Implicit Function Explorations

Size: px
Start display at page:

Download "Implicit Function Explorations"

Transcription

1 Activities with Implicit Functions and Implicit Differentiation on the TI-89/Voyage 00 Dennis Pence Western Michigan University Kalamazoo, Michigan USA Abstract: Unfortunately the topic of implicit differentiation occurs early in most calculus texts (primarily so that there can be a more rigorous proof for the derivative power rule), when the student has no experience with or understanding of implicitly defined functions. Implicit function plotting on these calculators is embedded in 3D plotting, and it is generally not yet appropriate to study functions of several variables either. We present instead methods of working with implicit functions using the CAS solver, the numeric solver, tables, and function graphing all tools that are comfortable for a beginning calculus student. This work can naturally lead to a greater understanding of implicit differentiation, both when the implicit differentiation is done by hand and when carried out using a CAS process. Students in a first calculus course rarely have a very well developed concept of function. For most, the notion of a function is closely tied to a formula. If something cannot be typed as a simple formula into the Y= Editor in Function Graphing Mode, then it probably does not get included in the notion of function as they understand it. Even piecewise-defined functions (which can be typed into a function slot in the Y= Editor with difficulty using the when command) give students some trouble, with many considering the pieces as separate functions. Pre-calculus experiences virtually never deal with situations where a function cannot be written by an elementary formula. Thus it should be no surprise that these same students do not readily accept the notion of an implicitly-defined function. In fact, the vertical line test that they have been taught to use in order to decide whether a curve in the plane represents the graph of a function or not will lead they to reject most of the curves given to them now when we start talking about implicit functions. Most calculus texts spend very little time (if any) developing an understanding of the rather subtle notion of an implicitly-defined function. Instead, these textbooks rush immediately into the concept of implicit differentiation. Clearly some of the difficulties which students face in understanding implicit differentiation come from this lack of understanding for the very function they are trying to differentiate, the implicit function we like to assume they see in the given equation. I have found that spending separate time just working with implicit functions pays off later when we move on to implicit differentiation. Implicit Function Explorations 3 3 For definiteness, let s consider a folium of Descartes, namely x + y = 6xy near (3, 3). Given prior work with the graphs of conic sections, it is reasonable to expect the graph of this equation to give some curve in the xy-plane. It is also easy to check that the point (3, 3) satisfies the equation. Thus we seek to explore the claim that near x = 3 there is an implicitly defined function y(x). Our first exploration will use the Numeric Solver. While it is possible that the students have seen Newton s method by this time (and the solving could be done that way), we want the speed and simplicity of the built-in numeric solving process. 1

2 APPS Numeric Solver Enter equation Enter desired x-value and seed y = 3 Press F Solve Try other nearby x-values, same seed y = 3 A limited amount of this exploration will lead to the discovery that most nearby x-values result in an associated y-value, which is also near 3. However the example above where x = 3.5 (even with a seed of y = 3) requires more explanation. This is probably the appropriate time to explain the use of a seed value in the variable y for the Numeric Solver. An equation such as this one may have more than one solution for a certain x-value. We type a seed value in for y before we press F Solve in order to start the search for a solution near where we hope to find one. There is no guarantee that this will happen, but it tends to happen. The iterative process used by the calculator will also take much less time if we start with a seed near the final solution. [Students who have previously studied Newton s method should have enough practice with this to appreciate the worth of a good starting value.] You can also restrict the search for the solved variable with the bound, but we choose not to do that here. To demonstrate this, we go to x = 3 and use the seeds y = 3, 0, and 3. Before F Solve, type y = 3 y = 0 y = 3 Thus we can see that the curve representing the graph of this equation will not be the graph of a single function because it fails the vertical line test at x = 3. Attempts to use still further seeds will lead to the conclusion that you always end up with one of these three final answers, and it will re-enforce the idea that you end up with a solution near where you start (if that is possible). This further leads to the conclusion that there might be three different functions to consider near x = 3. Obviously this process of solving for the y-value associated with a specified x-value, one at a time, is tedious. Don t underestimate its pedagogical value, however. Now perhaps is the time to be more efficient. We would like to see these xy-pairs in a table and in a graph. The trick is to

