Numerical Methods for PDEs : Video 9: 2D Finite Difference February 14, Equations / 29

Size: px
Start display at page:

Download "Numerical Methods for PDEs : Video 9: 2D Finite Difference February 14, Equations / 29"

Transcription

1 Numerical Methods for PDEs Video 9 2D Finite Difference Equations February 4, Numerical Methods for PDEs Video 9 2D Finite Difference February 4, Equations 205 / 29

2 Thought Experiment Let s extend the string equation to a membrane 2 u = 2 u x u = f (x, y) () y 2 With boundary conditions on both ends of u L = u R = 0 (2) Numerical Methods for PDEs Video 9 2D Finite Difference February 4, Equations / 29

3 Thought Experiment Goal Satisfy the governing equation at each location on the membrane Numerical Methods for PDEs Video 9 2D Finite Difference February 4, Equations / 29

4 Step Discretization Break membrane into a series of equally sized chunks. Let s break the membrane into N nodes in the x direction and M nodes in the y direction Total number of nodes = N M. x = y N = M Numerical Methods for PDEs Video 9 2D Finite Difference February 4, Equations / 29

5 Step Discretization Recall, we would like to satisfy the PDE at each node (equation per node) To simplify life, let s number the nodes Relating the node number (NN) to m and n index NN = N (m ) + n This node numbering scheme will become quite useful later Numerical Methods for PDEs Video 9 2D Finite Difference February 4, Equations / 29

6 Step 2 Discretize the Governing Equation Governing equation At each node of the domain, we wish to ensure ( 2 ) u x u y 2 = f i (x, y) We can write the discrete finite difference equation u n 2u n + u n+ ( x) 2 + u m 2u m + u m+ ( y) 2 f n,m (x, y) Finite Differences Determine the solution u that satisfies the approximate difference equations at each of the nodes of the discrete domain. i Numerical Methods for PDEs Video 9 2D Finite Difference February 4, Equations / 29

7 Step 2 Discretize the Governing Equation Let s look at node 2 to begin ( ) ( ) un,m 2u n,m + u n+,m un,m 2u n,m + u n,m+ ( x) 2 + ( y) 2 f n,m u,3 2u 2,3 + u 3,3 ( x) 2 + u 2,2 2u 2,3 + u 2,4 ( y) 2 f 2, Numerical Methods for PDEs Video 9 2D Finite Difference February 4, Equations / 29

8 Step 2 Discretize the Governing Equation Consider now, how the equation at node 2 looks when written using the node numbers (not m, n locations) u,3 2u 2,3 + u 3,3 ( x) 2 + u 2,2 2u 2,3 + u 2,4 ( y) 2 f 2,3 u 2u 2 + u 3 ( x) 2 + u 7 2u 2 + u 7 ( y) 2 f Numerical Methods for PDEs Video 9 2D Finite Difference February 4, Equations / 29

9 Step 2 Discretize the Governing Equation So, according to the node numbering scheme used here, the equation approximating the PDE at node 2 is u + u 3 + u 7 + u 7 4u 2 ( x) 2 f Numerical Methods for PDEs Video 9 2D Finite Difference February 4, Equations / 29

10 Step 2 Discretize the Governing Equation Let s try this for node 3 So, for node 3, the equation approximating the PDE is Node 3 u 2 + u 4 + u 8 + u 8 4u 3 ( x) 2 f Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

11 Step 2 Discretize the Governing Equation Let s try this for node 8 So, for node 8, the equation approximating the PDE is Node 8 u 7 + u 9 + u 3 + u 23 4u 8 ( x) 2 f Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations 205 / 29

12 Step 2 Discretize the Governing Equation Summary for the internal nodes Node 2 Node 3 Node 8 u + u 3 + u 7 + u 7 4u 2 ( x) 2 f 2 u 2 + u 4 + u 8 + u 8 4u 3 ( x) 2 f 3 u 7 + u 9 + u 3 + u 23 4u 8 ( x) 2 f Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

13 Step 3 Form a Linear System of Equations Each node s finite difference equation has 5-unknowns This will become a system of equations (recall multiplication of a matrix and a vector) Node 2 ( x) 2 (u + u 3 + u 7 + u 7 4u 2 ) f ( x) u u 7 u u 2 u 3 u 7 u N = f f 2 u N Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

14 Step 3 Form a Linear System of Equations Node 3 ( x) 2 (u 2 + u 5 + u 8 + u 8 4u 3 ) f 3 ( x) u u 8 u 2 u 3 u 4 u 8 u N = f 3 u N Numerical Methods for PDEs Video 9 2D Finite Difference Equations February 4, / 29

