An Investigation into the Free/Open Source Software Phenomenon using Data Mining, Social Network Theory, and Agent-Based

Size: px
Start display at page:

Download "An Investigation into the Free/Open Source Software Phenomenon using Data Mining, Social Network Theory, and Agent-Based"

Transcription

1 An Investigation into the Free/Open Source Software Phenomenon using Data Mining, Social Network Theory, and Agent-Based Greg Madey Computer Science & Engineering University of Notre Dame UIUC - NSF Workshop on Continuous (Re)Design of Open Source Software University of Illinois, Urbana-Champaign October 8-9, 2003 This research was partially supported by the US National Science Foundation, CISE/IIS- Digital Society & Technology, under Grant No

2 Contributors Vincent Freeh,, Computer Science, North Carolina State University (Principal Investigator) Yongqin Gao,, Computer Science and Engineering, University of Notre Dame (Graduate Student) Jeff Goett,, University of Notre Dame (REU Student) Chris Hoffman, University of Notre Dame (REU Student) Nadir Kiyanclar,, University of Notre Dame (REU Student) Greg Madey,, Computer Science & Engineering, University of Notre Dame (Principal Investigator) Patrick McGovern, Director SourceForge.net, VA Software (Industrial Collaborator) Carlos Siu,, University of Notre Dame (REU Student) Renee Tynan,, Department of Management, College of Business, University of Notre Dame (Principal Investigator) Jin Xu,, Computer Science & Engineering, University of Notre Dame (Graduate Student)

3 Outline Research approach Tools and definitions: Agents, models, simulations, collaborative social networks, computer experiments Data collection and analysis Example research question Simulation Computer experiments Results

4 One Approach to Researching Online data Screen scraping Database dumps Modeling Social network theory Evolutionary assumptions Simulation Verification and validation F/OSSD Computer experiments Variation of Classical Scientific Method

5 Classical Scientific Method 1. Observe the world a) Identify a puzzling phenomenon 2. Generate a falsifiable hypothesis (K. Popper) 3. Design and conduct an experiment with the goal of disproving the hypothesis a) If the experiment fails,, then the hypothesis is accepted (until replaced) b) If the experiment succeeds,, then reject hypothesis, but additional insight into the phenomenon may be obtained and steps 2-3 repeated

6 The Computer Experiment

7 Agent-Based Simulation as a Component of the Scientific Method Modeling (Hypothesis) Observation Agent -Based Simulation (Experiment)

8 Agent-Based Simulation as a Component of the Scientific Method Modeling (Hypothesis) Social Network Model of F/OSS Observation Analysis of SourceForge Data Agent -Based Simulation (Experiment) Grow Artificial SourceForge

9 Agent-Based Modeling and Simulation Conceptual models of a phenomenon Simulations are computer implementations of the conceptual models Agents in models and simulations are distinct entities (instantiated objects) Tend to be simple, but with large numbers of them (thousands, or more) - i.e., swarm intelligence Contrasted with higher level AI intelligent agents Foundations in complexity theory Self-organization Emergence

10 Collaborative Social Networks Research-paper co-authorship, small world phenomenon, e.g., Erdos number (Barabasi 2001, Newman 2001) Movie actors, small world phenomenon, e.g., Kevin Bacon number (Watts 1999, 2003) Interlocking corporate directorships Terrorist Networks Open-source software developers (Madey et al, AMCIS 2002) Collaborators are nodes in a graph, and collaborative relationship are the edges of the graph => a framework to model data/phenomenon

11 SourceForge VA Software Part of OSDN Started 12/1999 Collaboration tools 70,000 Projects 90,000 Developers 700,00 Registered Users

12 Savannah SourceForge Software? Free Software Foundation 1,600 Projects 16,000 Registered Users

13 Observations Web mining Web crawler (scripts) Python Perl AWK Sed Monthly Since Jan 2001 ProjectID DeveloperID Almost 2 million records Relational database PROJ DEVELOPER 8001 dev dev dev dev dev dev dev dev dev dev8975

14 Collaboration Networks Adapted from Newman, Strogatz and Watts, 2001

15 F/OSS Developers - Collaboration Social Network Developers are nodes / Projects are links 24 Developers 5 Projects 2 Linchpin Developers 1 Cluster Project 7597 dev[64] Project 6882 dev[72] dev[67] dev[47] 6882 dev[47] dev[52] 6882 dev[47] dev[55] 6882 dev[47] 6882 dev[58] dev[79] dev[47] dev[79] dev[52] dev[55] dev[58] dev[83] Project Project 7028 dev[99] dev[51] dev[46] dev[58] dev[57] 7597 dev[46] 7028 dev[46] dev[70] 7028 dev[46] dev[57] dev[99] 7028 dev[46] dev[51] dev[46] dev[46] dev[46] dev[56] dev[83] dev[46] dev[48] dev[48] dev[70] 7597 dev[46] dev[72] dev[56] 7597 dev[46] dev[64] 7597 dev[46] dev[67] 7597 dev[46] dev[55] 7597 dev[46] dev[45] 7597 dev[46] dev[61] 7597 dev[46] dev[58] 9859 dev[46] dev[54] 9859 dev[46] 9859 dev[46] dev[49] dev[53] 9859 dev[46] dev[59] dev[53] dev[54] dev[58] dev[59] dev[49] Project 9859 dev[65] dev[45] dev[61]

