A MIXED QUADRATURE FORMULA USING RULES OF LOWER ORDER

Size: px
Start display at page:

Download "A MIXED QUADRATURE FORMULA USING RULES OF LOWER ORDER"

Transcription

1 Bulletin of the Marathwada Mathematical Society Vol.5, No., June 004, Pages 6-4 ABSTRACT A MIXED QUADRATURE FORMULA USING RULES OF LOWER ORDER Namita Das And Sudhir Kumar Pradhan P.G. Department of Mathematics Sambalpur University, Jyoti Vihar Burla, Sambalpur, Orissa, India. In this paper we have derived a mixed quadrature rule of precision seven using quadrature rules of lower precisions. Key words: symmetric, quadrature, Legendre polynomial 99 Mathematics subject classification: Primary, 6D6; secondary 6D99. INTRODUCTION The numerical methods for the approximate evalution of the real definite integrals of the form I (f) = b a f(x) dx () are broadly of two types, i.e. (i) Newton-Cotes-type and (ii) Gauss-type. In n-point Newt on-cotes-type methods, t he nodes are a (b a)k x k a, set of equidistant points x n k, k = 0,,..., n-, where,while in n-point Gauss-type methods the nodes are the zeros of the n th degree Legendre polynomial, which are irrational numbers in general. Among the above numerical integration methods, we find that computational efforts being equal, Gaussian-integration yields the most accurate results. However, Newton-Cotes-type methods are most suitable for hand calculation since the nodes and weights associated with the rules are simple rational numbers. Usually by increasing the value of n in both of the above

2 7 methods, we can optimise the accuracy of approximation of the definite integral in (). But in n-point Newton-Cotes-type methods, large value of n (n 8, n 9) is not recommended since as a consequence of the negativeness of some of the weights there may be a loss of significant digits in the result. In Gauss-type methods, the computational complexity for the evaluation of all the zeros of the n th degree Legendre polynomial increases for large n. Also in most of the cases either an appropriate derivative of the integrand does not exist or it is difficult to determine. Keeping these facts in view we desire to construct a symmetric quadrature rule of precision seven which is a linear combination of three other rules of equal precision three. Here we have considered the integrals of the type I(f) f(x) dx () instead of the integrals of the type in () in view of the fact that any two closed intervals in R are homoeomorphic to each other. The construction of the rule is outlined in the following section.. CONSTRUCTION OF THE RULE OF PRECISION SEVEN We choose Simpson s / rd rule Simpson s /8 rule f(x) dx R s (f) = [f (-) + 4 f (0) + f() ]. () f(x) dx R s (/8) (f) = [f (-) + f(- ) + f ( ) + f()], (4) 4 and the Gauss-Legendre two points rule f(x) dx R (f) f( ) f( ). Each of the rules (), (4) and (5), is of precision three. Let E s (f), E s(/8) (f) and E (f) denote the error in approximating the integral I (f) by the rules (), (4) and (5), respectively, Then I(f) = Rs(f) + Es(f) (6) (5)

3 8 and I(f) = Rs (/8) (f) + Es (/8) (f) (7) and I(f) = R (f) + E (f) (8) Now assuming f to be sufficiently differentiable in < x < we can express the errors associated with quadrature rules under reference as (8) (4) (6) 4 f (0) E (f) f (0) f (0).... s ! (6) (8) (4) 68 f (0) 608 f (0) E (f) f (0)... s(/8) ! 87 8! (6) (8) (4) 40 f (0) 6 f (0) E (f) f (0) ! 8 8! Now multiplying the equations (6), (7) and (8) by, -7 and 0 respectively and adding the results we obtain I(f) where R [R 5 S S 0R (f) E S 7R (f) ] 5 [E S E 7E R (f) R 0R 7R S 8 5 (9) S ( / ) S is the desired quadrature rule of precision seven for the approximate evaluation of (f), and the truncation error generated in this approximation is given by E (f) [E 0E 7E ] S 5 S (8) f ( 0)....( 0) The rule (9) may be called a mixed-type rule as it is constructed from different types of rules of the same precision. Remark. : The mixed quadrature rule R S (f) as described in (9) is a symmetric quadrature rule because R S 0R 7R 47 f (-) + 0 f = 8 - f f(0). ]

4 8 - f f f ().. ERROR ANALYSIS An asymptotic error estimate and an error bound of the rule (9) is given in theorem. and theorem., respectively. Theorem. : Let f(x) be a sufficiently differentiable function in the closed interval [-, ]. Then the error E S (f) associated with the rule R S (f) is given by (8) 64 f (0) E (f). S 85 8! () Proof : Follows from equation (0). Theorem. is given by where The bound for the truncation error E (f) = I(f) - R (f) S S E (f) 4M () S 5 M max x [,] f (5) (x). (4) Proof : E (f) f (η ), S 90 (4) E (f) f (η ), 5 (4) and E (f) f (η ), 405 (Refer to Conte and de Boor [].) η [,], η η [,], [,].