3 use the command line version of the numeric solver as the input in the Y= Editor. The syntax for the command is nsolve( EQUATION, VAR ) where we can (optionally) input a seed by typing y = 3, for example. The variable x will be set by the table or graphing process and the command will solve for a y-value near the seed. Command in CATALOG Seed is last argument as y=3 Table Setup Table Window (suggest xres = 3) Graph Both the table and the graph seem to suggest some implicitly-defined function y(x) exists for x- values near 3 (but this function seems to drop off between x = 3.1 and x = 3.). Note that since we took the default graphing style (Line), then we get a near vertical line where the drop off occurs. We will get a better understanding of this if we plot all three of the solution parts on the same graph using the style Dot so that there is no vertical line when we drop off to another function. Now you are really going to want a larger xres because function evaluation with this numeric solve command takes a long time! Note that we can scroll up and down in the table and we can trace these function graphs ZoomSqr It is interesting here to try to use the F5 Math commands to look at derivatives and tangent lines. While the Maximum command does work (slowly) for our first function, the error message for a derivative or a tangent line seems to indicate that these commands require a simple formula. 3

4 I should mention, before we go on to differentiation, that Implicit Plotting is implemented in the 3D graphing mode provided you are willing to discuss things in 3D. I prefer not to do so in a beginning calculus course, but it is nice to remind students about implicit functions when they are taking a later multivariate calculus course. The disadvantages here are you cannot trace along the curve (because it really is a 3D plot and the trace command moves on the surface) and you cannot look at tables. Select 3D graphing F1 Format Style z1=x^3+y^3 6x*y, 4.5 x 4.5, 3.5 y 3.5 Implicit Differentiation On the old TI-9, we used to do implicit differentiation by asking for the derivative with respect to x in an equation where we typed an (unknown) function y(x) in place of y in the equation. This part still works. However it is no longer easy to solve for the derivative. This trick no longer works. What you now need to do is to cursor up to highlight the output of the implicit differentiation. Press ENTER to have this equation pasted onto the command line. Then edit out all of the phrases d(y(x),x) and replace them with a variable name such as yp. Finally surround this edited equation with a solve command and solve for the variable name yp. 4

5 I still like the above process for demonstrating how they should operate by hand. But for more efficient later work, the Flash App Calculus Tools provides a nicer way to have the tool do the whole process of implicit differentiation and then solving for the derivative. However the student is expected to find the implicit derivative (by hand or using the tool), there needs to some graphical confirmation that this agrees with what we expect for a derivative of a function. We now add tangent lines to the graph we obtained above by entering the lines as additional functions in the Y= Editor. 3 3 dy x y x + y = 6 xy, = dx x y dy For the point ( x, y) = (3, 3), = 1, tangent line y = 3 ( x 3). dx dy For the point ( x, y) = (3, ), =.065, tangent line y = ( x 3). dx dy For the point ( x, y) = (3, ), = , tangent line y = ( x 3). dx y4= 3 ( x 3) y5 = ( x 3) y6 = ( x 3) 5

6 [Tip: Since the implicit functions plot so slowly, you will not want to have them redrawn again every time you change to a new tangent line above. Have only the three implicit functions stored in y1, y, and y3 plotted first and do F1 Save Copy As to a Picture file. Then graph the tangent lines one at a time, and Open the Picture file to have the implicit plot redrawn quickly.] The Implicit Differentiation in Calculus Tools also gave us the second derivative of the implicit function (and would have given higher orders as well). We do not usually do this in a beginning calculus course, but we easily could. Just implicitly differentiate the original equation twice and solve for the second derivative that results. Note that there are command line versions of the commands from Calculus Tools in the CATALOG. 8 y7= 3 ( x 3) ( x 3) 3 y8 = ( x 3) ( x 3) y9 = ( x 3) ( x 3) 6

Chapter 1 Vectors. 1. Storing Vectors in a Matrix

Chapter 1 Vectors. 1. Storing Vectors in a Matrix Chapter 1 Vectors 1. Storing Vectors in a Matrix 2. Vector Operations 3. Other Matrices and Determinants 4. Visualization of 2D Vectors This chapter provides some tips on how to work with vectors on the

More information

Chapter 3 Limits and Derivative Concepts

Chapter 3 Limits and Derivative Concepts Chapter 3 Limits and Derivative Concepts 1. Average Rate of Change 2. Using Tables to Investigate Limits 3. Symbolic Limits and the Derivative Definition 4. Graphical Derivatives 5. Numerical Derivatives