16 Topological Analysis of the Data Statistics inspected Diameter Average degree Clustering coefficient Degree distribution Cluster size distribution Relative size of major cluster Fitness and life cycle Evolution of these statistics Dual networks developer network and project network

17 Terminology Diameter Average length of shortest paths between all pairs of vertices Degree The count of edges connected to given vertex Average degree Average of the degrees of all vertices in the network Cluster The connected components of the network Clustering coefficient (CC) CC i : Fraction representing the number of links actually present relative to the total possible number of links among the vertices in its neighborhood. CC: average of all CC i in a network Degree distribution The distribution of degrees throughout a network Major cluster The largest cluster in the network

18 Degree Distribution: Developers

19 Degree Distribution: Projects

20 Diameter of Developer Network vs. Time Network size increased from 30,000 to 70,000

21 Diameter of Project Network vs. Time Network size increased from 20,000 to 50,000. Diameter decreasing with time both for developer network and project network

22 Clustering Coefficient of Developer Network vs. Time

23 Clustering Coefficient of Project Network vs. Time

24 Cluster Size Distribution R 2 with major cluster is R 2 without major cluster is

25 Relative Size of Major Cluster vs. Time Increase of the relative size of the major cluster Approaching steady-state?

26 An Example Research Question What processes can explain the evolution of the project and developer social networks? Randomly growing network (Erdos( Erdos-Reyni,, 1960)? Evolving network with preferential attachment (Barabasi-Albert, 1999)? Evolving network with preferential attachment and fitness (Barabasi( Barabasi-Albert, 2001)? Others?

27 Computer Experiments Agent-based simulations Java programs using Swarm class library Validation (docking) exercises using Java/Repast Grow artificial SourceForge SourceForge s (Epstein & Axtell, 1996) Parameterized with observed data, e.g., developer behaviors Join rates New project additions Leave projects Evaluation of multiple models (hypotheses) Verification/validation

28 Cycles of Modeling & Simulation Modeling (Hypothesis) Social Network Models ER => BA => BA+Fitness => BA+Dynamic Fitness Observation Analysis of SourceForge Data Degree Distribution Average Degree Diameter Clustering Coefficient Cluster Size Distribution Agent -Based Simulation (Experiment) Grow Artificial SourceForge

29 Model for SourceForge ABM based on bipartite graph Model description Agent: developer Behaviors: Create, join, abandon and idle Preference: developer s s and project s Fitness Four models in iterations ER, BA, BA with constant fitness and BA with dynamic fitness Comparison of empirical and simulated data

30 ER Model Degree Distribution Degree distribution is normal distribution while it is power law in empirical data Fit Fails!

31 ER Model - Diameter Average degree is decreasing while it is increasing in empirical data Diameter is increasing while it is decreasing in empirical data Fit Fails!

32 ER Model Clustering Coefficient Clustering coefficient is relatively low under 0.3 while it is around 0.7 in empirical data. Fit fails!

33 ER Model Cluster Size Distribution Power law distribution with R 2 as ( without the major cluster) while R 2 in empirical data is ( without the major cluster) The actual distribution is different from empirical data Fit Fails!

34 BA Model Degree Distribution Power laws in degree distributions, similar to empirical data (o for simulated data and x for empirical data). For developer distribution: simulated data has R 2 as and empirical data has R 2 as For project distribution: simulated data has R 2 as and empirical data has R 2 as Partial Fit!

35 BA Model Diameter and Clustering Coefficient Small diameter and high clustering coefficient like empirical data Diameter and clustering coefficient are both decreasing like empirical data Good Fit!

36 BA Model with Constant Fitness Power laws in degree distributions, similar to empirical data (o for simulated data and x for empirical data). For developer distribution: simulated data has R 2 as and empirical data has R 2 as For project distribution: simulated data has R 2 as and empirical data has R 2 as Improved fit!

37 Discovery: Project Life Cycle

38 BA Model with Dynamic Fitness Power laws in degree distribution, similar to empirical data (o for simulated data and x for empirical data). For developer distribution: simulated data has R 2 as and empirical data has R 2 as For project distribution: simulated data has R 2 as and empirical data has R 2 as Somewhat better fit!

39 Models of the F/OSS Social Network (Alternative Hypotheses) General model features Agents are nodes on a graph (developers or projects) Behaviors: Create, join, abandon and idle Edges are relationships (joint project participation) Growth of network: random or types of preferential attachment, formation of clusters Fitness Network attributes: diameter, average degree, degree distribution, clustering coefficient Four specific models ER (random graph) - (1960) BA (preferential attachment) - (1999) BA ( + constant fitness) - (2001) BA ( + dynamic fitness) - (2003)

40 Summary

41 Summary Why Agent-Based Modeling and Simulation? Can be used as components of the Scientific Method A research approach for studying socio-technical systems Case study: F/OSS - Collaboration Social Networks SourceForge conceptual models: ER, BA, BA with constant fitness and BA with dynamic fitness. Simulations Computer experiments that tested conceptual models Provided insight into the phenomenon under study and guided data mining of collected observations

42 Questions Validity of approaches Social networks Simulation Value/Utility of approachs Applicability to other areas of F/OSS research Project sites, e.g., Mozilla.org Individual projects, e.g., Linux kernel

