Jure Leskovec, Cornell/Stanford University. Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research

Size: px
Start display at page:

Download "Jure Leskovec, Cornell/Stanford University. Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research"

Transcription

1 Jure Leskovec, Cornell/Stanford University Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research

2 Network: an interaction graph: Nodes represent entities Edges represent interaction between pairs of entities 2

3 Are there natural clusters, communities, partitions, etc.? Concept-based clusters, link-based clusters, density-based clusters, 3

4 Bid, click and impression information for keyword x advertiser pair Mine information at query-time to provide new ads Maximize CTR, RPS, advertiser ROI 4

5 query Find micro-markets by partitioning the query x advertiser graph: advertiser 5

6 Linear (low-rank) methods: If Gaussian, then low-rank space is good Kernel (non-linear) methods: If low-dimensional manifold, then kernels are good Hierarchical methods: Top-down and bottom-up common in social sciences Graph partitioning methods: Define edge counting metric conductance, expansion, modularity, etc. and optimize! It is a matter of common experience that communities exist in networks... Although not precisely defined, communities are usually thought of as sets of nodes with better connections amongst its members than with the rest of the world. 6

7 Communities: Sets of nodes with lots of connections inside and few to outside (the rest of the network) Assumption: Networks are (hierarchically) composed of communities Communities, clusters, groups, modules 7

8 Communities: Sets of nodes with lots of connections inside and few to outside (the rest of the network) Assumption: Networks are (hierarchically) composed of communities Hierarchical community structure Question: Are large networks really like this? 8

9 How community like is a set of nodes? Let A be the adjacency matrix of G=(V,E). The conductance of a set S of nodes is: S S The Network Community Profile (NCP) plot of the graph is: 9

10 What is best community of 5 nodes? Score: Φ(S) = # edges cut / # edges inside 10

11 What is best community of 5 nodes? Bad community Φ=5/6 = 0.83 Score: Φ(S) = # edges cut / # edges inside 11

12 What is best community of 5 nodes? Bad community Φ=5/7 = 0.7 Better community Φ=2/5 = 0.4 Score: Φ(S) = # edges cut / # edges inside 12

13 What is best community of 5 nodes? Bad community Φ=5/7 = 0.7 Best community Φ=2/8 = 0.25 Better community Φ=2/5 = 0.4 Score: Φ(S) = # edges cut / # edges inside 13

14 Network community profile (NCP) plot Plot the score of best community of size k k=5 k=7 log Φ(k) Φ(5)=0.25 Φ(7)=0.18 Community size, log k 14

15 Idea: Use approximation algorithms for NP-hard graph partitioning problems as experimental probes of network structure. Spectral (quadratic approx): confuses long paths with deep cuts Multi-commodity flow (log(n) approx): difficulty with expanders SDP (sqrt(log(n)) approx): best in theory Metis (multi-resolution heuristic): common in practice X+MQI: post-processing step on, e.g., MQI of Metis Local Spectral - connected and tighter sets (empirically) Metis+MQI - best conductance (empirically) We are not interested in partitions per se, but in probing network structure 15

16 d-dimensional meshes California road network 16

17 Zachary s university karate club social network During the study club split into 2 The split (squares vs. circles) corresponds to cut B 17

18 Collaborations between scientists in Networks [Newman, 2005] 18

19 [Ravasz&Barabasi, 2003] [Clauset,Moore&Newman, 2008] 19

20 Previously researchers examined community structure of small networks (~100 nodes) We examined more than 100 different large networks Large networks look very different! 20

21 Typical example: General relativity collaboration network (4,158 nodes, 13,422 edges) 21

22 Φ(k), (conductance) Better and better communities Communities get worse and worse Best community has ~100 nodes k, (community size) 22

23 Definition: Whisker is a maximal set of nodes connected to the network by a single edge NCP plot Largest whisker Whiskers are responsible for downward slope of NCP plot 23

24 Denser and denser core of the network Core contains ~60% nodes and ~80% edges Network structure: Core-periphery (jellyfish, octopus) Whiskers are responsible for good communities 24

25 Each new edge inside the community costs more Φ=1/3 = 0.33 NCP plot Φ=2/4 = 0.5 Φ=8/6 = 1.3 Φ=64/14 = 4.5 Each node has twice as many children 25

26 Edge to cut Whiskers: Whiskers in real networks are non-trivial (richer than trees) 26

27 Whiskers in real networks are larger than Whiskers expected based on density and degree sequence 27

28 28

29 Nothing happens! Now we have 2-edge connected whiskers to deal with. Indicates the recursiveness of our coreperiphery structure: as we remove the periphery, the core itself breaks into core and the periphery 29