15 Step 3 Form a Linear System of Equations Node 8 ( x) 2 (u 7 + u 9 + u 3 + u 23 4u 8 ) f 8 ( x) u u 3 u 7 u 8 u 9 u 23 u N = f f 8 u N Numerical Methods for PDEs Video 9 2D Finite Difference Equations February 4, / 29

16 Step 3 Form a Linear System of Equations This results in a linear system of equations, Au = f Looking only at the A-matrix for right now Examining the Structure of A (for internal nodes) The value 4 is on the diagonal entry for equations with internal nodes The value is in the off diagonal entries Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

17 Step 3 Form a Linear System of Equations Don t forget to setup the RHS vector In this example f = at each of the internal nodes f = f f 6 f 7 f 8 f 9 f 0 f f 2 f 3 f 4 f 5 = Numerical Methods for PDEs Video 9 2D Finite Difference Equations February 4, / 29

18 Step 4 Incorporate Boundary Conditions Introduce boundary conditions. We know that u = 0 at all boundary nodes bottom u = u 2 = u 3 = u 4 = u 5 = 0 top u 2 = u 22 = u 23 = u 24 = u 25 = 0 left u 6 = u = u 6 = 0 right u 0 = u 5 = u 20 = Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

19 Step 4 Incorporate Boundary Conditions Need to incorporate these boundary conditions into the A-matrix Example u 22 = 0 = f 22 Make the 22nd-row of the A-matrix = 0 Insert a value of on the diagonal (A 22,22 = ) Set the 22nd-entry of the f-vector = 0 (f 22 = 0) When applied to all boundary conditions, the A-Matrix takes the form Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

20 Step 4 RHS Vector Boundary Nodes Don t forget to setup the RHS vector In this example RHS = 0 at each of the boundary nodes f = f f 6 f 7 f 8 f 9 f 0 f f 2 f 3 f 4 f 5 = Numerical Methods for PDEs Video 9 2D Finite Difference Equations February 4, / 29

21 Examine the A-Matrix Structure The banded A-Matrix Structure (, zeros,,-4,,zeros,) Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

22 Examine the A-Matrix Structure The A-Matrix Structure (2 x 2 nodes Use, spy(a)) Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

23 Solve using matlab Solve the linear system of equations using Matlab. We will use the backslash operator in Matlab Solution = A\f (3) Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

24 Solution Figure Solution for N = M = 5, NumNodes = 25, Max Deflection = Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

25 Solution Figure Solution for N = M =, NumNodes = 2, Max Deflection = Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

26 Solution Figure Solution for N = M = 2, NumNodes = 44, Max Deflection = Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

27 Solution Figure Solution for N = M = 4, NumNodes = 68, Max Deflection = Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

28 Starting to think about the Error Figure Convergence of the Max Deflection Value (compared with deflection for N = 0) Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

29 What have we learned? Finite difference expressions in 2D follow the same structure as D Approximate the PDE expression at nodes in the domain Determine the solution at those nodes The general steps for a finite difference problem are Step Discretize the domain (in D N intervals, N points). Step 2 Write finite difference equations that approximate governing equation at each internal node of the problem Step 3 Form a linear system (Ax = b) Step 4 Enforce the boundary conditions where relevant Step 5 Solve the system of equations Numerical Methods for PDEs Video 9 2D FiniteFebruary Difference 4, Equations / 29

Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15 22.520 Numerical Methods for PDEs : Video 11: 1D Finite Difference Mappings Theory and Matlab February 15, 2015 22.520 Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings 2015

More information

Parallel Implementations of Gaussian Elimination

Parallel Implementations of Gaussian Elimination s of Western Michigan University vasilije.perovic@wmich.edu January 27, 2012 CS 6260: in Parallel Linear systems of equations General form of a linear system of equations is given by a 11 x 1 + + a 1n

More information

Lesson 17. Geometry and Algebra of Corner Points

Lesson 17. Geometry and Algebra of Corner Points SA305 Linear Programming Spring 2016 Asst. Prof. Nelson Uhan 0 Warm up Lesson 17. Geometry and Algebra of Corner Points Example 1. Consider the system of equations 3 + 7x 3 = 17 + 5 = 1 2 + 11x 3 = 24

More information

Lecture 23: Starting to put it all together #2... More 2-Point Boundary value problems

Lecture 23: Starting to put it all together #2... More 2-Point Boundary value problems Lecture 23: Starting to put it all together #2... More 2-Point Boundary value problems Outline 1) Our basic example again: -u'' + u = f(x); u(0)=α, u(l)=β 2) Solution of 2-point Boundary value problems