43 Thank you

Towardsunderstanding: Astudy ofthe SourceForge.net community using modeling and simulation

Towardsunderstanding: Astudy ofthe SourceForge.net community using modeling and simulation Towardsunderstanding: Astudy ofthe SourceForge.net community using modeling and simulation YongqinGao,GregMadey DepartmentofComputerScience and Engineering UniversityofNotreDame ygao,gmadey@nd.edu Keywords:

More information

γ : constant Goett 2 P(k) = k γ k : degree

γ : constant Goett 2 P(k) = k γ k : degree Goett 1 Jeffrey Goett Final Research Paper, Fall 2003 Professor Madey 19 December 2003 Abstract: Recent observations by physicists have lead to new theories about the mechanisms controlling the growth

More information

Network Analysis of the SourceForge.net Community

Network Analysis of the SourceForge.net Community Network Analysis of the SourceForge.net Community Yongqin Gao and Greg Madey Department of Computer Science and Engineering University of Notre Dame {ygao,gmadey}@nd.edu Abstract. Software is central to

More information

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich (Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Outline Network Topological Analysis Network Models Random Networks Small-World Networks Scale-Free Networks

More information

Open Source Software Developer and Project Networks

Open Source Software Developer and Project Networks Open Source Software Developer and Project Networks Matthew Antwerp, Greg Madey To cite this version: Matthew Antwerp, Greg Madey. Open Source Software Developer and Project Networks. Pär Ågerfalk; Cornelia

More information

Typeset with NdThesiS version 2.14 (2000/09/08) on November 17, 2003 THIS PAGE IS NOT PART OF THE THESIS, BUT SHOULD BE TURNED IN TO THE PROOFREADER!

Typeset with NdThesiS version 2.14 (2000/09/08) on November 17, 2003 THIS PAGE IS NOT PART OF THE THESIS, BUT SHOULD BE TURNED IN TO THE PROOFREADER! Typeset with NdThesiS version 2.14 (2000/09/08) on November 17, 2003 for Yongqin Gao entitled TOPOLOGY AND EVOLUTION OF THE OPEN SOURCE SOFTWARE COMMUNITY This class conforms to the University of Notre

More information

Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques

Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques Kouhei Sugiyama, Hiroyuki Ohsaki and Makoto Imase Graduate School of Information Science and Technology,

More information

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno Wednesday, March 8, 2006 Complex Networks Presenter: Jirakhom Ruttanavakul CS 790R, University of Nevada, Reno Presented Papers Emergence of scaling in random networks, Barabási & Bonabeau (2003) Scale-free

More information

A Generating Function Approach to Analyze Random Graphs

A Generating Function Approach to Analyze Random Graphs A Generating Function Approach to Analyze Random Graphs Presented by - Vilas Veeraraghavan Advisor - Dr. Steven Weber Department of Electrical and Computer Engineering Drexel University April 8, 2005 Presentation

More information

Applying Social Network Analysis to the Information in CVS Repositories

Applying Social Network Analysis to the Information in CVS Repositories Applying Social Network Analysis to the Information in CVS Repositories Luis López-Fernández, Gregorio Robles-Martínez, Jesús M. González-Barahona GSyC, Universidad Rey Juan Carlos {llopez,grex,jgb}@gsyc.escet.urjc.es

More information

Characteristics of Preferentially Attached Network Grown from. Small World

Characteristics of Preferentially Attached Network Grown from. Small World Characteristics of Preferentially Attached Network Grown from Small World Seungyoung Lee Graduate School of Innovation and Technology Management, Korea Advanced Institute of Science and Technology, Daejeon

More information

M.E.J. Newman: Models of the Small World

M.E.J. Newman: Models of the Small World A Review Adaptive Informatics Research Centre Helsinki University of Technology November 7, 2007 Vocabulary N number of nodes of the graph l average distance between nodes D diameter of the graph d is

More information

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization Pedro Ribeiro (DCC/FCUP & CRACS/INESC-TEC) Part 1 Motivation and emergence of Network Science

More information

Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems

Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems networks are everywhere (and always have been) - relationships (edges) among entities (nodes) explosion of interest in network

More information

Properties of Biological Networks

Properties of Biological Networks Properties of Biological Networks presented by: Ola Hamud June 12, 2013 Supervisor: Prof. Ron Pinter Based on: NETWORK BIOLOGY: UNDERSTANDING THE CELL S FUNCTIONAL ORGANIZATION By Albert-László Barabási

More information

Overlay (and P2P) Networks

Overlay (and P2P) Networks Overlay (and P2P) Networks Part II Recap (Small World, Erdös Rényi model, Duncan Watts Model) Graph Properties Scale Free Networks Preferential Attachment Evolving Copying Navigation in Small World Samu

More information

An Evolving Network Model With Local-World Structure

An Evolving Network Model With Local-World Structure The Eighth International Symposium on Operations Research and Its Applications (ISORA 09) Zhangjiajie, China, September 20 22, 2009 Copyright 2009 ORSC & APORC, pp. 47 423 An Evolving Network odel With

More information

UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA PhD course in Electronics, Automation and Complex Systems Control-XXIV Cycle DIPARTIMENTO DI INGEGNERIA ELETTRICA ELETTRONICA E DEI SISTEMI ing.