30 What if we allow cuts that give disconnected communities? Cut all whiskers Compose communities out of whiskers How good community do we get? 30

31 Rewired network Local spectral Bag-ofwhiskers Metis+MQI LiveJournal 31

32 Regularization properties: spectral embeddings stretch along directions in which the randomwalk mixes slowly Resulting hyperplane cuts have "good" conductance cuts, but may not yield the optimal cuts spectral embedding flow based embedding 32

33 ext/int Dots are connected clusters Metis+MQI (red) gives sets with better conductance. Local Spectral (blue) gives tighter and more wellrounded sets. 33

34 Two ca. 500 node communities from Local Spectral: Two ca. 500 node communities from Metis+MQI: 34

35 ... can be computed from: Spectral embedding (independent of balance) SDP-based methods (for volume-balanced partitions) 35

36 What is a good model that explains such network structure? None of the existing models work Flat Down and Flat Flat and Down Pref. attachment Small World Geometric Pref. Attachment 36

37 Note: Sparsity is the issue, not heavytails per se. (Power laws with 2< <3 give us the appropriate sparsity) 37

38 Forest Fire [LKF05]: connections spread like a fire New node joins the network Selects a seed node Connects to some of its neighbors Continue recursively Notes: Preferential attachment flavor - second neighbor is not uniform at random. Copying flavor - since burn seed s neighbors. Hierarchical flavor - seed is parent. Local flavor - burn near -- in a diffusion sense -- the seed vertex. As community grows it blends into the core of the network 38

39 rewired network Bag of whiskers 39

40 Whiskers: Largest whisker has ~100 nodes Whisker size is independent of network size Core: 60% of the nodes, 80% edges Core has little structure (hard to cut) Still more structure than the random network 40

41 The Dunbar number 150 individuals is maximum community size On-line communities have 60 members and break down at around 80, military, churches, divisions, etc. all close to the Dunbar's 150 Common bond vs. common identity theory Common bond (people are attached to individual community members) are smaller and more cohesive Common identity (people are attached to the group as a whole) focused around common interest and tend to be larger and more diverse What edges mean and community identification social networks - reasons an individual adds a link to a friend can vary enormously citation networks or web graphs - links are more expensive and are more semantically uniform 41

42 Networks with ground truth communities: LiveJournal12: users create and explicitly join on-line groups DBLP co-authorships: publication venues can be viewed as communities Amazon product co-purchasing: each item belongs to one or more hierarchically organized categories, as defined by Amazon IMDB collaboration: countries of production and languages may be viewed as communities 42

43 LiveJournal DBLP Rewired Network Ground truth Amazon IMDB 43

44 NCP plot is a way to analyze network community structure Our results agree with previous work on small networks (people did not hit the Dunbar s limit) But large networks are different: Whiskers + Core (core-periphery) structure Small well isolated communities blend into the core of the networks as they grow 44

45 45

46 Assume a recursive Kronecker model. Fit it to G. We get K = What does this tell about the network structure? CoreCore-peripheryPeriphery 0.9 edges No communities 0.1 edges No good cuts edges As opposed to: edges which gives a hierarchy

47 Assume a recursive Kronecker model. Fit it to G. We get K = What does this tell about the network structure? Core 0.9 edges 0.5 edges edges Periphery 0.1 edges As opposed to: which gives a hierarchy

48 48

Community Structure in Large Social and Information Networks

Community Structure in Large Social and Information Networks Community Structure in Large Social and Information Networks Michael W. Mahoney Stanford University (For more info, see: http://cs.stanford.edu/people/mmahoney) Lots and lots of large data! DNA micro-array

More information

An Empirical Analysis of Communities in Real-World Networks

An Empirical Analysis of Communities in Real-World Networks An Empirical Analysis of Communities in Real-World Networks Chuan Sheng Foo Computer Science Department Stanford University csfoo@cs.stanford.edu ABSTRACT Little work has been done on the characterization

More information

Non Overlapping Communities

Non Overlapping Communities Non Overlapping Communities Davide Mottin, Konstantina Lazaridou HassoPlattner Institute Graph Mining course Winter Semester 2016 Acknowledgements Most of this lecture is taken from: http://web.stanford.edu/class/cs224w/slides

More information

Implementation of Network Community Profile using Local Spectral algorithm and its application in Community Networking