5 So E S (f) 0 [E (f) 0E 5 S (f) 7E 6 (4) (4) (4) f (η ) f (η ) f (η ) Let K = max f (4) (x) and k = min x x f (4) (x). As f 4 (x) is continuous and [-,] is compact, hence there exist points a and b in the interval [-,] such that K= f (4) (a) and k = f (4) (b). Thus E by S Hence 6 (4) (4) (4) (f) f (b) f (a) f (b) (4) (4) f (a) f (b) 5 (5) (a b)f ( ) for some ξ [,] 5 Mean value theorem, []. (f)] where E S (f) a b f ( 4M (5) ), 5 5 max M = f (5) (x). x [-,] 4. NUMERICAL VERIFICATION The approximate values of the integrals I (f) I (f) I (f) I (f) x e dx e x dx dx x sin x dx x

6 have been obtained by using the C-program given at the end of this section. In the program, R mixed (f) denotes the quadrature rule R The program evaluates simulataneously the values of the S (f). above integrals using the rules Rs(f), R, R s(/8) and R mixed (f). The approximate values of the integrals are shown in the Table and they are compared with the value V which is obtained by composite Simpson s / rd rule taking 500 sub-intervals. (For reference we have also given a C-program of composite Simpon s rule at the end of the section). In each case it is found that the approximation R mixed (f) is superior to the approximations R s (f), R (f), R s(/8) (f). Table- Quadratue Approximate values of rules I (f) I (f) I (f) I 4 (f) R s (f) R (f) R (f) R mixed (f) Value V

7 /* composite simpsons _rule */ # include < stdio.h > # include < math.h > # include < limits.h > # include < float.h > # include < conio.h > # define M 0 /* no. of sub intervals (even no.)*/ void main ( ) int a,b; double f; double simpson (int,int,int); clrscr ( ); print f ( input the limts of integration:a,b\n ); scan f ( % d % d,&a, &b); print f (The function in this programme is f(x) = exp(x)\n ); f = simpson (a, b, M); print f ( no of subintervals = % d and value of intetral = % 5.0f\ n,m,f); getch ( ); double simpson (int A, int B, int N) int I=; double funct ( double); double simp; double H, sum, x; float sum, sum; H = (B-A)/(double)N; sum = funct ((double) A)+funct ((double) B); sum = 0, 0; while (I < = N - ) x = A + I * H; sum + = funct (x); I + = ; I = ; sum = 0, 0;

8 while (I < = N - ) x = A + I * H; sum + = funct (x); + = ; simp = H * (sum * sum +.0 * sum )/.0; return(simp); double funct (double p) long double F; F = exp (p); return F; /* A mixed quadrature rule*/ # include < stdio.h > # include < math.h > # include < limits.h > # include < float.h > # include < conio.h > void main( ) double p, q, RS, R, RS_8, RMIXED; double funct (double); /* RS = value of the integral using Simpson s rule */ / *R = value of the integral using Gauss _ point rule*/ /* RS_8 = value of the integral using Simpson s _8th rule */ /* RMIXED = value of the integral using Mixed quadrature rule*/ clrscr( ); print f ( \the limits of integration is -to \n ); print f (\t (if necessary change the interval [a,b] to [-,].\n\n ); p = sqrt ((double)); q = (double); RS = (funct((double)-) + 4 * funct ((double)0) + funct((double))/.0; R = funct (-/p) + funct (/p); RS_8 = (funct((double)-) + * (funct(-/q) + funct(/q)) + funct ((double)))/.0; RMIXED = ( * RS + 0 * R - 7 * RS_8)/5.0;

9 4 print f ( \t \t \t f(x) = exp(x)\n ); print f ( \n\n ); print f ( \t Quadrature rules \t Approximate values of I(f) \n ); print f ( \n\ ); print f ( \t RS(f) \t \t \t % 6.f \n,rs); print f ( \t R \t \t \t % 6.f\n,R); print f ( \t RS_8 \t \t \t % 6.f\n,RS_8); print f ( \t RMIXED \t \t \t % 6.f\n,RMIXED); print f ( \t Exact value \t \t \n ); getch( ); double funct (double p) double F; F = exp(p); return F; REFERENCES Conte, S.D.and Boor, C.: Elementary Numerical Analysis, rd ed., McGraw Hill, Singapore, 98.. Atkinson, K.E.,: An Introduction to Numerical Analysis, nd ed., John Wiley and Sons, New York, 989.

