n). Moreover, the actual area of the region lies between these two sums. Figure 4.11 Be careful for the lower (or upper) sum above, you do not always use the left side of the rectangle for the height. 28

29 Upper and Lower Sums This just means that as you increase the number of rectangles, you get a more accurate representation of the area. As n goes to infinity, the sum of the rectangle areas approach the actual area of the plane region. This is true whether you use an upper or a lower sum. 29

30 4.2 Lower & Upper Sum Example: Use four rectangles to find the lower and upper sums for the area of the region lying between the graph of f(x) = x 2 and the x axis between x = 0 and x = 2. 30

31 4.2 Midpoint Rule: Another way to estimate the sum of a plane region is to use the Mid point Rule. Here we use the middle of each rectangle to find the height instead of the left or right side like we did for the Upper or Lower Sums. An example is shown here: 31

32 4.2 Midpoint Rule: For example: The graph shown below is. Use four subintervals and the Midpoint Rule to find the area bounded by the equation, the x axis, x = 0, & x = 2. Each rectangle has a width of.5, but we use the middle of the rectangle for the height instead of the left or right side. The height of each rectangle going from left to right is f(.25), f(.75), f1.25), & f(1.75). So the estimated area is:.5[f(.25) + f(.75) + f(1.25) + f(1.75)] =

33 4.2 Midpoint Rule: Example: Use four subintervals to find the area of the region lying between the graph of f(x) = x 2 and the x axis between x = 0 and x = 2 using the Midpoint Rule. 33

34 4.6 Numerical Integration Copyright Cengage Learning. All rights reserved. 34

35 Objectives Approximate a definite integral using the Trapezoidal Rule. 35

36 The Trapezoidal Rule 36

37 The Trapezoidal Rule One way to approximate a definite integral is to use n trapezoids, as shown in Figure In the development of this method, assume that f is continuous and positive on the interval [a, b]. So, the definite integral represents the area of the region bounded by the graph of f and the x axis, from x = a to x = b. Figure

38 The Trapezoidal Rule First, partition the interval [a, b] into n subintervals, each of width x = (b a)/n, such that Then form a trapezoid for each subinterval (see Figure 4.43). This is the average of the bases multiplied by the height of the trapezoid. Figure

39 The Trapezoidal Rule 39

40 Example Approximation with the Trapezoidal Rule Use the Trapezoidal Rule to approximate Compare the results for n = 4 and n = 8, as shown in Figure Figure

41 Example When n = 4, x = π/4, then is approximately: 41

42 42

43 43

44 Example Solution When n = 4, x = π/4, and you obtain 44

45 Example Solution cont d When and you obtain 45

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. Area of a Region Between Two Curves Copyright Cengage Learning. All rights reserved. Objectives Find the area of a region between

More information

Section 6.1 Estimating With Finite Sums

Section 6.1 Estimating With Finite Sums Suppose that a jet takes off, becomes airborne at a velocity of 180 mph and climbs to its cruising altitude. The following table gives the velocity every hour for the first 5 hours, a time during which

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. Volume: The Disk Method Copyright Cengage Learning. All rights reserved. Objectives Find the volume of a solid of revolution

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Rectangle Sums

Rectangle Sums Rectangle Sums --208 You can approximate the area under a curve using rectangles. To do this, divide the base interval into pieces subintervals). Then on each subinterval, build a rectangle that goes up

More information

Notice that the height of each rectangle is and the width of each rectangle is.

Notice that the height of each rectangle is and the width of each rectangle is. Math 1410 Worksheet #40: Section 6.3 Name: In some cases, computing the volume of a solid of revolution with cross-sections can be difficult or even impossible. Is there another way to compute volumes

More information

Geometry 10 and 11 Notes

Geometry 10 and 11 Notes Geometry 10 and 11 Notes Area and Volume Name Per Date 10.1 Area is the amount of space inside of a two dimensional object. When working with irregular shapes, we can find its area by breaking it up into

More information

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. 1 Arc Length and Surfaces of Revolution Copyright Cengage Learning. All rights reserved. 2 Objectives Find the arc length of

More information

Mathematics Curriculum

Mathematics Curriculum 6 G R A D E Mathematics Curriculum GRADE 6 5 Table of Contents 1... 1 Topic A: Area of Triangles, Quadrilaterals, and Polygons (6.G.A.1)... 11 Lesson 1: The Area of Parallelograms Through Rectangle Facts...