Implementation of Network Community Profile using Local Spectral algorithm and its application in Community Networking Implementation of Network Community Profile using Local Spectral algorithm and its application in Community Networking Vaibhav VPrakash Department of Computer Science and Engineering, Sri Jayachamarajendra

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Analysis of Large Graphs: Community Detection Rafael Ferreira da Silva rafsilva@isi.edu http://rafaelsilva.com Note to other teachers and users of these slides: We would be

More information

Web Structure Mining Community Detection and Evaluation

Web Structure Mining Community Detection and Evaluation Web Structure Mining Community Detection and Evaluation 1 Community Community. It is formed by individuals such that those within a group interact with each other more frequently than with those outside

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu SPAM FARMING 2/11/2013 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 2/11/2013 Jure Leskovec, Stanford

More information

Supplementary Material: Large-scale community structure in social and information networks

Supplementary Material: Large-scale community structure in social and information networks Supplementary Material: Large-scale community structure in social and information networks Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, Michael W. Mahoney Note: This is a draft, from March 25, 2009.

More information

Community Detection. Community

Community Detection. Community Community Detection Community In social sciences: Community is formed by individuals such that those within a group interact with each other more frequently than with those outside the group a.k.a. group,

More information

Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well- Defined Clusters

Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well- Defined Clusters Internet Mathematics ISSN: 1542-7951 (Print) 1944-9488 (Online) Journal homepage: http://www.tandfonline.com/loi/uinm20 Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large

More information

arxiv: v1 [cs.ds] 20 Apr 2010

arxiv: v1 [cs.ds] 20 Apr 2010 Empirical Comparison of Algorithms for Network Community Detection Jure Leskovec Stanford University jure@cs.stanford.edu Kevin J. Lang Yahoo! Research langk@yahoo-inc.com Michael W. Mahoney Stanford University

More information

Clustering. Informal goal. General types of clustering. Applications: Clustering in information search and analysis. Example applications in search

Clustering. Informal goal. General types of clustering. Applications: Clustering in information search and analysis. Example applications in search Informal goal Clustering Given set of objects and measure of similarity between them, group similar objects together What mean by similar? What is good grouping? Computation time / quality tradeoff 1 2

More information

V4 Matrix algorithms and graph partitioning

V4 Matrix algorithms and graph partitioning V4 Matrix algorithms and graph partitioning - Community detection - Simple modularity maximization - Spectral modularity maximization - Division into more than two groups - Other algorithms for community

More information

Modularity CMSC 858L

Modularity CMSC 858L Modularity CMSC 858L Module-detection for Function Prediction Biological networks generally modular (Hartwell+, 1999) We can try to find the modules within a network. Once we find modules, we can look

More information

Diffusion and Clustering on Large Graphs

Diffusion and Clustering on Large Graphs Diffusion and Clustering on Large Graphs Alexander Tsiatas Thesis Proposal / Advancement Exam 8 December 2011 Introduction Graphs are omnipresent in the real world both natural and man-made Examples of

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 11/13/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 2 Observations Models

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu HITS (Hypertext Induced Topic Selection) Is a measure of importance of pages or documents, similar to PageRank

More information

Community detection. Leonid E. Zhukov

Community detection. Leonid E. Zhukov Community detection Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Network Science Leonid E.

More information

Clustering Algorithms for general similarity measures

Clustering Algorithms for general similarity measures Types of general clustering methods Clustering Algorithms for general similarity measures general similarity measure: specified by object X object similarity matrix 1 constructive algorithms agglomerative

More information

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #21: Graph Mining 2

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #21: Graph Mining 2 CS 5614: (Big) Data Management Systems B. Aditya Prakash Lecture #21: Graph Mining 2 Networks & Communi>es We o@en think of networks being organized into modules, cluster, communi>es: VT CS 5614 2 Goal:

More information

Online Social Networks and Media. Community detection

Online Social Networks and Media. Community detection Online Social Networks and Media Community detection 1 Notes on Homework 1 1. You should write your own code for generating the graphs. You may use SNAP graph primitives (e.g., add node/edge) 2. For the

More information

Oh Pott, Oh Pott! or how to detect community structure in complex networks

Oh Pott, Oh Pott! or how to detect community structure in complex networks Oh Pott, Oh Pott! or how to detect community structure in complex networks Jörg Reichardt Interdisciplinary Centre for Bioinformatics, Leipzig, Germany (Host of the 2012 Olympics) Questions to start from

More information

Scalable Clustering of Signed Networks Using Balance Normalized Cut

Scalable Clustering of Signed Networks Using Balance Normalized Cut Scalable Clustering of Signed Networks Using Balance Normalized Cut Kai-Yang Chiang,, Inderjit S. Dhillon The 21st ACM International Conference on Information and Knowledge Management (CIKM 2012) Oct.