More information

How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns

How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns Roadmap Next several lectures: universal structural properties of networks Each large-scale network is unique microscopically,

More information

Critical Phenomena in Complex Networks

Critical Phenomena in Complex Networks Critical Phenomena in Complex Networks Term essay for Physics 563: Phase Transitions and the Renormalization Group University of Illinois at Urbana-Champaign Vikyath Deviprasad Rao 11 May 2012 Abstract

More information

Erdős-Rényi Model for network formation

Erdős-Rényi Model for network formation Network Science: Erdős-Rényi Model for network formation Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Why model? Simpler representation

More information

Network Thinking. Complexity: A Guided Tour, Chapters 15-16

Network Thinking. Complexity: A Guided Tour, Chapters 15-16 Network Thinking Complexity: A Guided Tour, Chapters 15-16 Neural Network (C. Elegans) http://gephi.org/wp-content/uploads/2008/12/screenshot-celegans.png Food Web http://1.bp.blogspot.com/_vifbm3t8bou/sbhzqbchiei/aaaaaaaaaxk/rsc-pj45avc/

More information

CSE 190 Lecture 16. Data Mining and Predictive Analytics. Small-world phenomena

CSE 190 Lecture 16. Data Mining and Predictive Analytics. Small-world phenomena CSE 190 Lecture 16 Data Mining and Predictive Analytics Small-world phenomena Another famous study Stanley Milgram wanted to test the (already popular) hypothesis that people in social networks are separated

More information

Dynamic network generative model

Dynamic network generative model Dynamic network generative model Habiba, Chayant Tantipathanananandh, Tanya Berger-Wolf University of Illinois at Chicago. In this work we present a statistical model for generating realistic dynamic networks

More information

Chapter 1. Social Media and Social Computing. October 2012 Youn-Hee Han

Chapter 1. Social Media and Social Computing. October 2012 Youn-Hee Han Chapter 1. Social Media and Social Computing October 2012 Youn-Hee Han http://link.koreatech.ac.kr 1.1 Social Media A rapid development and change of the Web and the Internet Participatory web application

More information

- relationships (edges) among entities (nodes) - technology: Internet, World Wide Web - biology: genomics, gene expression, proteinprotein

- relationships (edges) among entities (nodes) - technology: Internet, World Wide Web - biology: genomics, gene expression, proteinprotein Complex networks Phys 7682: Computational Methods for Nonlinear Systems networks are everywhere (and always have been) - relationships (edges) among entities (nodes) explosion of interest in network structure,

More information

On Reshaping of Clustering Coefficients in Degreebased Topology Generators

On Reshaping of Clustering Coefficients in Degreebased Topology Generators On Reshaping of Clustering Coefficients in Degreebased Topology Generators Xiafeng Li, Derek Leonard, and Dmitri Loguinov Texas A&M University Presented by Derek Leonard Agenda Motivation Statement of

More information

Introduction to the Special Issue on AI & Networks

Introduction to the Special Issue on AI & Networks Introduction to the Special Issue on AI & Networks Marie desjardins, Matthew E. Gaston, and Dragomir Radev March 16, 2008 As networks have permeated our world, the economy has come to resemble an ecology

More information

Constructing a G(N, p) Network

Constructing a G(N, p) Network Random Graph Theory Dr. Natarajan Meghanathan Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Introduction At first inspection, most

More information

Exercise set #2 (29 pts)

Exercise set #2 (29 pts) (29 pts) The deadline for handing in your solutions is Nov 16th 2015 07:00. Return your solutions (one.pdf le and one.zip le containing Python code) via e- mail to Becs-114.4150@aalto.fi. Additionally,

More information

FLOSSmole, FLOSShub and the SRDA Repositories

FLOSSmole, FLOSShub and the SRDA Repositories FLOSSmole, FLOSShub and the SRDA Repositories Past, Present, and Future Greg Madey University of Notre Dame Megan Squire Elon University FLOSS Community Metrics Meeting Portland, Oregon, July 20, 2014

More information

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008 Lesson 4 Random graphs Sergio Barbarossa Graph models 1. Uncorrelated random graph (Erdős, Rényi) N nodes are connected through n edges which are chosen randomly from the possible configurations 2. Binomial

More information

Stable Statistics of the Blogograph

Stable Statistics of the Blogograph Stable Statistics of the Blogograph Mark Goldberg, Malik Magdon-Ismail, Stephen Kelley, Konstantin Mertsalov Rensselaer Polytechnic Institute Department of Computer Science Abstract. The primary focus

More information

Web 2.0 Social Data Analysis

Web 2.0 Social Data Analysis Web 2.0 Social Data Analysis Ing. Jaroslav Kuchař jaroslav.kuchar@fit.cvut.cz Structure(1) Czech Technical University in Prague, Faculty of Information Technologies Software and Web Engineering 2 Contents

More information

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell Nick Hamilton Institute for Molecular Bioscience Essential Graph Theory for Biologists Image: Matt Moores, The Visible Cell Outline Core definitions Which are the most important bits? What happens when

More information

Constructing a G(N, p) Network

Constructing a G(N, p) Network Random Graph Theory Dr. Natarajan Meghanathan Associate Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Introduction At first inspection,