Numerical Integration

Numerical Integration Numerical Integration Numerical Integration is the process of computing the value of a definite integral, when the values of the integrand function, are given at some tabular points. As in the case of

More information

Numerical Methods with Matlab: Implementations and Applications. Gerald W. Recktenwald. Chapter 11 Numerical Integration

Numerical Methods with Matlab: Implementations and Applications. Gerald W. Recktenwald. Chapter 11 Numerical Integration Selected Solutions for Exercises in Numerical Methods with Matlab: Implementations and Applications Gerald W. Recktenwald Chapter 11 Numerical Integration The following pages contain solutions to selected

More information

Exercises C-Programming

Exercises C-Programming Exercises C-Programming Claude Fuhrer (claude.fuhrer@bfh.ch) 0 November 016 Contents 1 Serie 1 1 Min function.................................. Triangle surface 1............................... 3 Triangle

More information

Integration. Volume Estimation

Integration. Volume Estimation Monte Carlo Integration Lab Objective: Many important integrals cannot be evaluated symbolically because the integrand has no antiderivative. Traditional numerical integration techniques like Newton-Cotes

More information

Using Modified Euler Method (MEM) for the Solution of some First Order Differential Equations with Initial Value Problems (IVPs).

Using Modified Euler Method (MEM) for the Solution of some First Order Differential Equations with Initial Value Problems (IVPs). Using Modified Euler Method (MEM) for the Solution of some First Order Differential Equations with Initial Value Problems (IVPs). D.I. Lanlege, Ph.D. * ; U.M. Garba, B.Sc.; and A. Aluebho, B.Sc. Department

More information

nag 1d quad gauss 1 (d01tac)

nag 1d quad gauss 1 (d01tac) 1. Purpose nag 1d quad gauss 1 () nag 1d quad gauss 1 () computes an estimate of the definite integral of a function of known analytical form, using a Gaussian quadrature formula with a specified number

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

When implementing FEM for solving two-dimensional partial differential equations, integrals of the form

When implementing FEM for solving two-dimensional partial differential equations, integrals of the form Quadrature Formulas in Two Dimensions Math 57 - Finite Element Method Section, Spring Shaozhong Deng, PhD (shaodeng@unccedu Dept of Mathematics and Statistics, UNC at Charlotte When implementing FEM for

More information

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012 Problem # Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 490 Mark Sparks 01 Finding Anti-derivatives of Polynomial-Type Functions If you had to explain to someone how to find

More information

nag 1d quad gauss (d01bac)

nag 1d quad gauss (d01bac) 1. Purpose nag 1d quad gauss () nag 1d quad gauss () computes an estimate of the definite integral of a function of known analytical form, using a Gaussian quadrature formula with a specified number of

More information

Deccan Education Society s

Deccan Education Society s Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTONOMY SECOND YEAR B.Sc.(COMPUTER SCIENCE) MATHEMATICS SEMESTER III w.e.f. Academic Year 2017-2018 Deccan Education Society

More information

SYDE 312 UNIT 4: EXTRA QUADRATURE PROBLEMS

SYDE 312 UNIT 4: EXTRA QUADRATURE PROBLEMS SYDE 3 UNIT 4: EXTRA QUADRATURE PROBLEMS Problem E x x + Use f(x) = /x x + You can t use the Matlab gaussquad file in the provided form, because it implements composite Gauss-Legendre quadrature with multiple

More information

Truncation Errors. Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4.

Truncation Errors. Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4. Chapter 4: Roundoff and Truncation Errors Applied Numerical Methods with MATLAB for Engineers and Scientists, 2nd ed., Steven C. Chapra, McGraw Hill, 2008, Ch. 4. 1 Outline Errors Accuracy and Precision

More information

Math 225 Scientific Computing II Outline of Lectures

Math 225 Scientific Computing II Outline of Lectures Math 225 Scientific Computing II Outline of Lectures Spring Semester 2003 I. Interpolating polynomials Lagrange formulation of interpolating polynomial Uniqueness of interpolating polynomial of degree

More information

Natasha S. Sharma, PhD

Natasha S. Sharma, PhD Revisiting the function evaluation problem Most functions cannot be evaluated exactly: 2 x, e x, ln x, trigonometric functions since by using a computer we are limited to the use of elementary arithmetic

More information

Generalised Mean Averaging Interpolation by Discrete Cubic Splines

Generalised Mean Averaging Interpolation by Discrete Cubic Splines Publ. RIMS, Kyoto Univ. 30 (1994), 89-95 Generalised Mean Averaging Interpolation by Discrete Cubic Splines By Manjulata SHRIVASTAVA* Abstract The aim of this work is to introduce for a discrete function,

More information

NAG Library Routine Document D01BAF.1

NAG Library Routine Document D01BAF.1 NAG Library Routine Document Note: before using this routine, please read the Users Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent

More information

and F is an antiderivative of f

and F is an antiderivative of f THE EVALUATION OF DEFINITE INTEGRALS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions Comments to ingrid.stewart@csn.edu. Thank you! We have finally reached a point,