More information

Extracting Information from Complex Networks

Extracting Information from Complex Networks Extracting Information from Complex Networks 1 Complex Networks Networks that arise from modeling complex systems: relationships Social networks Biological networks Distinguish from random networks uniform

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 2 Part 4: Dividing Networks into Clusters The problem l Graph partitioning

More information

COMMUNITY detection is one of the most important

COMMUNITY detection is one of the most important IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING Overlapping Community Detection Using Neighborhood-Inflated Seed Expansion Joyce Jiyoung Whang, Member, IEEE, David F. Gleich, and Inderjit S. Dhillon,

More information

How do we view BIG data?

How do we view BIG data? How do we view BIG data? Algorithmic & Statistical Perspectives... Lambert (2000) Computer Scientists Data: are a record of everything that happened. Goal: process the data to find interesting patterns

More information

ECS 289 / MAE 298, Lecture 15 Mar 2, Diffusion, Cascades and Influence, Part II

ECS 289 / MAE 298, Lecture 15 Mar 2, Diffusion, Cascades and Influence, Part II ECS 289 / MAE 298, Lecture 15 Mar 2, 2011 Diffusion, Cascades and Influence, Part II Diffusion and cascades in networks (Nodes in one of two states) Viruses (human and computer) contact processes epidemic

More information

Types of general clustering methods. Clustering Algorithms for general similarity measures. Similarity between clusters

Types of general clustering methods. Clustering Algorithms for general similarity measures. Similarity between clusters Types of general clustering methods Clustering Algorithms for general similarity measures agglomerative versus divisive algorithms agglomerative = bottom-up build up clusters from single objects divisive

More information

Challenges in Multiresolution Methods for Graph-based Learning

Challenges in Multiresolution Methods for Graph-based Learning Challenges in Multiresolution Methods for Graph-based Learning Michael W. Mahoney ICSI and Dept of Statistics, UC Berkeley ( For more info, see: http: // www. stat. berkeley. edu/ ~ mmahoney or Google

More information

Spectral Methods for Network Community Detection and Graph Partitioning

Spectral Methods for Network Community Detection and Graph Partitioning Spectral Methods for Network Community Detection and Graph Partitioning M. E. J. Newman Department of Physics, University of Michigan Presenters: Yunqi Guo Xueyin Yu Yuanqi Li 1 Outline: Community Detection

More information

Demystifying movie ratings 224W Project Report. Amritha Raghunath Vignesh Ganapathi Subramanian

Demystifying movie ratings 224W Project Report. Amritha Raghunath Vignesh Ganapathi Subramanian Demystifying movie ratings 224W Project Report Amritha Raghunath (amrithar@stanford.edu) Vignesh Ganapathi Subramanian (vigansub@stanford.edu) 9 December, 2014 Introduction The past decade or so has seen

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/4/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

Big Data Analytics Influx of data pertaining to the 4Vs, i.e. Volume, Veracity, Velocity and Variety

Big Data Analytics Influx of data pertaining to the 4Vs, i.e. Volume, Veracity, Velocity and Variety Holistic Analysis of Multi-Source, Multi- Feature Data: Modeling and Computation Challenges Big Data Analytics Influx of data pertaining to the 4Vs, i.e. Volume, Veracity, Velocity and Variety Abhishek

More information

Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering

Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering Team 2 Prof. Anita Wasilewska CSE 634 Data Mining All Sources Used for the Presentation Olson CF. Parallel algorithms

More information

CSE 158 Lecture 6. Web Mining and Recommender Systems. Community Detection

CSE 158 Lecture 6. Web Mining and Recommender Systems. Community Detection CSE 158 Lecture 6 Web Mining and Recommender Systems Community Detection Dimensionality reduction Goal: take high-dimensional data, and describe it compactly using a small number of dimensions Assumption:

More information

Holistic Analysis of Multi-Source, Multi- Feature Data: Modeling and Computation Challenges

Holistic Analysis of Multi-Source, Multi- Feature Data: Modeling and Computation Challenges Holistic Analysis of Multi-Source, Multi- Feature Data: Modeling and Computation Challenges Abhishek Santra 1 and Sanjukta Bhowmick 2 1 Information Technology Laboratory, CSE Department, University of