More information

Random Generation of the Social Network with Several Communities

Random Generation of the Social Network with Several Communities Communications of the Korean Statistical Society 2011, Vol. 18, No. 5, 595 601 DOI: http://dx.doi.org/10.5351/ckss.2011.18.5.595 Random Generation of the Social Network with Several Communities Myung-Hoe

More information

Introduction to Computational Modeling of Social Systems

Introduction to Computational Modeling of Social Systems Introduction to Computational Modeling of Social Systems Prof. Lars-Erik Cederman ETH - Center for Comparative and International Studies (CIS) Seilergraben 49, Room G.2, lcederman@ethz.ch Nils Weidmann,

More information

Math 443/543 Graph Theory Notes 10: Small world phenomenon and decentralized search

Math 443/543 Graph Theory Notes 10: Small world phenomenon and decentralized search Math 443/543 Graph Theory Notes 0: Small world phenomenon and decentralized search David Glickenstein November 0, 008 Small world phenomenon The small world phenomenon is the principle that all people

More information

MODELS FOR EVOLUTION AND JOINING OF SMALL WORLD NETWORKS

MODELS FOR EVOLUTION AND JOINING OF SMALL WORLD NETWORKS MODELS FOR EVOLUTION AND JOINING OF SMALL WORLD NETWORKS By SURESH BABU THIPIREDDY Bachelor of Technology in Computer Science Jawaharlal Nehru Technological University Hyderabad, Andhra Pradesh, India

More information

Introduction to network metrics

Introduction to network metrics Universitat Politècnica de Catalunya Version 0.5 Complex and Social Networks (2018-2019) Master in Innovation and Research in Informatics (MIRI) Instructors Argimiro Arratia, argimiro@cs.upc.edu, http://www.cs.upc.edu/~argimiro/

More information

Introduction to Networks and Business Intelligence

Introduction to Networks and Business Intelligence Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 16th, 2014 Outline n Network Science A Random History n Network Analysis Network

More information

Complex Networks. Structure and Dynamics

Complex Networks. Structure and Dynamics Complex Networks Structure and Dynamics Ying-Cheng Lai Department of Mathematics and Statistics Department of Electrical Engineering Arizona State University Collaborators! Adilson E. Motter, now at Max-Planck

More information

6. Overview. L3S Research Center, University of Hannover. 6.1 Section Motivation. Investigation of structural aspects of peer-to-peer networks

6. Overview. L3S Research Center, University of Hannover. 6.1 Section Motivation. Investigation of structural aspects of peer-to-peer networks , University of Hannover Random Graphs, Small-Worlds, and Scale-Free Networks Wolf-Tilo Balke and Wolf Siberski 05.12.07 * Original slides provided by K.A. Lehmann (University Tübingen, Germany) 6. Overview

More information

Small World Properties Generated by a New Algorithm Under Same Degree of All Nodes

Small World Properties Generated by a New Algorithm Under Same Degree of All Nodes Commun. Theor. Phys. (Beijing, China) 45 (2006) pp. 950 954 c International Academic Publishers Vol. 45, No. 5, May 15, 2006 Small World Properties Generated by a New Algorithm Under Same Degree of All

More information

The importance of networks permeates

The importance of networks permeates Introduction to the Special Issue on AI and Networks Marie desjardins, Matthew E. Gaston, and Dragomir Radev This introduction to AI Magazine s special issue on networks and AI summarizes the seven articles

More information

Failure in Complex Social Networks

Failure in Complex Social Networks Journal of Mathematical Sociology, 33:64 68, 2009 Copyright # Taylor & Francis Group, LLC ISSN: 0022-250X print/1545-5874 online DOI: 10.1080/00222500802536988 Failure in Complex Social Networks Damon

More information

Case Studies in Complex Networks

Case Studies in Complex Networks Case Studies in Complex Networks Introduction to Scientific Modeling CS 365 George Bezerra 08/27/2012 The origin of graph theory Königsberg bridge problem Leonard Euler (1707-1783) The Königsberg Bridge

More information

The missing links in the BGP-based AS connectivity maps

The missing links in the BGP-based AS connectivity maps The missing links in the BGP-based AS connectivity maps Zhou, S; Mondragon, RJ http://arxiv.org/abs/cs/0303028 For additional information about this publication click this link. http://qmro.qmul.ac.uk/xmlui/handle/123456789/13070

More information

Graph Sampling Approach for Reducing. Computational Complexity of. Large-Scale Social Network

Graph Sampling Approach for Reducing. Computational Complexity of. Large-Scale Social Network Journal of Innovative Technology and Education, Vol. 3, 216, no. 1, 131-137 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/jite.216.6828 Graph Sampling Approach for Reducing Computational Complexity

More information

CAIM: Cerca i Anàlisi d Informació Massiva

CAIM: Cerca i Anàlisi d Informació Massiva 1 / 72 CAIM: Cerca i Anàlisi d Informació Massiva FIB, Grau en Enginyeria Informàtica Slides by Marta Arias, José Balcázar, Ricard Gavaldá Department of Computer Science, UPC Fall 2016 http://www.cs.upc.edu/~caim

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/4/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

Summary: What We Have Learned So Far

Summary: What We Have Learned So Far Summary: What We Have Learned So Far small-world phenomenon Real-world networks: { Short path lengths High clustering Broad degree distributions, often power laws P (k) k γ Erdös-Renyi model: Short path