More information

Deficient Quartic Spline Interpolation

Deficient Quartic Spline Interpolation International Journal of Computational Science and Mathematics. ISSN 0974-3189 Volume 3, Number 2 (2011), pp. 227-236 International Research Publication House http://www.irphouse.com Deficient Quartic

More information

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers

Unit 7 Number System and Bases. 7.1 Number System. 7.2 Binary Numbers. 7.3 Adding and Subtracting Binary Numbers. 7.4 Multiplying Binary Numbers Contents STRAND B: Number Theory Unit 7 Number System and Bases Student Text Contents Section 7. Number System 7.2 Binary Numbers 7.3 Adding and Subtracting Binary Numbers 7.4 Multiplying Binary Numbers

More information

THS Step By Step Calculus Chapter 3

THS Step By Step Calculus Chapter 3 Name: Class Period: Throughout this packet there will be blanks you are expected to fill in prior to coming to class. This packet follows your Larson Textbook. Do NOT throw away! Keep in 3 ring-binder

More information

APPM/MATH Problem Set 4 Solutions

APPM/MATH Problem Set 4 Solutions APPM/MATH 465 Problem Set 4 Solutions This assignment is due by 4pm on Wednesday, October 16th. You may either turn it in to me in class on Monday or in the box outside my office door (ECOT 35). Minimal

More information

Higher-Order Newton-Cotes Formulas

Higher-Order Newton-Cotes Formulas Journal of Mathematics and Statistics 6 (): 19-0, 010 ISSN 159-6 010 Science Publications Higher-Order Newton-Cotes Formulas Pedro Americo Almeida Magalhaes Junior and Cristina Almeida Magalhaes Pontificia

More information

Chapter 1 Getting Started Structured Programming 1

Chapter 1 Getting Started Structured Programming 1 Chapter 1 Getting Started 204112 Structured Programming 1 Outline Introduction to Programming Algorithm Programming Style The printf( ) Function Common Programming Errors Introduction to Modularity Top-Down

More information

UNIT-II NUMBER THEORY

UNIT-II NUMBER THEORY UNIT-II NUMBER THEORY An integer n is even if, and only if, n equals twice some integer. i.e. if n is an integer, then n is even an integer k such that n =2k An integer n is odd if, and only if, n equals

More information

Module 2: Single Step Methods Lecture 4: The Euler Method. The Lecture Contains: The Euler Method. Euler's Method (Analytical Interpretations)

Module 2: Single Step Methods Lecture 4: The Euler Method. The Lecture Contains: The Euler Method. Euler's Method (Analytical Interpretations) The Lecture Contains: The Euler Method Euler's Method (Analytical Interpretations) An Analytical Example file:///g /Numerical_solutions/lecture4/4_1.htm[8/26/2011 11:14:40 AM] We shall now describe methods

More information

Mathematics. Jaehyun Park. CS 97SI Stanford University. June 29, 2015

Mathematics. Jaehyun Park. CS 97SI Stanford University. June 29, 2015 Mathematics Jaehyun Park CS 97SI Stanford University June 29, 2015 Outline Algebra Number Theory Combinatorics Geometry Algebra 2 Sum of Powers n k=1 k 3 k 2 = 1 n(n + 1)(2n + 1) 6 = ( k ) 2 = ( 1 2 n(n

More information

Interpolation & Polynomial Approximation. Cubic Spline Interpolation II

Interpolation & Polynomial Approximation. Cubic Spline Interpolation II Interpolation & Polynomial Approximation Cubic Spline Interpolation II Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University

More information

Interpolation and Splines

Interpolation and Splines Interpolation and Splines Anna Gryboś October 23, 27 1 Problem setting Many of physical phenomenona are described by the functions that we don t know exactly. Often we can calculate or measure the values

More information

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method.

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. Reals 1 13 Reals Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. 13.1 Floating-point numbers Real numbers, those declared to be

More information

Convergence of C 2 Deficient Quartic Spline Interpolation

Convergence of C 2 Deficient Quartic Spline Interpolation Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 4 (2017) pp. 519-527 Research India Publications http://www.ripublication.com Convergence of C 2 Deficient Quartic Spline

More information

Computer Algebra Algorithms for Orthogonal Polynomials and Special Functions

Computer Algebra Algorithms for Orthogonal Polynomials and Special Functions Computer Algebra Algorithms for Orthogonal Polynomials and Special Functions Prof. Dr. Wolfram Koepf Department of Mathematics University of Kassel koepf@mathematik.uni-kassel.de http://www.mathematik.uni-kassel.de/~koepf

More information

SECOND SEMESTER BCA : Syllabus Copy

SECOND SEMESTER BCA : Syllabus Copy BCA203T: DATA STRUCTURES SECOND SEMESTER BCA : Syllabus Copy Unit-I Introduction and Overview: Definition, Elementary data organization, Data Structures, data structures operations, Abstract data types,