More information

5/27/12. Objectives 7.1. Area of a Region Between Two Curves. Find the area of a region between two curves using integration.

5/27/12. Objectives 7.1. Area of a Region Between Two Curves. Find the area of a region between two curves using integration. Objectives 7.1 Find the area of a region between two curves using integration. Find the area of a region between intersecting curves using integration. Describe integration as an accumulation process.

More information

General Pyramids. General Cone. Right Circular Cone = "Cone"

General Pyramids. General Cone. Right Circular Cone = Cone Aim #6: What are general pyramids and cones? CC Geometry H Do Now: Put the images shown below into the groups (A,B,C and D) based on their properties. Group A: General Cylinders Group B: Prisms Group C:

More information

6 Mathematics Curriculum

6 Mathematics Curriculum New York State Common Core 6 Mathematics Curriculum GRADE GRADE 6 MODULE 5 Table of Contents 1 Area, Surface Area, and Volume Problems... 3 Topic A: Area of Triangles, Quadrilaterals, and Polygons (6.G.A.1)...

More information

CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D

CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D CHAPTER 8: INTEGRALS 8.1 REVIEW: APPROXIMATING INTEGRALS WITH RIEMANN SUMS IN 2-D In two dimensions we have previously used Riemann sums to approximate ( ) following steps: with the 1. Divide the region

More information

Unit 4 End-of-Unit Assessment Study Guide

Unit 4 End-of-Unit Assessment Study Guide Circles Unit 4 End-of-Unit Assessment Study Guide Definitions Radius (r) = distance from the center of a circle to the circle s edge Diameter (d) = distance across a circle, from edge to edge, through

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012 Problem # Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 490 Mark Sparks 01 Finding Anti-derivatives of Polynomial-Type Functions If you had to explain to someone how to find

More information

When discussing 3-D solids, it is natural to talk about that solid s Surface Area, which is the sum of the areas of all its outer surfaces or faces.

When discussing 3-D solids, it is natural to talk about that solid s Surface Area, which is the sum of the areas of all its outer surfaces or faces. Lesson 3 Lesson 3, page 1 of 10 Glencoe Geometry Chapter 11. Nets & Surface Area When discussing 3-D solids, it is natural to talk about that solid s Surface Area, which is the sum of the areas of all

More information

ESTIMATING AND CALCULATING AREAS OF REGIONS BETWEEN THE X-AXIS AND THE GRAPH OF A CONTINUOUS FUNCTION v.07

ESTIMATING AND CALCULATING AREAS OF REGIONS BETWEEN THE X-AXIS AND THE GRAPH OF A CONTINUOUS FUNCTION v.07 ESTIMATING AND CALCULATING AREAS OF REGIONS BETWEEN THE X-AXIS AND THE GRAPH OF A CONTINUOUS FUNCTION v.7 In this activity, you will explore techniques to estimate the "area" etween a continuous function

More information

The Limit Concept. Introduction to Limits. Definition of Limit. Example 1. Example 2. Example 3 4/7/2015

The Limit Concept. Introduction to Limits. Definition of Limit. Example 1. Example 2. Example 3 4/7/2015 4/7/015 The Limit Concept Introduction to Limits Precalculus 1.1 The notion of a it is a fundamental concept of calculus. We will learn how to evaluate its and how they are used in the two basic problems

More information

Grade 6 Mathematics Item Specifications Florida Standards Assessments

Grade 6 Mathematics Item Specifications Florida Standards Assessments Content Standard MAFS.6.G Geometry MAFS.6.G.1 Solve real-world and mathematical problems involving area, surface area, and volume. Assessment Limits Calculator s Context A shape is shown. MAFS.6.G.1.1

More information

Introduction to C++ Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 1

Introduction to C++ Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 1 Introduction to C++ Introduction to C++ Week 6 Dr Alex Martin 2013 Slide 1 Numerical Integration Methods The Trapezoidal Rule If one has an arbitrary function f(x) to be integrated over the region [a,b]

More information

A triangle that has three acute angles Example:

A triangle that has three acute angles Example: 1. acute angle : An angle that measures less than a right angle (90 ). 2. acute triangle : A triangle that has three acute angles 3. angle : A figure formed by two rays that meet at a common endpoint 4.