More information

Research on Community Structure in Bus Transport Networks

Research on Community Structure in Bus Transport Networks Commun. Theor. Phys. (Beijing, China) 52 (2009) pp. 1025 1030 c Chinese Physical Society and IOP Publishing Ltd Vol. 52, No. 6, December 15, 2009 Research on Community Structure in Bus Transport Networks

More information

A Comparison of Evaluation Networks and Collaboration Networks in Open Source Software Communities

A Comparison of Evaluation Networks and Collaboration Networks in Open Source Software Communities Association for Information Systems AIS Electronic Library (AISeL) AMCIS 2008 Proceedings Americas Conference on Information Systems (AMCIS) 2008 A Comparison of Evaluation Networks and Collaboration Networks

More information

Topology Enhancement in Wireless Multihop Networks: A Top-down Approach

Topology Enhancement in Wireless Multihop Networks: A Top-down Approach Topology Enhancement in Wireless Multihop Networks: A Top-down Approach Symeon Papavassiliou (joint work with Eleni Stai and Vasileios Karyotis) National Technical University of Athens (NTUA) School of

More information

Analysis of the Social Community Based on the Network Growing Model in Open Source Software Community

Analysis of the Social Community Based on the Network Growing Model in Open Source Software Community Analysis of the Social Community Based on the Networ Growing Model in Open Source Software Community arxiv:8.8v [cs.ma] 9 Apr 8 Taumi Ichimura Department of Management and Systems, Prefectural University

More information

Small-World Models and Network Growth Models. Anastassia Semjonova Roman Tekhov

Small-World Models and Network Growth Models. Anastassia Semjonova Roman Tekhov Small-World Models and Network Growth Models Anastassia Semjonova Roman Tekhov Small world 6 billion small world? 1960s Stanley Milgram Six degree of separation Small world effect Motivation Not only friends:

More information

A SourceForge.net Project: tmans, an Agentbased Neural Network Simulator, Repast, and SourceForge CVS

A SourceForge.net Project: tmans, an Agentbased Neural Network Simulator, Repast, and SourceForge CVS A SourceForge.net Project: tmans, an Agentbased Neural Network Simulator, Repast, and SourceForge CVS John Korecki Computer Science & Engineering REU University of Notre Dame Fall 04 - Spring 05 September

More information

Higher order clustering coecients in Barabasi Albert networks

Higher order clustering coecients in Barabasi Albert networks Physica A 316 (2002) 688 694 www.elsevier.com/locate/physa Higher order clustering coecients in Barabasi Albert networks Agata Fronczak, Janusz A. Ho lyst, Maciej Jedynak, Julian Sienkiewicz Faculty of

More information

Example 1: An algorithmic view of the small world phenomenon

Example 1: An algorithmic view of the small world phenomenon Lecture Notes: Social Networks: Models, Algorithms, and Applications Lecture 1: Jan 17, 2012 Scribes: Preethi Ambati and Azar Aliyev Example 1: An algorithmic view of the small world phenomenon The story

More information

Peer-to-Peer Data Management

Peer-to-Peer Data Management Peer-to-Peer Data Management Wolf-Tilo Balke Sascha Tönnies Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 10. Networkmodels 1. Introduction Motivation

More information

arxiv:cond-mat/ v1 21 Oct 1999

arxiv:cond-mat/ v1 21 Oct 1999 Emergence of Scaling in Random Networks Albert-László Barabási and Réka Albert Department of Physics, University of Notre-Dame, Notre-Dame, IN 46556 arxiv:cond-mat/9910332 v1 21 Oct 1999 Systems as diverse

More information

Topologies and Centralities of Replied Networks on Bulletin Board Systems

Topologies and Centralities of Replied Networks on Bulletin Board Systems Topologies and Centralities of Replied Networks on Bulletin Board Systems Qin Sen 1,2 Dai Guanzhong 2 Wang Lin 2 Fan Ming 2 1 Hangzhou Dianzi University, School of Sciences, Hangzhou, 310018, China 2 Northwestern

More information

V 1 Introduction! Mon, Oct 15, 2012! Bioinformatics 3 Volkhard Helms!

V 1 Introduction! Mon, Oct 15, 2012! Bioinformatics 3 Volkhard Helms! V 1 Introduction! Mon, Oct 15, 2012! Bioinformatics 3 Volkhard Helms! How Does a Cell Work?! A cell is a crowded environment! => many different proteins,! metabolites, compartments,! On a microscopic level!

More information

Graph Theory. Graph Theory. COURSE: Introduction to Biological Networks. Euler s Solution LECTURE 1: INTRODUCTION TO NETWORKS.