More information

Discrete Cubic Interpolatory Splines

Discrete Cubic Interpolatory Splines Publ RIMS, Kyoto Univ. 28 (1992), 825-832 Discrete Cubic Interpolatory Splines By Manjulata SHRIVASTAVA* Abstract In the present paper, existence, uniqueness and convergence properties of a discrete cubic

More information

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving The Bisection Method and Newton s Method. If f( x ) a function, then a number r for which f( r) 0 is called a zero or a root of the function f( x ), or a solution to the equation f( x) 0. You are already

More information

Functions. Edexcel GCE. Core Mathematics C3

Functions. Edexcel GCE. Core Mathematics C3 Edexcel GCE Core Mathematics C Functions Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your answers

More information

Review Initial Value Problems Euler s Method Summary

Review Initial Value Problems Euler s Method Summary THE EULER METHOD P.V. Johnson School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY OUTLINE 1 REVIEW 2 INITIAL

More information

Numerical Method (2068 Third Batch)

Numerical Method (2068 Third Batch) 1. Define the types of error in numerical calculation. Derive the formula for secant method and illustrate the method by figure. There are different types of error in numerical calculation. Some of them

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

COURSE: NUMERICAL ANALYSIS. LESSON: Methods for Solving Non-Linear Equations

COURSE: NUMERICAL ANALYSIS. LESSON: Methods for Solving Non-Linear Equations COURSE: NUMERICAL ANALYSIS LESSON: Methods for Solving Non-Linear Equations Lesson Developer: RAJNI ARORA COLLEGE/DEPARTMENT: Department of Mathematics, University of Delhi Page No. 1 Contents 1. LEARNING

More information

TEACHING & EXAMINATION SCHEME For the Examination COMPUTER SCIENCE. B.Sc. Part-I

TEACHING & EXAMINATION SCHEME For the Examination COMPUTER SCIENCE. B.Sc. Part-I TEACHING & EXAMINATION SCHEME For the Examination -2015 COMPUTER SCIENCE THEORY B.Sc. Part-I CS.101 Paper I Computer Oriented Numerical Methods and FORTRAN Pd/W Exam. Max. (45mts.) Hours Marks 150 2 3

More information

AMSC/CMSC 460 Final Exam, Fall 2007

AMSC/CMSC 460 Final Exam, Fall 2007 AMSC/CMSC 460 Final Exam, Fall 2007 Show all work. You may leave arithmetic expressions in any form that a calculator could evaluate. By putting your name on this paper, you agree to abide by the university

More information

Engineering Analysis ENG 3420 Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00

Engineering Analysis ENG 3420 Fall Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00 Engineering Analysis ENG 3420 Fall 2009 Dan C. Marinescu Office: HEC 439 B Office hours: Tu-Th 11:00-12:00 1 Lecture 24 Attention: The last homework HW5 and the last project are due on Tuesday November

More information

MAT Business Calculus - Quick Notes

MAT Business Calculus - Quick Notes MAT 136 - Business Calculus - Quick Notes Last Updated: 4/3/16 Chapter 2 Applications of Differentiation Section 2.1 Using First Derivatives to Find Maximum and Minimum Values and Sketch Graphs THE FIRST-DERIVATIVE

More information

Truss structural configuration optimization using the linear extended interior penalty function method

Truss structural configuration optimization using the linear extended interior penalty function method ANZIAM J. 46 (E) pp.c1311 C1326, 2006 C1311 Truss structural configuration optimization using the linear extended interior penalty function method Wahyu Kuntjoro Jamaluddin Mahmud (Received 25 October

More information

CGF Lecture 2 Numbers

CGF Lecture 2 Numbers CGF Lecture 2 Numbers Numbers A number is an abstract entity used originally to describe quantity. i.e. 80 Students etc The most familiar numbers are the natural numbers {0, 1, 2,...} or {1, 2, 3,...},

More information

Hybrid Newton-Cotes Integrals

Hybrid Newton-Cotes Integrals Hybrid Newton-Cotes Integrals 1 Hybrid Newton-Cotes Integrals By Namir C. Shammas Introduction Newton-Cotes integration methods are numerical methods for integration. These methods calculate the estimate

More information

The following information is for reviewing the material since Exam 3:

The following information is for reviewing the material since Exam 3: Outcomes List for Math 121 Calculus I Fall 2010-2011 General Information: The purpose of this Outcomes List is to give you a concrete summary of the material you should know, and the skills you should

More information

A Cumulative Averaging Method for Piecewise Polynomial Approximation to Discrete Data

A Cumulative Averaging Method for Piecewise Polynomial Approximation to Discrete Data Applied Mathematical Sciences, Vol. 1, 16, no. 7, 331-343 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/1.1988/ams.16.5177 A Cumulative Averaging Method for Piecewise Polynomial Approximation to Discrete