More information

Course Number: Course Title: Geometry

Course Number: Course Title: Geometry Course Number: 1206310 Course Title: Geometry RELATED GLOSSARY TERM DEFINITIONS (89) Altitude The perpendicular distance from the top of a geometric figure to its opposite side. Angle Two rays or two line

More information

1 Trigonometry. Copyright Cengage Learning. All rights reserved.

1 Trigonometry. Copyright Cengage Learning. All rights reserved. 1 Trigonometry Copyright Cengage Learning. All rights reserved. 1.1 Radian and Degree Measure Copyright Cengage Learning. All rights reserved. Objectives Describe angles. Use radian measure. Use degree

More information

COMPUTING AND DATA ANALYSIS WITH EXCEL. Numerical integration techniques

COMPUTING AND DATA ANALYSIS WITH EXCEL. Numerical integration techniques COMPUTING AND DATA ANALYSIS WITH EXCEL Numerical integration techniques Outline 1 Quadrature in one dimension Mid-point method Trapezium method Simpson s methods Uniform random number generation in Excel,

More information

USING THE DEFINITE INTEGRAL

USING THE DEFINITE INTEGRAL Print this page Chapter Eight USING THE DEFINITE INTEGRAL 8.1 AREAS AND VOLUMES In Chapter 5, we calculated areas under graphs using definite integrals. We obtained the integral by slicing up the region,

More information

Write down a formula for the surface area of a Prism and a Cylinder

Write down a formula for the surface area of a Prism and a Cylinder Write down a formula for the surface area of a Prism and a Cylinder Quiz Thursday Naming Figures Cross Sections Nets Lateral Area, Surface Area Prisms and cylinders have 2 congruent parallel bases. A lateral

More information

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. Volume: The Shell Method Copyright Cengage Learning. All rights reserved. Objectives Find the volume of a solid of revolution

More information

FORMULAS to UNDERSTAND & MEMORIZE

FORMULAS to UNDERSTAND & MEMORIZE 1 of 6 FORMULAS to UNDERSTAND & MEMORIZE Now we come to the part where you need to just bear down and memorize. To make the process a bit simpler, I am providing all of the key info that they re going

More information

The radius for a regular polygon is the same as the radius of the circumscribed circle.

The radius for a regular polygon is the same as the radius of the circumscribed circle. Perimeter and Area The perimeter and area of geometric shapes are basic properties that we need to know. The more complex a shape is, the more complex the process can be in finding its perimeter and area.

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral More on Area More on Area Integrating the vertical separation gives Riemann Sums of the form More on Area Example Find the area A of the set shaded in Figure

More information

2.1. Rectangular Coordinates and Graphs. 2.1 Rectangular Coordinates and Graphs 2.2 Circles 2.3 Functions 2.4 Linear Functions. Graphs and Functions

2.1. Rectangular Coordinates and Graphs. 2.1 Rectangular Coordinates and Graphs 2.2 Circles 2.3 Functions 2.4 Linear Functions. Graphs and Functions 2 Graphs and Functions 2 Graphs and Functions 2.1 Rectangular Coordinates and Graphs 2.2 Circles 2.3 Functions 2.4 Linear Functions Sections 2.1 2.4 2008 Pearson Addison-Wesley. All rights reserved Copyright

More information

Double Integration: Non-Rectangular Domains

Double Integration: Non-Rectangular Domains Double Integration: Non-Rectangular Domains Thomas Banchoff and Associates June 18, 2003 1 Introduction In calculus of one variable, all domains are intervals which are subsets of the line. In calculus

More information

Appendix E. Plane Geometry

Appendix E. Plane Geometry Appendix E Plane Geometry A. Circle A circle is defined as a closed plane curve every point of which is equidistant from a fixed point within the curve. Figure E-1. Circle components. 1. Pi In mathematics,

More information

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31 CHAPTER Quadratic Functions Arches are used to support the weight of walls and ceilings in buildings. Arches were first used in architecture by the Mesopotamians over 4000 years ago. Later, the Romans

More information

Free Response. Test A. 1. What is the estimated area of the figure?