Graph Theory. Graph Theory. COURSE: Introduction to Biological Networks. Euler s Solution LECTURE 1: INTRODUCTION TO NETWORKS. Graph Theory COURSE: Introduction to Biological Networks LECTURE 1: INTRODUCTION TO NETWORKS Arun Krishnan Koenigsberg, Russia Is it possible to walk with a route that crosses each bridge exactly once,

More information

An Empirical Analysis of Communities in Real-World Networks

An Empirical Analysis of Communities in Real-World Networks An Empirical Analysis of Communities in Real-World Networks Chuan Sheng Foo Computer Science Department Stanford University csfoo@cs.stanford.edu ABSTRACT Little work has been done on the characterization

More information

CS-E5740. Complex Networks. Scale-free networks

CS-E5740. Complex Networks. Scale-free networks CS-E5740 Complex Networks Scale-free networks Course outline 1. Introduction (motivation, definitions, etc. ) 2. Static network models: random and small-world networks 3. Growing network models: scale-free

More information

Basics of Network Analysis

Basics of Network Analysis Basics of Network Analysis Hiroki Sayama sayama@binghamton.edu Graph = Network G(V, E): graph (network) V: vertices (nodes), E: edges (links) 1 Nodes = 1, 2, 3, 4, 5 2 3 Links = 12, 13, 15, 23,

More information

1 Random Graph Models for Networks

1 Random Graph Models for Networks Lecture Notes: Social Networks: Models, Algorithms, and Applications Lecture : Jan 6, 0 Scribes: Geoffrey Fairchild and Jason Fries Random Graph Models for Networks. Graph Modeling A random graph is a

More information

On Complex Dynamical Networks. G. Ron Chen Centre for Chaos Control and Synchronization City University of Hong Kong

On Complex Dynamical Networks. G. Ron Chen Centre for Chaos Control and Synchronization City University of Hong Kong On Complex Dynamical Networks G. Ron Chen Centre for Chaos Control and Synchronization City University of Hong Kong 1 Complex Networks: Some Typical Examples 2 Complex Network Example: Internet (William

More information

Facilitating Social Network Studies of FLOSS using the OSSNetwork Environment

Facilitating Social Network Studies of FLOSS using the OSSNetwork Environment Facilitating Social Network Studies of FLOSS using the OSSNetwork Environment Marco A. Balieiro, Samuel F. de Sousa Júnior, and Cleidson R. B. de Souza Faculdade de Computação Universidade Federal do Pará

More information

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS Overview of Networks Instructor: Yizhou Sun yzsun@cs.ucla.edu January 10, 2017 Overview of Information Network Analysis Network Representation Network

More information

Economic Networks. Theory and Empirics. Giorgio Fagiolo Laboratory of Economics and Management (LEM) Sant Anna School of Advanced Studies, Pisa, Italy

Economic Networks. Theory and Empirics. Giorgio Fagiolo Laboratory of Economics and Management (LEM) Sant Anna School of Advanced Studies, Pisa, Italy Economic Networks Theory and Empirics Giorgio Fagiolo Laboratory of Economics and Management (LEM) Sant Anna School of Advanced Studies, Pisa, Italy http://www.lem.sssup.it/fagiolo/ giorgio.fagiolo@sssup.it

More information

Topic II: Graph Mining

Topic II: Graph Mining Topic II: Graph Mining Discrete Topics in Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2012/13 T II.Intro-1 Topic II Intro: Graph Mining 1. Why Graphs? 2. What is Graph Mining 3.

More information

Supply chains involve complex webs of interactions among suppliers, manufacturers,

Supply chains involve complex webs of interactions among suppliers, manufacturers, D e p e n d a b l e A g e n t S y s t e m s Survivability of Multiagent-Based Supply Networks: A Topological Perspective Hari Prasad Thadakamalla, Usha Nandini Raghavan, Soundar Kumara, and Réka Albert,

More information

Building the Multiplex: An Agent-Based Model of Formal and Informal Network Relations

Building the Multiplex: An Agent-Based Model of Formal and Informal Network Relations Building the Multiplex: An Agent-Based Model of Formal and Informal Network Relations EURO 2016 POZNAN POLAND, 4 JULY 2016 Duncan A. Robertson and Leroy White Loughborough University, UK; Warwick Business

More information

Complex networks: A mixture of power-law and Weibull distributions

Complex networks: A mixture of power-law and Weibull distributions Complex networks: A mixture of power-law and Weibull distributions Ke Xu, Liandong Liu, Xiao Liang State Key Laboratory of Software Development Environment Beihang University, Beijing 100191, China Abstract:

More information

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Models of Network Formation Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Roadmap Recently: typical large-scale social and other networks exhibit: giant component with small diameter sparsity

More information

CSI33 Data Structures

CSI33 Data Structures Outline Department of Mathematics and Computer Science Bronx Community College November 30, 2016 Outline Outline 1 Chapter 13: Heaps, Balances Trees and Hash Tables Hash Tables Outline 1 Chapter 13: Heaps,

More information

Heuristics for the Critical Node Detection Problem in Large Complex Networks

Heuristics for the Critical Node Detection Problem in Large Complex Networks Heuristics for the Critical Node Detection Problem in Large Complex Networks Mahmood Edalatmanesh Department of Computer Science Submitted in partial fulfilment of the requirements for the degree of Master

More information

Algorithmic and Economic Aspects of Networks. Nicole Immorlica

Algorithmic and Economic Aspects of Networks. Nicole Immorlica Algorithmic and Economic Aspects of Networks Nicole Immorlica Syllabus 1. Jan. 8 th (today): Graph theory, network structure 2. Jan. 15 th : Random graphs, probabilistic network formation 3. Jan. 20 th

More information

Small World Graph Clustering

Small World Graph Clustering Small World Graph Clustering Igor Kanovsky, Lilach Prego University of Haifa, Max Stern Academic College Israel 1 Clustering Problem Clustering problem : How to recognize communities within a huge graph.