More information

Section 3.1 Gaussian Elimination Method (GEM) Key terms

Section 3.1 Gaussian Elimination Method (GEM) Key terms Section 3.1 Gaussian Elimination Method (GEM) Key terms Rectangular systems Consistent system & Inconsistent systems Rank Types of solution sets RREF Upper triangular form & back substitution Nonsingular

More information

Interlude: Solving systems of Equations

Interlude: Solving systems of Equations Interlude: Solving systems of Equations Solving Ax = b What happens to x under Ax? The singular value decomposition Rotation matrices Singular matrices Condition number Null space Solving Ax = 0 under

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 20: Sparse Linear Systems; Direct Methods vs. Iterative Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 26

More information

Homework # 2 Due: October 6. Programming Multiprocessors: Parallelism, Communication, and Synchronization

Homework # 2 Due: October 6. Programming Multiprocessors: Parallelism, Communication, and Synchronization ECE669: Parallel Computer Architecture Fall 2 Handout #2 Homework # 2 Due: October 6 Programming Multiprocessors: Parallelism, Communication, and Synchronization 1 Introduction When developing multiprocessor

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Some special matrices Matlab code How many operations and memory

More information

Homework #6 Brief Solutions 2012

Homework #6 Brief Solutions 2012 Homework #6 Brief Solutions %page 95 problem 4 data=[-,;-,;,;4,] data = - - 4 xk=data(:,);yk=data(:,);s=csfit(xk,yk,-,) %Using the program to find the coefficients S =.456 -.456 -.. -.5.9 -.5484. -.58.87.

More information

Matrix Inverse 2 ( 2) 1 = 2 1 2

Matrix Inverse 2 ( 2) 1 = 2 1 2 Name: Matrix Inverse For Scalars, we have what is called a multiplicative identity. This means that if we have a scalar number, call it r, then r multiplied by the multiplicative identity equals r. Without

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 5: Sparse Linear Systems and Factorization Methods Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Sparse

More information

FreeMat Tutorial. 3x + 4y 2z = 5 2x 5y + z = 8 x x + 3y = -1 xx

FreeMat Tutorial. 3x + 4y 2z = 5 2x 5y + z = 8 x x + 3y = -1 xx 1 of 9 FreeMat Tutorial FreeMat is a general purpose matrix calculator. It allows you to enter matrices and then perform operations on them in the same way you would write the operations on paper. This

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Probably the simplest kind of problem. Occurs in many contexts, often as part of larger problem. Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica,

More information

Sparse matrices, graphs, and tree elimination

Sparse matrices, graphs, and tree elimination Logistics Week 6: Friday, Oct 2 1. I will be out of town next Tuesday, October 6, and so will not have office hours on that day. I will be around on Monday, except during the SCAN seminar (1:25-2:15);

More information

Mathematics 4330/5344 #1 Matlab and Numerical Approximation

Mathematics 4330/5344 #1 Matlab and Numerical Approximation David S. Gilliam Department of Mathematics Texas Tech University Lubbock, TX 79409 806 742-2566 gilliam@texas.math.ttu.edu http://texas.math.ttu.edu/~gilliam Mathematics 4330/5344 #1 Matlab and Numerical

More information

High Performance Computing: Tools and Applications

High Performance Computing: Tools and Applications High Performance Computing: Tools and Applications Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology Lecture 15 Numerically solve a 2D boundary value problem Example:

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6: file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_1.htm 1 of 1 6/20/2012 12:24 PM The Lecture deals with: ADI Method file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_2.htm 1 of 2 6/20/2012

More information

Finite difference solution of Laplace's equation

Finite difference solution of Laplace's equation restart; with(pdetools): with(linearalgebra): with(plots): interface(rtablesize=): Finite difference solution of Laplace's equation The purpose of the worksheet is to solve Laplace's equation using finite

More information

High Performance Computing Programming Paradigms and Scalability Part 6: Examples of Parallel Algorithms

High Performance Computing Programming Paradigms and Scalability Part 6: Examples of Parallel Algorithms High Performance Computing Programming Paradigms and Scalability Part 6: Examples of Parallel Algorithms PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering (CiE) Scientific Computing

More information

A B. bijection. injection. Section 2.4: Countability. a b c d e g

A B. bijection. injection. Section 2.4: Countability. a b c d e g Section 2.4: Countability We can compare the cardinality of two sets. A = B means there is a bijection between A and B. A B means there is an injection from A to B. A < B means A B and A B Example: Let

More information

2 T. x + 2 T. , T( x, y = 0) = T 1

2 T. x + 2 T. , T( x, y = 0) = T 1 LAB 2: Conduction with Finite Difference Method Objective: The objective of this laboratory is to introduce the basic steps needed to numerically solve a steady state two-dimensional conduction problem

More information

A system of equations is a set of equations with the same unknowns.