Free Response. Test A. 1. What is the estimated area of the figure? Test A 1. What is the estimated area of the 6. An 8.5 in. by 11 in. sheet of paper is enlarged to make a poster by doubling its length and width. What is the new perimeter? 7. How does the area of a square

More information

4.7 Approximate Integration

4.7 Approximate Integration 4.7 Approximate Integration Some anti-derivatives are difficult to impossible to find. For example, 1 0 e x2 dx or 1 1 1 + x3 dx We came across this situation back in calculus I when we introduced the

More information

Chapter 2. The Midpoint Formula:

Chapter 2. The Midpoint Formula: Chapter 2 The Midpoint Formula: Sometimes you need to find the point that is exactly between two other points. For instance, you might need to find a line that bisects (divides into equal halves) a given

More information

Geometry Unit 5 Geometric and Algebraic Connections. Table of Contents

Geometry Unit 5 Geometric and Algebraic Connections. Table of Contents Geometry Unit 5 Geometric and Algebraic Connections Table of Contents Lesson 5 1 Lesson 5 2 Distance.p. 2-3 Midpoint p. 3-4 Partitioning a Directed Line. p. 5-6 Slope. p.7-8 Lesson 5 3 Revisit: Graphing

More information

Indiana State Math Contest Geometry

Indiana State Math Contest Geometry Indiana State Math Contest 018 Geometry This test was prepared by faculty at Indiana University - Purdue University Columbus Do not open this test booklet until you have been advised to do so by the test

More information

Unit 7: 3D Figures 10.1 & D formulas & Area of Regular Polygon

Unit 7: 3D Figures 10.1 & D formulas & Area of Regular Polygon Unit 7: 3D Figures 10.1 & 10.2 2D formulas & Area of Regular Polygon NAME Name the polygon with the given number of sides: 3-sided: 4-sided: 5-sided: 6-sided: 7-sided: 8-sided: 9-sided: 10-sided: Find

More information

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1

Geometry Vocabulary Math Fundamentals Reference Sheet Page 1 Math Fundamentals Reference Sheet Page 1 Acute Angle An angle whose measure is between 0 and 90 Acute Triangle A that has all acute Adjacent Alternate Interior Angle Two coplanar with a common vertex and

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms:

Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms: Geometry I Can Statements I can describe the undefined terms: point, line, and distance along a line in a plane I can describe the undefined terms: point, line, and distance along a line in a plane I can

More information

WebAssign Lesson 1-2a Area Between Curves (Homework)

WebAssign Lesson 1-2a Area Between Curves (Homework) WebAssign Lesson 1-2a Area Between Curves (Homework) Current Score : / 30 Due : Thursday, June 26 2014 11:00 AM MDT Jaimos Skriletz Math 175, section 31, Summer 2 2014 Instructor: Jaimos Skriletz 1. /3

More information

An Archimedean Walk. Modeling in Sketchpad

An Archimedean Walk. Modeling in Sketchpad An Archimedean Walk Archimedes is a well-known Greek mathematician, born in 287 BC. Building on many of Euclid s theorems and postulates of Geometry, Archimedes brought the idea of iteration to studying

More information

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system

CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH Warm-Up: See Solved Homework questions. 2.2 Cartesian coordinate system CHAPTER 2 REVIEW COORDINATE GEOMETRY MATH6 2.1 Warm-Up: See Solved Homework questions 2.2 Cartesian coordinate system Coordinate axes: Two perpendicular lines that intersect at the origin O on each line.

More information

Chapter 8: Applications of Definite Integrals

Chapter 8: Applications of Definite Integrals Name: Date: Period: AP Calc AB Mr. Mellina Chapter 8: Applications of Definite Integrals v v Sections: 8.1 Integral as Net Change 8.2 Areas in the Plane v 8.3 Volumes HW Sets Set A (Section 8.1) Pages

More information

If ( ) is approximated by a left sum using three inscribed rectangles of equal width on the x-axis, then the approximation is

If ( ) is approximated by a left sum using three inscribed rectangles of equal width on the x-axis, then the approximation is More Integration Page 1 Directions: Solve the following problems using the available space for scratchwork. Indicate your answers on the front page. Do not spend too much time on any one problem. Note:

More information

Angles. An angle is: the union of two rays having a common vertex.