More information

Curriculum Map: Mathematics

Curriculum Map: Mathematics Curriculum Map: Mathematics Course: Honors Advanced Precalculus and Trigonometry Grade(s): 11-12 Unit 1: Functions and Their Graphs This chapter will develop a more complete, thorough understanding of

More information

f(0.2) < 0 and f(0.3) > 0 f(1.2) > 0 and f(1.3) < 0 f(1) = 1 > 0 and f(2) 0.

f(0.2) < 0 and f(0.3) > 0 f(1.2) > 0 and f(1.3) < 0 f(1) = 1 > 0 and f(2) 0. 1. [Burden and Faires, Section 1.1 Problem 1]. Show that the following equations have at least one solution in the given intervals. a. xcosx 2x 2 +3x 1 = 0 on [0.2,0.3] and [1.2,1.3]. Let f(x) = xcosx

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Calculus II - Problem Solving Drill 23: Graphing Utilities in Calculus

Calculus II - Problem Solving Drill 23: Graphing Utilities in Calculus Calculus II - Problem Solving Drill 3: Graphing Utilities in Calculus Question No. 1 of 10 Question 1. Find the approximate maximum point of y = x + 5x + 9. Give your answer correct to two decimals. Question

More information

Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each.

Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each. Math 106/108 Final Exam Page 1 Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each. 1. Factor completely. Do not solve. a) 2x

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

A Study on Numerical Exact Solution of Euler, Improved Euler and Runge - Kutta Method

A Study on Numerical Exact Solution of Euler, Improved Euler and Runge - Kutta Method A Study on Numerical Exact Solution of Euler, Improved Euler and Runge - Kutta Method Mrs. P. Sampoornam P.K.R Arts College for Women, Gobichettipalayam Abstract: In this paper, I will discuss the Runge

More information

8 Piecewise Polynomial Interpolation

8 Piecewise Polynomial Interpolation Applied Math Notes by R. J. LeVeque 8 Piecewise Polynomial Interpolation 8. Pitfalls of high order interpolation Suppose we know the value of a function at several points on an interval and we wish to

More information

Thursday 14 June 2012 Morning

Thursday 14 June 2012 Morning Thursday 4 June 202 Morning A2 GCE MATHEMATICS 4726 Further Pure Mathematics 2 QUESTION PAPER *47325062* Candidates answer on the Printed Answer Book. OCR supplied materials: Printed Answer Book 4726 List

More information

Math 226A Homework 4 Due Monday, December 11th

Math 226A Homework 4 Due Monday, December 11th Math 226A Homework 4 Due Monday, December 11th 1. (a) Show that the polynomial 2 n (T n+1 (x) T n 1 (x)), is the unique monic polynomial of degree n + 1 with roots at the Chebyshev points x k = cos ( )

More information

Power Series and Summation

Power Series and Summation Power Series and Summation Prof. Dr. Wolfram Koepf Department of Mathematics University of Kassel koepf@mathematik.uni-kassel.de http://www.mathematik.uni-kassel.de/~koepf Tutorial ISSAC 2004 Santander,

More information

Table for Third-Degree Spline Interpolation Using Equi-Spaced Knots. By W. D. Hoskins

Table for Third-Degree Spline Interpolation Using Equi-Spaced Knots. By W. D. Hoskins MATHEMATICS OF COMPUTATION, VOLUME 25, NUMBER 116, OCTOBER, 1971 Table for Third-Degree Spline Interpolation Using Equi-Spaced Knots By W. D. Hoskins Abstract. A table is given for the calculation of the

More information

Exercises for a Numerical Methods Course

Exercises for a Numerical Methods Course Exercises for a Numerical Methods Course Brian Heinold Department of Mathematics and Computer Science Mount St. Mary s University November 18, 2017 1 / 73 About the class Mix of Math and CS students, mostly

More information

HSC Mathematics - Extension 1. Workshop E2

HSC Mathematics - Extension 1. Workshop E2 HSC Mathematics - Extension Workshop E Presented by Richard D. Kenderdine BSc, GradDipAppSc(IndMaths), SurvCert, MAppStat, GStat School of Mathematics and Applied Statistics University of Wollongong Moss

More information

Integration. Edexcel GCE. Core Mathematics C4

Integration. Edexcel GCE. Core Mathematics C4 Edexcel GCE Core Mathematics C Integration Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your answers

More information

Interpolation by Spline Functions

Interpolation by Spline Functions Interpolation by Spline Functions Com S 477/577 Sep 0 007 High-degree polynomials tend to have large oscillations which are not the characteristics of the original data. To yield smooth interpolating curves

More information

Introduction to Complex Analysis

Introduction to Complex Analysis Introduction to Complex Analysis George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 413 George Voutsadakis (LSSU) Complex Analysis October 2014 1 / 50 Outline

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

Name: Rational Functions 2.1H. Set Topic: Simplifying rational expressions & operations on rational expressions