More information

Examples of Complex Networks

Examples of Complex Networks Examples of Complex Networks Neural Network (C. Elegans) http://gephi.org/wp-content/uploads/2008/12/screenshot-celegans.png Food Web http://1.bp.blogspot.com/_vifbm3t8bou/sbhzqbchiei/aaaaaaaaaxk/rsc-

More information

Structural and Temporal Properties of and Spam Networks

Structural and Temporal Properties of  and Spam Networks Technical Report no. 2011-18 Structural and Temporal Properties of E-mail and Spam Networks Farnaz Moradi Tomas Olovsson Philippas Tsigas Department of Computer Science and Engineering Chalmers University

More information

Machine Learning and Modeling for Social Networks

Machine Learning and Modeling for Social Networks Machine Learning and Modeling for Social Networks Olivia Woolley Meza, Izabela Moise, Nino Antulov-Fatulin, Lloyd Sanders 1 Introduction to Networks Computational Social Science D-GESS Olivia Woolley Meza

More information

Evolution of Open Source Software Networks

Evolution of Open Source Software Networks Evolution of Open Source Software Networks Matthew Van Antwerp 1 University of Notre Dame mvanantw@cse.nd.edu Abstract. The work presented in this paper is focused on the Open Source Software (OSS) community

More information

The Establishment Game. Motivation

The Establishment Game. Motivation Motivation Motivation The network models so far neglect the attributes, traits of the nodes. A node can represent anything, people, web pages, computers, etc. Motivation The network models so far neglect

More information

Estimating Local Decision-Making Behavior in Complex Evolutionary Systems

Estimating Local Decision-Making Behavior in Complex Evolutionary Systems Estimating Local Decision-Making Behavior in Complex Evolutionary Systems Zhenghui Sha Graduate Research Assistant School of Mechanical Engineering, Purdue University West Lafayette, Indiana 47907 E-mail:

More information

Complexity in Network Economics

Complexity in Network Economics Complexity in Network Economics The notion of complexity (in) science has become a bit fuzzy over time. Thus, in this talk I want to shed some light on its meaning, its paradigmatic implication for research

More information

The Directed Closure Process in Hybrid Social-Information Networks, with an Analysis of Link Formation on Twitter

The Directed Closure Process in Hybrid Social-Information Networks, with an Analysis of Link Formation on Twitter Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media The Directed Closure Process in Hybrid Social-Information Networks, with an Analysis of Link Formation on Twitter Daniel

More information

Response Network Emerging from Simple Perturbation

Response Network Emerging from Simple Perturbation Journal of the Korean Physical Society, Vol 44, No 3, March 2004, pp 628 632 Response Network Emerging from Simple Perturbation S-W Son, D-H Kim, Y-Y Ahn and H Jeong Department of Physics, Korea Advanced

More information

Discrete-Event Simulation: A First Course. Steve Park and Larry Leemis College of William and Mary

Discrete-Event Simulation: A First Course. Steve Park and Larry Leemis College of William and Mary Discrete-Event Simulation: A First Course Steve Park and Larry Leemis College of William and Mary Technical Attractions of Simulation * Ability to compress time, expand time Ability to control sources

More information

Mining and Analyzing Online Social Networks

Mining and Analyzing Online Social Networks The 5th EuroSys Doctoral Workshop (EuroDW 2011) Salzburg, Austria, Sunday 10 April 2011 Mining and Analyzing Online Social Networks Emilio Ferrara eferrara@unime.it Advisor: Prof. Giacomo Fiumara PhD School

More information

Empirical analysis of online social networks in the age of Web 2.0

Empirical analysis of online social networks in the age of Web 2.0 Physica A 387 (2008) 675 684 www.elsevier.com/locate/physa Empirical analysis of online social networks in the age of Web 2.0 Feng Fu, Lianghuan Liu, Long Wang Center for Systems and Control, College of

More information

Pre-Requisites: CS2510. NU Core Designations: AD

Pre-Requisites: CS2510. NU Core Designations: AD DS4100: Data Collection, Integration and Analysis Teaches how to collect data from multiple sources and integrate them into consistent data sets. Explains how to use semi-automated and automated classification

More information

Topology Generation for Web Communities Modeling

Topology Generation for Web Communities Modeling Topology Generation for Web Communities Modeling György Frivolt and Mária Bieliková Institute of Informatics and Software Engineering Faculty of Informatics and Information Technologies Slovak University

More information

Disclaimer. Lect 2: empirical analyses of graphs

Disclaimer. Lect 2: empirical analyses of graphs 462 Page 1 Lect 2: empirical analyses of graphs Tuesday, September 11, 2007 8:30 AM Disclaimer These are my personal notes from this lecture. They may be wrong or inaccurate, and have not carefully been

More information

Scalable P2P architectures

Scalable P2P architectures Scalable P2P architectures Oscar Boykin Electrical Engineering, UCLA Joint work with: Jesse Bridgewater, Joseph Kong, Kamen Lozev, Behnam Rezaei, Vwani Roychowdhury, Nima Sarshar Outline Introduction to

More information

Jure Leskovec, Cornell/Stanford University. Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research

Jure Leskovec, Cornell/Stanford University. Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research Jure Leskovec, Cornell/Stanford University Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research Network: an interaction graph: Nodes represent entities Edges represent interaction

More information