Angles. An angle is: the union of two rays having a common vertex. Angles An angle is: the union of two rays having a common vertex. Angles can be measured in both degrees and radians. A circle of 360 in radian measure is equal to 2π radians. If you draw a circle with

More information

Hustle Geometry SOLUTIONS MAΘ National Convention 2018 Answers:

Hustle Geometry SOLUTIONS MAΘ National Convention 2018 Answers: Hustle Geometry SOLUTIONS MAΘ National Convention 08 Answers:. 50.. 4. 8 4. 880 5. 6. 6 7 7. 800π 8. 6 9. 8 0. 58. 5.. 69 4. 0 5. 57 6. 66 7. 46 8. 6 9. 0.. 75. 00. 80 4. 8 5 5. 7 8 6+6 + or. Hustle Geometry

More information

Moore Catholic High School Math Department

Moore Catholic High School Math Department Moore Catholic High School Math Department Geometry Vocabulary The following is a list of terms and properties which are necessary for success in a Geometry class. You will be tested on these terms during

More information

5 Applications of Definite Integrals

5 Applications of Definite Integrals 5 Applications of Definite Integrals The previous chapter introduced the concepts of a definite integral as an area and as a limit of Riemann sums, demonstrated some of the properties of integrals, introduced

More information

Area. Domain 4 Lesson 25. Getting the Idea

Area. Domain 4 Lesson 25. Getting the Idea Domain 4 Lesson 5 Area Common Core Standard: 7.G.6 Getting the Idea The area of a figure is the number of square units inside the figure. Below are some formulas that can be used to find the areas of common

More information

Chapter 5 Accumulating Change: Limits of Sums and the Definite Integral

Chapter 5 Accumulating Change: Limits of Sums and the Definite Integral Chapter 5 Accumulating Change: Limits of Sums and the Definite Integral 5.1 Results of Change and Area Approximations So far, we have used Excel to investigate rates of change. In this chapter we consider

More information

SOL Chapter Due Date

SOL Chapter Due Date Name: Block: Date: Geometry SOL Review SOL Chapter Due Date G.1 2.2-2.4 G.2 3.1-3.5 G.3 1.3, 4.8, 6.7, 9 G.4 N/A G.5 5.5 G.6 4.1-4.7 G.7 6.1-6.6 G.8 7.1-7.7 G.9 8.2-8.6 G.10 1.6, 8.1 G.11 10.1-10.6, 11.5,

More information

Prime Time (Factors and Multiples)

Prime Time (Factors and Multiples) CONFIDENCE LEVEL: Prime Time Knowledge Map for 6 th Grade Math Prime Time (Factors and Multiples). A factor is a whole numbers that is multiplied by another whole number to get a product. (Ex: x 5 = ;

More information

Unit E Geometry Unit Review Packet

Unit E Geometry Unit Review Packet Unit E Geometry Unit Review Packet Name Directions: Do ALL (A) Questions. Check Your Answers to (A) Questions. If ALL (A) Questions are correct, skip (B) Questions and move onto next I can statement. If

More information

Exam 2 Review. 2. What the difference is between an equation and an expression?

Exam 2 Review. 2. What the difference is between an equation and an expression? Exam 2 Review Chapter 1 Section1 Do You Know: 1. What does it mean to solve an equation? 2. What the difference is between an equation and an expression? 3. How to tell if an equation is linear? 4. How

More information

Number/Computation. addend Any number being added. digit Any one of the ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9

Number/Computation. addend Any number being added. digit Any one of the ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 14 Number/Computation addend Any number being added algorithm A step-by-step method for computing array A picture that shows a number of items arranged in rows and columns to form a rectangle associative

More information

Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves (Part 2) Overview of Area Between Two Curves

Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves (Part 2) Overview of Area Between Two Curves Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves (Part 2) III. Overview of Area Between Two Curves With a few modifications the area under a curve represented by a definite integral can

More information

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations.