A system of equations is a set of equations with the same unknowns. Unit B, Lesson.3 Solving Systems of Equations Functions can be used to model real-world situations where you may be interested in a certain event or circumstance while you are also concerned with another.

More information

Reinforcement Learning (INF11010) Lecture 6: Dynamic Programming for Reinforcement Learning (extended)

Reinforcement Learning (INF11010) Lecture 6: Dynamic Programming for Reinforcement Learning (extended) Reinforcement Learning (INF11010) Lecture 6: Dynamic Programming for Reinforcement Learning (extended) Pavlos Andreadis, February 2 nd 2018 1 Markov Decision Processes A finite Markov Decision Process

More information

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001)

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001) An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (000/001) Summary The objectives of this project were as follows: 1) Investigate iterative

More information

Lecture 12 Level Sets & Parametric Transforms. sec & ch. 11 of Machine Vision by Wesley E. Snyder & Hairong Qi

Lecture 12 Level Sets & Parametric Transforms. sec & ch. 11 of Machine Vision by Wesley E. Snyder & Hairong Qi Lecture 12 Level Sets & Parametric Transforms sec. 8.5.2 & ch. 11 of Machine Vision by Wesley E. Snyder & Hairong Qi Spring 2017 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information

Summer 2009 REU: Introduction to Some Advanced Topics in Computational Mathematics

Summer 2009 REU: Introduction to Some Advanced Topics in Computational Mathematics Summer 2009 REU: Introduction to Some Advanced Topics in Computational Mathematics Moysey Brio & Paul Dostert July 4, 2009 1 / 18 Sparse Matrices In many areas of applied mathematics and modeling, one

More information

!=======1=========2=========3=========4=========5=========6=========7=========8=========9=========10========11

!=======1=========2=========3=========4=========5=========6=========7=========8=========9=========10========11 C:\files\classes\fem\program code\truss\truss solve\truss.f90 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43! truss.f90! Kurt

More information

AMSC/CMSC 460 Final Exam, Fall 2007

AMSC/CMSC 460 Final Exam, Fall 2007 AMSC/CMSC 460 Final Exam, Fall 2007 Show all work. You may leave arithmetic expressions in any form that a calculator could evaluate. By putting your name on this paper, you agree to abide by the university

More information

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB MAT 75 Laboratory Matrix Computations and Programming in MATLAB In this laboratory session we will learn how to. Create and manipulate matrices and vectors.. Write simple programs in MATLAB NOTE: For your

More information

Process model formulation and solution, 3E4 Computer software tutorial - Tutorial 3

Process model formulation and solution, 3E4 Computer software tutorial - Tutorial 3 Process model formulation and solution, 3E4 Computer software tutorial - Tutorial 3 Kevin Dunn, dunnkg@mcmaster.ca October 2 Tutorial solutions: Elliot Cameron. Tutorial objectives Understand computer

More information

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB MATLAB sessions: Laboratory MAT 75 Laboratory Matrix Computations and Programming in MATLAB In this laboratory session we will learn how to. Create and manipulate matrices and vectors.. Write simple programs

More information

Optimization in One Variable Using Solver

Optimization in One Variable Using Solver Chapter 11 Optimization in One Variable Using Solver This chapter will illustrate the use of an Excel tool called Solver to solve optimization problems from calculus. To check that your installation of

More information

E0005E - Industrial Image Analysis

E0005E - Industrial Image Analysis E0005E - Industrial Image Analysis The Hough Transform Matthew Thurley slides by Johan Carlson 1 This Lecture The Hough transform Detection of lines Detection of other shapes (the generalized Hough transform)

More information

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB MATLAB sessions: Laboratory MAT 75 Laboratory Matrix Computations and Programming in MATLAB In this laboratory session we will learn how to. Create and manipulate matrices and vectors.. Write simple programs

More information

Finite Math - J-term Homework. Section Inverse of a Square Matrix

Finite Math - J-term Homework. Section Inverse of a Square Matrix Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse

More information

9.1 Linear Inequalities in Two Variables Date: 2. Decide whether to use a solid line or dotted line:

9.1 Linear Inequalities in Two Variables Date: 2. Decide whether to use a solid line or dotted line: 9.1 Linear Inequalities in Two Variables Date: Key Ideas: Example Solve the inequality by graphing 3y 2x 6. steps 1. Rearrange the inequality so it s in mx ± b form. Don t forget to flip the inequality

More information

Solving something like this

Solving something like this Waves! Solving something like this The Wave Equation (1-D) = (n-d) = The Wave Equation,, =,, (,, ) (,, ) ( ) = (,, ) (,, ) ( ), =2,, + (, 2, +, ) Boundary Conditions Examples: Manual motion at an end u(0,

More information

EGR 111 Loops. This lab is an introduction to loops, which allow MATLAB to repeat commands a certain number of times.