More information

Community Structure Detection. Amar Chandole Ameya Kabre Atishay Aggarwal

Community Structure Detection. Amar Chandole Ameya Kabre Atishay Aggarwal Community Structure Detection Amar Chandole Ameya Kabre Atishay Aggarwal What is a network? Group or system of interconnected people or things Ways to represent a network: Matrices Sets Sequences Time

More information

CS224W Project Write-up Static Crawling on Social Graph Chantat Eksombatchai Norases Vesdapunt Phumchanit Watanaprakornkul

CS224W Project Write-up Static Crawling on Social Graph Chantat Eksombatchai Norases Vesdapunt Phumchanit Watanaprakornkul 1 CS224W Project Write-up Static Crawling on Social Graph Chantat Eksombatchai Norases Vesdapunt Phumchanit Watanaprakornkul Introduction Our problem is crawling a static social graph (snapshot). Given

More information

Clustering Results. Result List Example. Clustering Results. Information Retrieval

Clustering Results. Result List Example. Clustering Results. Information Retrieval Information Retrieval INFO 4300 / CS 4300! Presenting Results Clustering Clustering Results! Result lists often contain documents related to different aspects of the query topic! Clustering is used to

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 1 Luca Trevisan January 4, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 1 Luca Trevisan January 4, 2011 Stanford University CS359G: Graph Partitioning and Expanders Handout 1 Luca Trevisan January 4, 2011 Lecture 1 In which we describe what this course is about. 1 Overview This class is about the following

More information

CSE 255 Lecture 6. Data Mining and Predictive Analytics. Community Detection

CSE 255 Lecture 6. Data Mining and Predictive Analytics. Community Detection CSE 255 Lecture 6 Data Mining and Predictive Analytics Community Detection Dimensionality reduction Goal: take high-dimensional data, and describe it compactly using a small number of dimensions Assumption:

More information

Extracting Communities from Networks

Extracting Communities from Networks Extracting Communities from Networks Ji Zhu Department of Statistics, University of Michigan Joint work with Yunpeng Zhao and Elizaveta Levina Outline Review of community detection Community extraction

More information

Clusters and Communities

Clusters and Communities Clusters and Communities Lecture 7 CSCI 4974/6971 22 Sep 2016 1 / 14 Today s Biz 1. Reminders 2. Review 3. Communities 4. Betweenness and Graph Partitioning 5. Label Propagation 2 / 14 Today s Biz 1. Reminders

More information

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Models of Network Formation Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Roadmap Recently: typical large-scale social and other networks exhibit: giant component with small diameter sparsity

More information

CSE 258 Lecture 6. Web Mining and Recommender Systems. Community Detection

CSE 258 Lecture 6. Web Mining and Recommender Systems. Community Detection CSE 258 Lecture 6 Web Mining and Recommender Systems Community Detection Dimensionality reduction Goal: take high-dimensional data, and describe it compactly using a small number of dimensions Assumption:

More information

Clustering in Data Mining

Clustering in Data Mining Clustering in Data Mining Classification Vs Clustering When the distribution is based on a single parameter and that parameter is known for each object, it is called classification. E.g. Children, young,

More information

A Divisive clustering technique for maximizing the modularity

A Divisive clustering technique for maximizing the modularity A Divisive clustering technique for maximizing the modularity Ümit V. Çatalyürek, Kamer Kaya, Johannes Langguth, and Bora Uçar February 13, 2012 1 Introduction 2 Clustering Paradigms 3 Algorithm 4 Results

More information

Hierarchical Clustering: Objectives & Algorithms. École normale supérieure & CNRS

Hierarchical Clustering: Objectives & Algorithms. École normale supérieure & CNRS Hierarchical Clustering: Objectives & Algorithms Vincent Cohen-Addad Paris Sorbonne & CNRS Frederik Mallmann-Trenn MIT Varun Kanade University of Oxford Claire Mathieu École normale supérieure & CNRS Clustering

More information

Bumptrees for Efficient Function, Constraint, and Classification Learning

Bumptrees for Efficient Function, Constraint, and Classification Learning umptrees for Efficient Function, Constraint, and Classification Learning Stephen M. Omohundro International Computer Science Institute 1947 Center Street, Suite 600 erkeley, California 94704 Abstract A

More information

Parallel Local Graph Clustering

Parallel Local Graph Clustering Parallel Local Graph Clustering Julian Shun Joint work with Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael W. Mahoney Work appeared in VLDB 2016 2 Metric for Cluster Quality Conductance = Number

More information

CS 534: Computer Vision Segmentation and Perceptual Grouping

CS 534: Computer Vision Segmentation and Perceptual Grouping CS 534: Computer Vision Segmentation and Perceptual Grouping Ahmed Elgammal Dept of Computer Science CS 534 Segmentation - 1 Outlines Mid-level vision What is segmentation Perceptual Grouping Segmentation