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations. Objectives Sketch the graph of a curve given by a set of parametric equations. Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve. Understand

More information

February 07, Dimensional Geometry Notebook.notebook. Glossary & Standards. Prisms and Cylinders. Return to Table of Contents

February 07, Dimensional Geometry Notebook.notebook. Glossary & Standards. Prisms and Cylinders. Return to Table of Contents Prisms and Cylinders Glossary & Standards Return to Table of Contents 1 Polyhedrons 3-Dimensional Solids A 3-D figure whose faces are all polygons Sort the figures into the appropriate side. 2. Sides are

More information

1) Find. a) b) c) d) e) 2) The function g is defined by the formula. Find the slope of the tangent line at x = 1. a) b) c) e) 3) Find.

1) Find. a) b) c) d) e) 2) The function g is defined by the formula. Find the slope of the tangent line at x = 1. a) b) c) e) 3) Find. 1 of 7 1) Find 2) The function g is defined by the formula Find the slope of the tangent line at x = 1. 3) Find 5 1 The limit does not exist. 4) The given function f has a removable discontinuity at x

More information

Area of Triangles and Trapezoids

Area of Triangles and Trapezoids Practice A Complete. Write triangle or trapezoid. 1. The area of a is half the product of its base and its height. 2. The area of a is the product of half its height and the sum of its bases. _ Find the

More information

Elementary Planar Geometry

Elementary Planar Geometry Elementary Planar Geometry What is a geometric solid? It is the part of space occupied by a physical object. A geometric solid is separated from the surrounding space by a surface. A part of the surface

More information

Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry.

Geometry. Geometry is the study of shapes and sizes. The next few pages will review some basic geometry facts. Enjoy the short lesson on geometry. Geometry Introduction: We live in a world of shapes and figures. Objects around us have length, width and height. They also occupy space. On the job, many times people make decision about what they know

More information

Module 5 Key Concepts

Module 5 Key Concepts Module 5 Key Concepts 1. You need to be able to find the area of rectangles, parallelograms, and triangles using their formulas. 4 in. 8 cm 6 cm 5 cm 4 cm 5 cm 9 in. 12 cm rectangle 2 sets of parallel

More information

Functions. Copyright Cengage Learning. All rights reserved.

Functions. Copyright Cengage Learning. All rights reserved. Functions Copyright Cengage Learning. All rights reserved. 2.2 Graphs Of Functions Copyright Cengage Learning. All rights reserved. Objectives Graphing Functions by Plotting Points Graphing Functions with

More information

Lesson 21: Surface Area

Lesson 21: Surface Area Lesson 21: Surface Area Classwork Opening Exercise: Surface Area of a Right Rectangular Prism On the provided grid, draw a net representing the surfaces of the right rectangular prism (assume each grid

More information

Area and Perimeter Name: Date:

Area and Perimeter Name: Date: Area and Perimeter Name: Date: RECTANGLE: PARALLELOGRAM: TRIANGLE: TRAPEZOID: PERIMETER: 1. Plot the following points on the graph above: R(-3, 2), T(-3, 7), W(-9, 2), S(-9, 7). Now connect the points.

More information

The Fundamental Theorem of Calculus Using the Rule of Three

The Fundamental Theorem of Calculus Using the Rule of Three The Fundamental Theorem of Calculus Using the Rule of Three A. Approimations with Riemann sums. The area under a curve can be approimated through the use of Riemann (or rectangular) sums: n Area f ( k

More information

Math 7 Glossary Terms

Math 7 Glossary Terms Math 7 Glossary Terms Absolute Value Absolute value is the distance, or number of units, a number is from zero. Distance is always a positive value; therefore, absolute value is always a positive value.