EGR 111 Loops. This lab is an introduction to loops, which allow MATLAB to repeat commands a certain number of times. EGR 111 Loops This lab is an introduction to loops, which allow MATLAB to repeat commands a certain number of times. New MATLAB commands: for, while,, length 1. The For Loop Suppose we want print a statement

More information

Linear Equation Systems Iterative Methods

Linear Equation Systems Iterative Methods Linear Equation Systems Iterative Methods Content Iterative Methods Jacobi Iterative Method Gauss Seidel Iterative Method Iterative Methods Iterative methods are those that produce a sequence of successive

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2

Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2 Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2 Jingwei Zhu March 19, 2014 Instructor: Surya Pratap Vanka 1 Project Description The purpose of this

More information

ENGR 1181 MATLAB 09: For Loops 2

ENGR 1181 MATLAB 09: For Loops 2 ENGR 1181 MATLAB 09: For Loops Learning Objectives 1. Use more complex ways of setting the loop index. Construct nested loops in the following situations: a. For use with two dimensional arrays b. For

More information

Matrices 4: use of MATLAB

Matrices 4: use of MATLAB Matrices 4: use of MATLAB Anthony Rossiter http://controleducation.group.shef.ac.uk/indexwebbook.html http://www.shef.ac.uk/acse Department of Automatic Control and Systems Engineering Introduction The

More information

Space Filling Curves and Hierarchical Basis. Klaus Speer

Space Filling Curves and Hierarchical Basis. Klaus Speer Space Filling Curves and Hierarchical Basis Klaus Speer Abstract Real world phenomena can be best described using differential equations. After linearisation we have to deal with huge linear systems of

More information

Monroe County School District Elementary Pacing Guide

Monroe County School District Elementary Pacing Guide Date Taught: Second Grade Unit 1: Numbers and Operations in Base Ten Timeline: August Fall Break CMA: October 6-7 M.NO.2.1 Understand that the three digits of a three-digit number represent amounts of

More information

Understanding Gridfit

Understanding Gridfit Understanding Gridfit John R. D Errico Email: woodchips@rochester.rr.com December 28, 2006 1 Introduction GRIDFIT is a surface modeling tool, fitting a surface of the form z(x, y) to scattered (or regular)

More information

Linear Programming. Readings: Read text section 11.6, and sections 1 and 2 of Tom Ferguson s notes (see course homepage).

Linear Programming. Readings: Read text section 11.6, and sections 1 and 2 of Tom Ferguson s notes (see course homepage). Linear Programming Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory: Feasible Set, Vertices, Existence of Solutions. Equivalent formulations. Outline

More information

Just the Facts Small-Sliding Contact in ANSYS Mechanical

Just the Facts Small-Sliding Contact in ANSYS Mechanical Just the Facts Small-Sliding Contact in ANSYS Mechanical ANSYS, Inc. 2600 ANSYS Drive Canonsburg, PA 15317 29 March 2018 Although this document provides information that customers may find useful, it is

More information

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued.

Linear Programming. Widget Factory Example. Linear Programming: Standard Form. Widget Factory Example: Continued. Linear Programming Widget Factory Example Learning Goals. Introduce Linear Programming Problems. Widget Example, Graphical Solution. Basic Theory:, Vertices, Existence of Solutions. Equivalent formulations.

More information

5. GENERALIZED INVERSE SOLUTIONS

5. GENERALIZED INVERSE SOLUTIONS 5. GENERALIZED INVERSE SOLUTIONS The Geometry of Generalized Inverse Solutions The generalized inverse solution to the control allocation problem involves constructing a matrix which satisfies the equation

More information

Advanced Computer Architecture Lab 3 Scalability of the Gauss-Seidel Algorithm

Advanced Computer Architecture Lab 3 Scalability of the Gauss-Seidel Algorithm Advanced Computer Architecture Lab 3 Scalability of the Gauss-Seidel Algorithm Andreas Sandberg 1 Introduction The purpose of this lab is to: apply what you have learned so

More information

Assignment: Backgrounding and Optical Flow.