More information

Visual Representations for Machine Learning

Visual Representations for Machine Learning Visual Representations for Machine Learning Spectral Clustering and Channel Representations Lecture 1 Spectral Clustering: introduction and confusion Michael Felsberg Klas Nordberg The Spectral Clustering

More information

EMERGENCE OF CORE-PERIPHERY STRUCTURE FROM LOCAL NODE DOMINANCE IN SOCIAL NETWORKS

EMERGENCE OF CORE-PERIPHERY STRUCTURE FROM LOCAL NODE DOMINANCE IN SOCIAL NETWORKS EMERGENCE OF CORE-PERIPHERY STRUCTURE FROM LOCAL NODE DOMINANCE IN SOCIAL NETWORKS Jennifer Gamble, Harish Chintakunta, Hamid Krim Electrical and Computer Engineering North Carolina State University jpgamble@ncsu.edu,

More information

Social Data Management Communities

Social Data Management Communities Social Data Management Communities Antoine Amarilli 1, Silviu Maniu 2 January 9th, 2018 1 Télécom ParisTech 2 Université Paris-Sud 1/20 Table of contents Communities in Graphs 2/20 Graph Communities Communities

More information

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University Course website: http://snap.stanford.edu/na09 Slides will be available online Reading material will be posted online:

More information

CSE 494 Project C. Garrett Wolf

CSE 494 Project C. Garrett Wolf CSE 494 Project C Garrett Wolf Introduction The main purpose of this project task was for us to implement the simple k-means and buckshot clustering algorithms. Once implemented, we were asked to vary

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

A Computational Theory of Clustering

A Computational Theory of Clustering A Computational Theory of Clustering Avrim Blum Carnegie Mellon University Based on work joint with Nina Balcan, Anupam Gupta, and Santosh Vempala Point of this talk A new way to theoretically analyze

More information

An Optimal Allocation Approach to Influence Maximization Problem on Modular Social Network. Tianyu Cao, Xindong Wu, Song Wang, Xiaohua Hu

An Optimal Allocation Approach to Influence Maximization Problem on Modular Social Network. Tianyu Cao, Xindong Wu, Song Wang, Xiaohua Hu An Optimal Allocation Approach to Influence Maximization Problem on Modular Social Network Tianyu Cao, Xindong Wu, Song Wang, Xiaohua Hu ACM SAC 2010 outline Social network Definition and properties Social

More information

Co-clustering or Biclustering

Co-clustering or Biclustering References: Co-clustering or Biclustering A. Anagnostopoulos, A. Dasgupta and R. Kumar: Approximation Algorithms for co-clustering, PODS 2008. K. Puolamaki. S. Hanhijarvi and G. Garriga: An approximation

More information

Hierarchical Clustering

Hierarchical Clustering Hierarchical Clustering Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram A tree-like diagram that records the sequences of merges

More information

Clustering: Overview and K-means algorithm

Clustering: Overview and K-means algorithm Clustering: Overview and K-means algorithm Informal goal Given set of objects and measure of similarity between them, group similar objects together K-Means illustrations thanks to 2006 student Martin

More information

Social-Network Graphs

Social-Network Graphs Social-Network Graphs Mining Social Networks Facebook, Google+, Twitter Email Networks, Collaboration Networks Identify communities Similar to clustering Communities usually overlap Identify similarities

More information

Clustering Algorithms on Graphs Community Detection 6CCS3WSN-7CCSMWAL

Clustering Algorithms on Graphs Community Detection 6CCS3WSN-7CCSMWAL Clustering Algorithms on Graphs Community Detection 6CCS3WSN-7CCSMWAL Contents Zachary s famous example Community structure Modularity The Girvan-Newman edge betweenness algorithm In the beginning: Zachary

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 01-25-2018 Outline Background Defining proximity Clustering methods Determining number of clusters Other approaches Cluster analysis as unsupervised Learning Unsupervised

More information

Parallel Local Graph Clustering

Parallel Local Graph Clustering Parallel Local Graph Clustering Kimon Fountoulakis, joint work with J. Shun, X. Cheng, F. Roosta-Khorasani, M. Mahoney, D. Gleich University of California Berkeley and Purdue University Based on J. Shun,

More information

Robust Kernel Methods in Clustering and Dimensionality Reduction Problems

Robust Kernel Methods in Clustering and Dimensionality Reduction Problems Robust Kernel Methods in Clustering and Dimensionality Reduction Problems Jian Guo, Debadyuti Roy, Jing Wang University of Michigan, Department of Statistics Introduction In this report we propose robust