More information

High School Geometry. Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics

High School Geometry. Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics High School Geometry Correlation of the ALEKS course High School Geometry to the ACT College Readiness Standards for Mathematics Standard 5 : Graphical Representations = ALEKS course topic that addresses

More information

Geometry CP. Unit 1 Notes

Geometry CP. Unit 1 Notes Geometry CP Unit 1 Notes 1.1 The Building Blocks of Geometry The three most basic figures of geometry are: Points Shown as dots. No size. Named by capital letters. Are collinear if a single line can contain

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

7 th GRADE PLANNER Mathematics. Lesson Plan # QTR. 3 QTR. 1 QTR. 2 QTR 4. Objective

7 th GRADE PLANNER Mathematics. Lesson Plan # QTR. 3 QTR. 1 QTR. 2 QTR 4. Objective Standard : Number and Computation Benchmark : Number Sense M7-..K The student knows, explains, and uses equivalent representations for rational numbers and simple algebraic expressions including integers,

More information

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees Geometry Vocabulary acute angle-an angle measuring less than 90 degrees angle-the turn or bend between two intersecting lines, line segments, rays, or planes angle bisector-an angle bisector is a ray that

More information

TTUSD Math Essential Standards Matrix 4/16/10 NUMBER SENSE

TTUSD Math Essential Standards Matrix 4/16/10 NUMBER SENSE TTUSD Math Essential Standards Matrix 4/16/10 NUMBER SENSE 3 rd 4 th 5 th 6th 1.1 Read and write whole numbers in the millions 1.2 Order and compare whole numbers and decimals to two decimal places. 1.1

More information

3.1 Deepening Understandings of Volume Parts 1_2.notebook. September 05, 2018 M Jun 27 10:28 AM

3.1 Deepening Understandings of Volume Parts 1_2.notebook. September 05, 2018 M Jun 27 10:28 AM M1 115 Jun 27 10:28 AM 1 Learning Targets Jun 20 10:53 AM 2 9/4 /18 # Glue pages 1 & 2 into notebook M1: 3.1 Deepening Understanding of Volume Essential Question: How can you use what you know to calculate

More information

GEOMETRY. slide #3. 6th Grade Math Unit 7. 6th Grade Unit 7: GEOMETRY. Name: Table of Contents. Area of Rectangles

GEOMETRY. slide #3. 6th Grade Math Unit 7. 6th Grade Unit 7: GEOMETRY. Name: Table of Contents. Area of Rectangles Name: 6th Grade Math Unit 7 GEOMETRY 2012 10 17 www.njctl.org 1 Table of Contents Area of Rectangles Area of Parallelograms Area of Triangles Area of Trapezoids Mixed Review Area of Irregular Figures Area

More information

Length and Area. Charles Delman. April 20, 2010

Length and Area. Charles Delman. April 20, 2010 Length and Area Charles Delman April 20, 2010 What is the length? Unit Solution Unit 5 (linear) units What is the length? Unit Solution Unit 5 2 = 2 1 2 (linear) units What is the perimeter of the shaded

More information

pine cone Ratio = 13:8 or 8:5

pine cone Ratio = 13:8 or 8:5 Chapter 10: Introducing Geometry 10.1 Basic Ideas of Geometry Geometry is everywhere o Road signs o Carpentry o Architecture o Interior design o Advertising o Art o Science Understanding and appreciating

More information

Geometry Foundations Planning Document

Geometry Foundations Planning Document Geometry Foundations Planning Document Unit 1: Chromatic Numbers Unit Overview A variety of topics allows students to begin the year successfully, review basic fundamentals, develop cooperative learning

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved.

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved. 9.5 Polar Coordinates Copyright Cengage Learning. All rights reserved. Introduction Representation of graphs of equations as collections of points (x, y), where x and y represent the directed distances

More information

B.Stat / B.Math. Entrance Examination 2017

B.Stat / B.Math. Entrance Examination 2017 B.Stat / B.Math. Entrance Examination 017 BOOKLET NO. TEST CODE : UGA Forenoon Questions : 0 Time : hours Write your Name, Registration Number, Test Centre, Test Code and the Number of this Booklet in

More information

Circumference of a Circle

Circumference of a Circle Circumference of a Circle The line segment AB, AB = 2r, and its interior point X are given. The sum of the lengths of semicircles over the diameters AX and XB is 3πr; πr; 3 2 πr; 5 4 πr; 1 2 πr; Šárka

More information

Geometry R. Unit 12 Coordinate Geometry. Day Classwork Day Homework Wednesday 3/7 Thursday 3/8 Friday 3/9