Assignment: Backgrounding and Optical Flow. Assignment: Backgrounding and Optical Flow. April 6, 00 Backgrounding In this part of the assignment, you will develop a simple background subtraction program.. In this assignment, you are given two videos.

More information

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou

Study and implementation of computational methods for Differential Equations in heterogeneous systems. Asimina Vouronikoy - Eleni Zisiou Study and implementation of computational methods for Differential Equations in heterogeneous systems Asimina Vouronikoy - Eleni Zisiou Outline Introduction Review of related work Cyclic Reduction Algorithm

More information

2. Use elementary row operations to rewrite the augmented matrix in a simpler form (i.e., one whose solutions are easy to find).

2. Use elementary row operations to rewrite the augmented matrix in a simpler form (i.e., one whose solutions are easy to find). Section. Gaussian Elimination Our main focus in this section is on a detailed discussion of a method for solving systems of equations. In the last section, we saw that the general procedure for solving

More information

Contents. F10: Parallel Sparse Matrix Computations. Parallel algorithms for sparse systems Ax = b. Discretized domain a metal sheet

Contents. F10: Parallel Sparse Matrix Computations. Parallel algorithms for sparse systems Ax = b. Discretized domain a metal sheet Contents 2 F10: Parallel Sparse Matrix Computations Figures mainly from Kumar et. al. Introduction to Parallel Computing, 1st ed Chap. 11 Bo Kågström et al (RG, EE, MR) 2011-05-10 Sparse matrices and storage

More information

Beams. Lesson Objectives:

Beams. Lesson Objectives: Beams Lesson Objectives: 1) Derive the member local stiffness values for two-dimensional beam members. 2) Assemble the local stiffness matrix into global coordinates. 3) Assemble the structural stiffness

More information

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear.

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear. AMSC 600/CMSC 760 Fall 2007 Solution of Sparse Linear Systems Multigrid, Part 1 Dianne P. O Leary c 2006, 2007 What is Multigrid? Originally, multigrid algorithms were proposed as an iterative method to

More information

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER AVISHA DHISLE PRERIT RODNEY ADHISLE PRODNEY 15618: PARALLEL COMPUTER ARCHITECTURE PROF. BRYANT PROF. KAYVON LET S

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Zero elements of first column below 1 st row multiplying 1 st

More information

CpSc 1111 Lab 9 2-D Arrays

CpSc 1111 Lab 9 2-D Arrays CpSc 1111 Lab 9 2-D Arrays Overview This week, you will gain some experience with 2-dimensional arrays, using loops to do the following: initialize a 2-D array with data from an input file print out the

More information

Computer Packet 1 Row Operations + Freemat

Computer Packet 1 Row Operations + Freemat Computer Packet 1 Row Operations + Freemat For this packet, you will use a website to do row operations, and then learn to use a general purpose matrix calculator called FreeMat. To reach the row operations

More information

EE 301 Signals & Systems I MATLAB Tutorial with Questions

EE 301 Signals & Systems I MATLAB Tutorial with Questions EE 301 Signals & Systems I MATLAB Tutorial with Questions Under the content of the course EE-301, this semester, some MATLAB questions will be assigned in addition to the usual theoretical questions. This

More information

16.410/413 Principles of Autonomy and Decision Making

16.410/413 Principles of Autonomy and Decision Making 16.410/413 Principles of Autonomy and Decision Making Lecture 17: The Simplex Method Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology November 10, 2010 Frazzoli (MIT)

More information

Euler s Method with Python

Euler s Method with Python Euler s Method with Python Intro. to Differential Equations October 23, 2017 1 Euler s Method with Python 1.1 Euler s Method We first recall Euler s method for numerically approximating the solution of

More information

Introduction to Operations Research

Introduction to Operations Research - Introduction to Operations Research Peng Zhang April, 5 School of Computer Science and Technology, Shandong University, Ji nan 5, China. Email: algzhang@sdu.edu.cn. Introduction Overview of the Operations

More information

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points]

CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, :59pm, PDF to Canvas [100 points] CIS 520, Machine Learning, Fall 2015: Assignment 7 Due: Mon, Nov 16, 2015. 11:59pm, PDF to Canvas [100 points] Instructions. Please write up your responses to the following problems clearly and concisely.

More information

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not.