More information

Spectral Graph Multisection Through Orthogonality. Huanyang Zheng and Jie Wu CIS Department, Temple University

Spectral Graph Multisection Through Orthogonality. Huanyang Zheng and Jie Wu CIS Department, Temple University Spectral Graph Multisection Through Orthogonality Huanyang Zheng and Jie Wu CIS Department, Temple University Outline Motivation Preliminary Algorithm Evaluation Future work Motivation Traditional graph

More information

Machine Learning for Signal Processing Clustering. Bhiksha Raj Class Oct 2016

Machine Learning for Signal Processing Clustering. Bhiksha Raj Class Oct 2016 Machine Learning for Signal Processing Clustering Bhiksha Raj Class 11. 13 Oct 2016 1 Statistical Modelling and Latent Structure Much of statistical modelling attempts to identify latent structure in the

More information

Big Data Management and NoSQL Databases

Big Data Management and NoSQL Databases NDBI040 Big Data Management and NoSQL Databases Lecture 10. Graph databases Doc. RNDr. Irena Holubova, Ph.D. holubova@ksi.mff.cuni.cz http://www.ksi.mff.cuni.cz/~holubova/ndbi040/ Graph Databases Basic

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, Networks: An Introduction 2

More information

Search Engines. Information Retrieval in Practice

Search Engines. Information Retrieval in Practice Search Engines Information Retrieval in Practice All slides Addison Wesley, 2008 Classification and Clustering Classification and clustering are classical pattern recognition / machine learning problems

More information

CS512 (Spring 2012) Advanced Data Mining : Midterm Exam I

CS512 (Spring 2012) Advanced Data Mining : Midterm Exam I CS512 (Spring 2012) Advanced Data Mining : Midterm Exam I (Thursday, March 1, 2012, 90 minutes, 100 marks brief answers directly written on the exam paper) Note: Closed book and notes but one reference

More information

MCL. (and other clustering algorithms) 858L

MCL. (and other clustering algorithms) 858L MCL (and other clustering algorithms) 858L Comparing Clustering Algorithms Brohee and van Helden (2006) compared 4 graph clustering algorithms for the task of finding protein complexes: MCODE RNSC Restricted

More information

CSCI-B609: A Theorist s Toolkit, Fall 2016 Sept. 6, Firstly let s consider a real world problem: community detection.

CSCI-B609: A Theorist s Toolkit, Fall 2016 Sept. 6, Firstly let s consider a real world problem: community detection. CSCI-B609: A Theorist s Toolkit, Fall 016 Sept. 6, 016 Lecture 03: The Sparsest Cut Problem and Cheeger s Inequality Lecturer: Yuan Zhou Scribe: Xuan Dong We will continue studying the spectral graph theory

More information

V2: Measures and Metrics (II)

V2: Measures and Metrics (II) - Betweenness Centrality V2: Measures and Metrics (II) - Groups of Vertices - Transitivity - Reciprocity - Signed Edges and Structural Balance - Similarity - Homophily and Assortative Mixing 1 Betweenness

More information

Chapter 1. Social Media and Social Computing. October 2012 Youn-Hee Han

Chapter 1. Social Media and Social Computing. October 2012 Youn-Hee Han Chapter 1. Social Media and Social Computing October 2012 Youn-Hee Han http://link.koreatech.ac.kr 1.1 Social Media A rapid development and change of the Web and the Internet Participatory web application

More information

Community detection algorithms survey and overlapping communities. Presented by Sai Ravi Kiran Mallampati

Community detection algorithms survey and overlapping communities. Presented by Sai Ravi Kiran Mallampati Community detection algorithms survey and overlapping communities Presented by Sai Ravi Kiran Mallampati (sairavi5@vt.edu) 1 Outline Various community detection algorithms: Intuition * Evaluation of the

More information

Image Segmentation continued Graph Based Methods

Image Segmentation continued Graph Based Methods Image Segmentation continued Graph Based Methods Previously Images as graphs Fully-connected graph node (vertex) for every pixel link between every pair of pixels, p,q affinity weight w pq for each link

More information

Statistical Physics of Community Detection

Statistical Physics of Community Detection Statistical Physics of Community Detection Keegan Go (keegango), Kenji Hata (khata) December 8, 2015 1 Introduction Community detection is a key problem in network science. Identifying communities, defined