Geometry R. Unit 12 Coordinate Geometry. Day Classwork Day Homework Wednesday 3/7 Thursday 3/8 Friday 3/9 Geometry R Unit 12 Coordinate Geometry Day Classwork Day Homework Wednesday 3/7 Thursday 3/8 Friday 3/9 Unit 11 Test Review Equations of Lines 1 HW 12.1 Perimeter and Area of Triangles in the Coordinate

More information

MANHATTAN HUNTER SCIENCE HIGH SCHOOL GEOMETRY CURRICULUM

MANHATTAN HUNTER SCIENCE HIGH SCHOOL GEOMETRY CURRICULUM COORDINATE Geometry Plotting points on the coordinate plane. Using the Distance Formula: Investigate, and apply the Pythagorean Theorem as it relates to the distance formula. (G.GPE.7, 8.G.B.7, 8.G.B.8)

More information

Addition Properties. Properties something you cannot disprove always true. *You must memorize these properties!

Addition Properties. Properties something you cannot disprove always true. *You must memorize these properties! Addition Properties Properties something you cannot disprove always true. *You must memorize these properties! 1) Commutative property of addition changing the order of addends will not change the sum

More information

Learning Objectives. Continuous Random Variables & The Normal Probability Distribution. Continuous Random Variable

Learning Objectives. Continuous Random Variables & The Normal Probability Distribution. Continuous Random Variable Learning Objectives Continuous Random Variables & The Normal Probability Distribution 1. Understand characteristics about continuous random variables and probability distributions 2. Understand the uniform

More information

Objectives: Find a function that models a problem and apply the techniques from 4.1, 4.2, and 4.3 the find the optimal or best value.

Objectives: Find a function that models a problem and apply the techniques from 4.1, 4.2, and 4.3 the find the optimal or best value. Objectives: Find a function that models a problem and apply the techniques from 4.1, 4., and 4.3 the find the optimal or best value. Suggested procedure: Step 1. Draw a picture! Label variables and known

More information

An Introduction to Double Integrals Math Insight

An Introduction to Double Integrals Math Insight An Introduction to Double Integrals Math Insight Suppose that you knew the hair density at each point on your head and you wanted to calculate the total number of hairs on your head. In other words, let

More information

Modeling with Geometry

Modeling with Geometry Modeling with Geometry 6.3 Parallelograms https://mathbitsnotebook.com/geometry/quadrilaterals/qdparallelograms.html Properties of Parallelograms Sides A parallelogram is a quadrilateral with both pairs

More information

I can position figures in the coordinate plane for use in coordinate proofs. I can prove geometric concepts by using coordinate proof.

I can position figures in the coordinate plane for use in coordinate proofs. I can prove geometric concepts by using coordinate proof. Page 1 of 14 Attendance Problems. 1. Find the midpoint between (0, x) and (y, z).. One leg of a right triangle has length 1, and the hypotenuse has length 13. What is the length of the other leg? 3. Find

More information

8. prove that triangle is a scalene triangle, right triangle, and/or an isosceles triangle. (evaluation)

8. prove that triangle is a scalene triangle, right triangle, and/or an isosceles triangle. (evaluation) Subject: Geometry Unit: Analytic Geometry Grade: 10 Students will: 1. compare parallel and perpendicular slopes. (analysis) 2. find the slope of a line given two points. (application) 3. find the length

More information

Course Outlines. Elementary Mathematics (Grades K-5) Kids and Numbers (Recommended for K-1 students)

Course Outlines. Elementary Mathematics (Grades K-5) Kids and Numbers (Recommended for K-1 students) Course Outlines Elementary Mathematics (Grades K-5) Kids and Numbers (Recommended for K-1 students) Shapes and Patterns. Grouping objects by similar properties. Identifying simple figures within a complex

More information

MATH 122 FINAL EXAM WINTER March 15, 2011

MATH 122 FINAL EXAM WINTER March 15, 2011 MATH 1 FINAL EXAM WINTER 010-011 March 15, 011 NAME: SECTION: ONLY THE CORRECT ANSWER AND ALL WORK USED TO REACH IT WILL EARN FULL CREDIT. Simplify all answers as much as possible unless explicitly stated

More information