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not. AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 2: Spline Approximations Dianne P O Leary c 2001, 2002, 2007 Piecewise polynomial interpolation Piecewise polynomial interpolation Read: Chapter 3 Skip:

More information

Getting Started with MATLAB

Getting Started with MATLAB Getting Started with MATLAB Math 315, Fall 2003 Matlab is an interactive system for numerical computations. It is widely used in universities and industry, and has many advantages over languages such as

More information

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder Final Report Discontinuous Galerkin Compressible Euler Equation Solver May 14, 2013 Andrey Andreyev Adviser: Dr. James Baeder Abstract: In this work a Discontinuous Galerkin Method is developed for compressible

More information

Optimization to Reduce Automobile Cabin Noise

Optimization to Reduce Automobile Cabin Noise EngOpt 2008 - International Conference on Engineering Optimization Rio de Janeiro, Brazil, 01-05 June 2008. Optimization to Reduce Automobile Cabin Noise Harold Thomas, Dilip Mandal, and Narayanan Pagaldipti

More information

Lecture 3. Brute Force

Lecture 3. Brute Force Lecture 3 Brute Force 1 Lecture Contents 1. Selection Sort and Bubble Sort 2. Sequential Search and Brute-Force String Matching 3. Closest-Pair and Convex-Hull Problems by Brute Force 4. Exhaustive Search

More information

The transition: Each student passes half his store of candies to the right. students with an odd number of candies eat one.

The transition: Each student passes half his store of candies to the right. students with an odd number of candies eat one. Kate s problem: The students are distributed around a circular table The teacher distributes candies to all the students, so that each student has an even number of candies The transition: Each student

More information

EXTENSION. a 1 b 1 c 1 d 1. Rows l a 2 b 2 c 2 d 2. a 3 x b 3 y c 3 z d 3. This system can be written in an abbreviated form as

EXTENSION. a 1 b 1 c 1 d 1. Rows l a 2 b 2 c 2 d 2. a 3 x b 3 y c 3 z d 3. This system can be written in an abbreviated form as EXTENSION Using Matrix Row Operations to Solve Systems The elimination method used to solve systems introduced in the previous section can be streamlined into a systematic method by using matrices (singular:

More information

CSCE 5160 Parallel Processing. CSCE 5160 Parallel Processing

CSCE 5160 Parallel Processing. CSCE 5160 Parallel Processing HW #9 10., 10.3, 10.7 Due April 17 { } Review Completing Graph Algorithms Maximal Independent Set Johnson s shortest path algorithm using adjacency lists Q= V; for all v in Q l[v] = infinity; l[s] = 0;

More information

1. In this problem we use Monte Carlo integration to approximate the area of a circle of radius, R = 1.

1. In this problem we use Monte Carlo integration to approximate the area of a circle of radius, R = 1. 1. In this problem we use Monte Carlo integration to approximate the area of a circle of radius, R = 1. A. For method 1, the idea is to conduct a binomial experiment using the random number generator:

More information

Introduction to Matlab

Introduction to Matlab Technische Universität München WT 21/11 Institut für Informatik Prof Dr H-J Bungartz Dipl-Tech Math S Schraufstetter Benjamin Peherstorfer, MSc October 22nd, 21 Introduction to Matlab Engineering Informatics

More information

Statics of the truss with force and temperature load - test problem Nr 1

Statics of the truss with force and temperature load - test problem Nr 1 Statics of the truss with force and temperature load - test problem Nr E := GPa - Young modulus for truss material - steel α t := - - thermal expanssion coeficient - steel D := cm - Cross section (pipe)

More information

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering Introduction A SolidWorks simulation tutorial is just intended to illustrate where to

More information

Revision Topic 11: Straight Line Graphs

Revision Topic 11: Straight Line Graphs Revision Topic : Straight Line Graphs The simplest way to draw a straight line graph is to produce a table of values. Example: Draw the lines y = x and y = 6 x. Table of values for y = x x y - - - - =

More information

Interpolation - 2D mapping Tutorial 1: triangulation

Interpolation - 2D mapping Tutorial 1: triangulation Tutorial 1: triangulation Measurements (Zk) at irregular points (xk, yk) Ex: CTD stations, mooring, etc... The known Data How to compute some values on the regular spaced grid points (+)? The unknown data

More information

3. Replace any row by the sum of that row and a constant multiple of any other row.

3. Replace any row by the sum of that row and a constant multiple of any other row. Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying

More information

Chapter 8: Regression. Self-test answers

Chapter 8: Regression. Self-test answers Chapter 8: Regression Self-test answers SELF-TEST Residuals are used to compute which of the three sums of squares? The residuals are used to calculate the residual sum of squares (SSR). This value is