More information

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani Clustering CE-717: Machine Learning Sharif University of Technology Spring 2016 Soleymani Outline Clustering Definition Clustering main approaches Partitional (flat) Hierarchical Clustering validation

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2009 CS 551, Spring 2009 c 2009, Selim Aksoy (Bilkent University)

More information

Scalable Influence Maximization in Social Networks under the Linear Threshold Model

Scalable Influence Maximization in Social Networks under the Linear Threshold Model Scalable Influence Maximization in Social Networks under the Linear Threshold Model Wei Chen Microsoft Research Asia Yifei Yuan Li Zhang In collaboration with University of Pennsylvania Microsoft Research

More information

Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge

Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge Centralities (4) By: Ralucca Gera, NPS Excellence Through Knowledge Some slide from last week that we didn t talk about in class: 2 PageRank algorithm Eigenvector centrality: i s Rank score is the sum

More information

Large Scale Graph Algorithms

Large Scale Graph Algorithms Large Scale Graph Algorithms A Guide to Web Research: Lecture 2 Yury Lifshits Steklov Institute of Mathematics at St.Petersburg Stuttgart, Spring 2007 1 / 34 Talk Objective To pose an abstract computational

More information

Topology Enhancement in Wireless Multihop Networks: A Top-down Approach

Topology Enhancement in Wireless Multihop Networks: A Top-down Approach Topology Enhancement in Wireless Multihop Networks: A Top-down Approach Symeon Papavassiliou (joint work with Eleni Stai and Vasileios Karyotis) National Technical University of Athens (NTUA) School of

More information

Lecture 7: Decision Trees

Lecture 7: Decision Trees Lecture 7: Decision Trees Instructor: Outline 1 Geometric Perspective of Classification 2 Decision Trees Geometric Perspective of Classification Perspective of Classification Algorithmic Geometric Probabilistic...

More information

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Descriptive model A descriptive model presents the main features of the data

More information

Based on Raymond J. Mooney s slides

Based on Raymond J. Mooney s slides Instance Based Learning Based on Raymond J. Mooney s slides University of Texas at Austin 1 Example 2 Instance-Based Learning Unlike other learning algorithms, does not involve construction of an explicit

More information

Classification. 1 o Semestre 2007/2008

Classification. 1 o Semestre 2007/2008 Classification Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Slides baseados nos slides oficiais do livro Mining the Web c Soumen Chakrabarti. Outline 1 2 3 Single-Class

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

Community Detection Using Random Walk Label Propagation Algorithm and PageRank Algorithm over Social Network

Community Detection Using Random Walk Label Propagation Algorithm and PageRank Algorithm over Social Network Community Detection Using Random Walk Label Propagation Algorithm and PageRank Algorithm over Social Network 1 Monika Kasondra, 2 Prof. Kamal Sutaria, 1 M.E. Student, 2 Assistent Professor, 1 Computer

More information

Part I: Data Mining Foundations

Part I: Data Mining Foundations Table of Contents 1. Introduction 1 1.1. What is the World Wide Web? 1 1.2. A Brief History of the Web and the Internet 2 1.3. Web Data Mining 4 1.3.1. What is Data Mining? 6 1.3.2. What is Web Mining?

More information

Clustering Part 4 DBSCAN

Clustering Part 4 DBSCAN Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization Pedro Ribeiro (DCC/FCUP & CRACS/INESC-TEC) Part 1 Motivation and emergence of Network Science

More information

Cluster Analysis. Ying Shen, SSE, Tongji University

Cluster Analysis. Ying Shen, SSE, Tongji University Cluster Analysis Ying Shen, SSE, Tongji University Cluster analysis Cluster analysis groups data objects based only on the attributes in the data. The main objective is that The objects within a group

More information

Nearest Neighbor with KD Trees

Nearest Neighbor with KD Trees Case Study 2: Document Retrieval Finding Similar Documents Using Nearest Neighbors Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox January 22 nd, 2013 1 Nearest

More information

Community Analysis. Chapter 6

Community Analysis. Chapter 6 This chapter is from Social Media Mining: An Introduction. By Reza Zafarani, Mohammad Ali Abbasi, and Huan Liu. Cambridge University Press, 2014. Draft version: April 20, 2014. Complete Draft and Slides

More information

Image Segmentation. Shengnan Wang

Image Segmentation. Shengnan Wang Image Segmentation Shengnan Wang shengnan@cs.wisc.edu Contents I. Introduction to Segmentation II. Mean Shift Theory 1. What is Mean Shift? 2. Density Estimation Methods 3. Deriving the Mean Shift 4. Mean

More information