Name: Rational Functions 2.1H. Set Topic: Simplifying rational expressions & operations on rational expressions Name: Rational Functions 2.1H Ready, Set, Go! Ready Topic: Polynomial division Use division to determine if the given linear term is a factor of the polynomial. If it is a linear factor, then find the

More information

Introduction to Computer Programming with MATLAB Calculation and Programming Errors. Selis Önel, PhD

Introduction to Computer Programming with MATLAB Calculation and Programming Errors. Selis Önel, PhD Introduction to Computer Programming with MATLAB Calculation and Programming Errors Selis Önel, PhD Today you will learn Numbers, Significant figures Error analysis Absolute error Relative error Chopping

More information

Asymptotic Error Analysis

Asymptotic Error Analysis Asymptotic Error Analysis Brian Wetton Mathematics Department, UBC www.math.ubc.ca/ wetton PIMS YRC, June 3, 2014 Outline Overview Some History Romberg Integration Cubic Splines - Periodic Case More History:

More information

Math 250A (Fall 2009) - Lab I: Estimate Integrals Numerically with Matlab. Due Date: Monday, September 21, INSTRUCTIONS

Math 250A (Fall 2009) - Lab I: Estimate Integrals Numerically with Matlab. Due Date: Monday, September 21, INSTRUCTIONS Math 250A (Fall 2009) - Lab I: Estimate Integrals Numerically with Matlab Due Date: Monday, September 21, 2009 4:30 PM 1. INSTRUCTIONS The primary purpose of this lab is to understand how go about numerically

More information

Block-based Thiele-like blending rational interpolation

Block-based Thiele-like blending rational interpolation Journal of Computational and Applied Mathematics 195 (2006) 312 325 www.elsevier.com/locate/cam Block-based Thiele-like blending rational interpolation Qian-Jin Zhao a, Jieqing Tan b, a School of Computer

More information

Numerical Methods for Differential Equations Contents Review of numerical integration methods Rectangular Rule Trapezoidal Rule Simpson s Rule How to

Numerical Methods for Differential Equations Contents Review of numerical integration methods Rectangular Rule Trapezoidal Rule Simpson s Rule How to Numerical Methods for Differential Equations Contents Review of numerical integration methods Rectangular Rule Trapezoidal Rule Simpson s Rule How to make a connect-the-dots graphic Numerical Methods for

More information

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. Area of a Region Between Two Curves Copyright Cengage Learning. All rights reserved. Objectives Find the area of a region between

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

SIMULATION AND MONTE CARLO

SIMULATION AND MONTE CARLO JHU course no. 550.790, Modeling, Simulation, and Monte Carlo SIMULATION AND MONTE CARLO Some General Principles James C. Spall Johns Hopkins University Applied Physics Laboratory September 2004 Overview

More information

ALGORITHMIC DECIDABILITY OF COMPUTER PROGRAM-FUNCTIONS LANGUAGE PROPERTIES. Nikolay Kosovskiy

ALGORITHMIC DECIDABILITY OF COMPUTER PROGRAM-FUNCTIONS LANGUAGE PROPERTIES. Nikolay Kosovskiy International Journal Information Theories and Applications, Vol. 20, Number 2, 2013 131 ALGORITHMIC DECIDABILITY OF COMPUTER PROGRAM-FUNCTIONS LANGUAGE PROPERTIES Nikolay Kosovskiy Abstract: A mathematical

More information

Math 104, Spring 2010 Course Log

Math 104, Spring 2010 Course Log Math 104, Spring 2010 Course Log Date: 1/11 Sections: 1.3, 1.4 Log: Lines in the plane. The point-slope and slope-intercept formulas. Functions. Domain and range. Compositions of functions. Inverse functions.

More information

Topic 6: Calculus Integration Volume of Revolution Paper 2

Topic 6: Calculus Integration Volume of Revolution Paper 2 Topic 6: Calculus Integration Standard Level 6.1 Volume of Revolution Paper 1. Let f(x) = x ln(4 x ), for < x

More information

CS 6210 Fall 2016 Bei Wang. Review Lecture What have we learnt in Scientific Computing?