More information

restart; with(pdetools): with(linearalgebra): with(plots): interface(rtablesize=20): Finite difference solution of Poisson's equation

restart; with(pdetools): with(linearalgebra): with(plots): interface(rtablesize=20): Finite difference solution of Poisson's equation O restart; with(pdetools): with(linearalgebra): with(plots): interface(rtablesize=): Finite difference solution of Poisson's equation The purpose of the worksheet is to solve Poisson's equation using finite

More information

Erdös-Rényi Graphs, Part 2

Erdös-Rényi Graphs, Part 2 Graphs and Networks Lecture 3 Erdös-Rényi Graphs, Part 2 Daniel A. Spielman September 5, 2013 3.1 Disclaimer These notes are not necessarily an accurate representation of what happened in class. They are

More information

Chapter 14: Matrix Iterative Methods

Chapter 14: Matrix Iterative Methods Chapter 14: Matrix Iterative Methods 14.1INTRODUCTION AND OBJECTIVES This chapter discusses how to solve linear systems of equations using iterative methods and it may be skipped on a first reading of

More information

Coupled PDEs with Initial Solution from Data in COMSOL 4

Coupled PDEs with Initial Solution from Data in COMSOL 4 Coupled PDEs with Initial Solution from Data in COMSOL 4 X. Huang, S. Khuvis, S. Askarian, M. K. Gobbert, and B. E. Peercy Department of Mathematics and Statistics, University of Maryland, Baltimore County

More information

Diagonalization. The cardinality of a finite set is easy to grasp: {1,3,4} = 3. But what about infinite sets?

Diagonalization. The cardinality of a finite set is easy to grasp: {1,3,4} = 3. But what about infinite sets? Diagonalization Cardinalities The cardinality of a finite set is easy to grasp: {1,3,4} = 3. But what about infinite sets? We say that a set S has at least as great cardinality as set T, written S T, if

More information

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements.

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. Chapter 1: Metric spaces and convergence. (1.1) Recall the standard distance function

More information

The basics of rigidity

The basics of rigidity The basics of rigidity Lectures I and II Session on Granular Matter Institut Henri Poincaré R. Connelly Cornell University Department of Mathematics 1 What determines rigidity? 2 What determines rigidity?

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Math 1525 Excel Lab 1 Introduction to Excel Spring, 2001

Math 1525 Excel Lab 1 Introduction to Excel Spring, 2001 Math 1525 Excel Lab 1 Introduction to Excel Spring, 2001 Goal: The goal of Lab 1 is to introduce you to Microsoft Excel, to show you how to graph data and functions, and to practice solving problems with

More information

Uppsala University Department of Information technology. Hands-on 1: Ill-conditioning = x 2

Uppsala University Department of Information technology. Hands-on 1: Ill-conditioning = x 2 Uppsala University Department of Information technology Hands-on : Ill-conditioning Exercise (Ill-conditioned linear systems) Definition A system of linear equations is said to be ill-conditioned when

More information

Semester Final Report

Semester Final Report CSUMS SemesterFinalReport InLaTex AnnKimball 5/20/2009 ThisreportisageneralsummaryoftheaccumulationofknowledgethatIhavegatheredthroughoutthis semester. I was able to get a birds eye view of many different

More information

Robert Collins CSE486, Penn State. Lecture 09: Stereo Algorithms

Robert Collins CSE486, Penn State. Lecture 09: Stereo Algorithms Lecture 09: Stereo Algorithms left camera located at (0,0,0) Recall: Simple Stereo System Y y Image coords of point (X,Y,Z) Left Camera: x T x z (, ) y Z (, ) x (X,Y,Z) z X right camera located at (T x,0,0)

More information

1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation

1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation 1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation functions vertical line test function notation evaluate

More information

Image Manipulation in MATLAB Due Monday, July 17 at 5:00 PM

Image Manipulation in MATLAB Due Monday, July 17 at 5:00 PM Image Manipulation in MATLAB Due Monday, July 17 at 5:00 PM 1 Instructions Labs may be done in groups of 2 or 3 (i.e., not alone). You may use any programming language you wish but MATLAB is highly suggested.

More information

Numerical Methods in Physics Lecture 2 Interpolation

Numerical Methods in Physics Lecture 2 Interpolation Numerical Methods in Physics Pat Scott Department of Physics, Imperial College November 8, 2016 Slides available from http://astro.ic.ac.uk/pscott/ course-webpage-numerical-methods-201617 Outline The problem

More information