CS 6210 Fall 2016 Bei Wang. Review Lecture What have we learnt in Scientific Computing? CS 6210 Fall 2016 Bei Wang Review Lecture What have we learnt in Scientific Computing? Let s recall the scientific computing pipeline observed phenomenon mathematical model discretization solution algorithm

More information

On the Parameter Estimation of the Generalized Exponential Distribution Under Progressive Type-I Interval Censoring Scheme

On the Parameter Estimation of the Generalized Exponential Distribution Under Progressive Type-I Interval Censoring Scheme arxiv:1811.06857v1 [math.st] 16 Nov 2018 On the Parameter Estimation of the Generalized Exponential Distribution Under Progressive Type-I Interval Censoring Scheme Mahdi Teimouri Email: teimouri@aut.ac.ir

More information

Unit 3 Functions of Several Variables

Unit 3 Functions of Several Variables Unit 3 Functions of Several Variables In this unit, we consider several simple examples of multi-variable functions, quadratic surfaces and projections, level curves and surfaces, partial derivatives of

More information

1 extrema notebook. November 25, 2012

1 extrema notebook. November 25, 2012 Do now as a warm up: Suppose this graph is a function f, defined on [a,b]. What would you say about the value of f at each of these x values: a, x 1, x 2, x 3, x 4, x 5, x 6, and b? What would you say

More information

Lacunary Interpolation Using Quartic B-Spline

Lacunary Interpolation Using Quartic B-Spline General Letters in Mathematic, Vol. 2, No. 3, June 2017, pp. 129-137 e-issn 2519-9277, p-issn 2519-9269 Available online at http:\\ www.refaad.com Lacunary Interpolation Using Quartic B-Spline 1 Karwan

More information

Voluntary State Curriculum Algebra II

Voluntary State Curriculum Algebra II Algebra II Goal 1: Integration into Broader Knowledge The student will develop, analyze, communicate, and apply models to real-world situations using the language of mathematics and appropriate technology.

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

Appropriate Gaussian quadrature formulae for triangles

Appropriate Gaussian quadrature formulae for triangles International Journal of Applied Mathematics and Computation Journal homepage: www.darbose.in/ijamc ISSN: 097-665 (Print) 097-673 (Online) Volume (1) 01 3 Appropriate Gaussian quadrature formulae for triangles

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.7 Graphs of Rational Functions Copyright Cengage Learning. All rights reserved. What You Should Learn Analyze and

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.2 Direct Proof and Counterexample II: Rational Numbers Copyright Cengage Learning. All

More information

Chapter 1. Numeric Artifacts. 1.1 Introduction

Chapter 1. Numeric Artifacts. 1.1 Introduction Chapter 1 Numeric Artifacts 1.1 Introduction Virtually all solutions to problems in electromagnetics require the use of a computer. Even when an analytic or closed form solution is available which is nominally

More information

(Type your answer in radians. Round to the nearest hundredth as needed.)

(Type your answer in radians. Round to the nearest hundredth as needed.) 1. Find the exact value of the following expression within the interval (Simplify your answer. Type an exact answer, using as needed. Use integers or fractions for any numbers in the expression. Type N

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

Surname. Other Names. Centre Number. Candidate Number. Candidate Signature. General Certificate of Education Advanced Level Examination June 2014

Surname. Other Names. Centre Number. Candidate Number. Candidate Signature. General Certificate of Education Advanced Level Examination June 2014 Surname Other Names Centre Number Candidate Number Candidate Signature Mathematics Unit Pure Core 3 MPC3 General Certificate of Education Advanced Level Examination June 2014 Leave blank Tuesday 10 June

More information

31.6 Powers of an element

31.6 Powers of an element 31.6 Powers of an element Just as we often consider the multiples of a given element, modulo, we consider the sequence of powers of, modulo, where :,,,,. modulo Indexing from 0, the 0th value in this sequence

More information

Definition. A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity.

Definition. A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity. Definition A Taylor series of a function f is said to represent function f, iff the error term converges to 0 for n going to infinity. 120202: ESM4A - Numerical Methods 32 f(x) = e x at point c = 0. Taylor

More information

CS321. Introduction to Numerical Methods

CS321. Introduction to Numerical Methods CS31 Introduction to Numerical Methods Lecture 1 Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506 0633 August 5, 017 Number

More information

Friday, 11 January 13. Interpolation

Friday, 11 January 13. Interpolation Interpolation Interpolation Interpolation is not a branch of mathematic but a collection of techniques useful for solving computer graphics problems Basically an interpolant is a way of changing one number

More information

Number Theory and Proof Methods

Number Theory and Proof Methods 9/6/17 Lecture Notes on Discrete Mathematics. Birzeit University Palestine 2016 and Proof Methods Mustafa Jarrar 4.1 Introduction 4.3 Divisibility 4.4 Quotient-Remainder Theorem mjarrar 2015 1 Watch this

More information

Linear programming II João Carlos Lourenço

Linear programming II João Carlos Lourenço Decision Support Models Linear programming II João Carlos Lourenço joao.lourenco@ist.utl.pt Academic year 2012/2013 Readings: Hillier, F.S., Lieberman, G.J., 2010. Introduction to Operations Research,

More information

Using Templates to Introduce Time Efficiency Analysis in an Algorithms Course

Using Templates to Introduce Time Efficiency Analysis in an Algorithms Course Using Templates to Introduce Time Efficiency Analysis in an Algorithms Course Irena Pevac Department of Computer Science Central Connecticut State University, New Britain, CT, USA Abstract: We propose

More information