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

TI-89 (and 92) Calculus Operations

TI-89 (and 92) Calculus Operations TI 89 1 TI-89 (and 92) Calculus Operations A Preliminaries: 1. Home Screen: This is the screen that appears when the calculator is turned on. To return to the Home screen from other screens, press HOME

More information

TIME 2014 Technology in Mathematics Education July 1 st -5 th 2014, Krems, Austria

TIME 2014 Technology in Mathematics Education July 1 st -5 th 2014, Krems, Austria TIME 2014 Technology in Mathematics Education July 1 st -5 th 2014, Krems, Austria Overview Introduction Using a 2D Plot Window in a CAS Perspective Plotting a circle and implicit differentiation Helping

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

Differentiability and Tangent Planes October 2013

Differentiability and Tangent Planes October 2013 Differentiability and Tangent Planes 14.4 04 October 2013 Differentiability in one variable. Recall for a function of one variable, f is differentiable at a f (a + h) f (a) lim exists and = f (a) h 0 h

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Continuity and Tangent Lines for functions of two variables

Continuity and Tangent Lines for functions of two variables Continuity and Tangent Lines for functions of two variables James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University April 4, 2014 Outline 1 Continuity

More information

SOME INNOVATIVE USES FOR THE IPAD INSIDE THE CLASSROOM AND OUT

SOME INNOVATIVE USES FOR THE IPAD INSIDE THE CLASSROOM AND OUT SOME INNOVATIVE USES FOR THE IPAD INSIDE THE CLASSROOM AND OUT John C.D. Diamantopoulos, Ph.D. Northeastern State University Mathematics Department Tahlequah, OK 74464 diamantj@nsuok.edu One of the major

More information

Investigative Skills Toolkit (Numeric) Student Task Sheet TI-Nspire Numeric Version

Investigative Skills Toolkit (Numeric) Student Task Sheet TI-Nspire Numeric Version Introduction Investigative Skills Toolkit (Numeric) Student Task Sheet TI-Nspire Numeric Version This activity will develop your ability to use the TI-Nspire Numeric Handheld to investigate and generalise

More information

Surfaces and Partial Derivatives

Surfaces and Partial Derivatives Surfaces and Partial Derivatives James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 9, 2016 Outline Partial Derivatives Tangent Planes

More information

International Conference Las Vegas, NV, USA March 7-9, 2014

International Conference Las Vegas, NV, USA March 7-9, 2014 International Conference Las Vegas, NV, USA March 7-9, 2014 Overview About ETS (engineering school) Why Nspire CAS? Why Computer Algebra? Examples in pre-calculus Examples in single variable calculus Examples

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS Page 1 of 22 ORDINARY DIFFERENTIAL EQUATIONS Lecture 5 Visualization Tools for Solutions of First-Order ODEs (Revised 02 February, 2009 @ 08:05) Professor Stephen H Saperstone Department of Mathematical

More information

Exercises for a Numerical Methods Course

Exercises for a Numerical Methods Course Exercises for a Numerical Methods Course Brian Heinold Department of Mathematics and Computer Science Mount St. Mary s University November 18, 2017 1 / 73 About the class Mix of Math and CS students, mostly

More information

Tips to Save Typing, etc.

Tips to Save Typing, etc. MATH 110 Dr. Stoudt Using Your TI-89/Voyage 200 Guidebooks for all Texas Instruments calculators can be downloaded (in Adobe PDF format) from http://education.ti.com/en/us/guidebook/search Just search

More information

Chapter 7 Transcendental Functions

Chapter 7 Transcendental Functions Chapter 7 Transcendental Functions. Trapezoidal Rule and Simpson s Rule. Other Numerical Integration 3. Logarithmic and Eponential Functions 4. Inverse Trigonometric Functions 5. Comparing Symbolic Integration

More information

MATH 19520/51 Class 6

MATH 19520/51 Class 6 MATH 19520/51 Class 6 Minh-Tam Trinh University of Chicago 2017-10-06 1 Review partial derivatives. 2 Review equations of planes. 3 Review tangent lines in single-variable calculus. 4 Tangent planes to

More information

Euler s Method for Approximating Solution Curves

Euler s Method for Approximating Solution Curves Euler s Method for Approximating Solution Curves As you may have begun to suspect at this point, time constraints will allow us to learn only a few of the many known methods for solving differential equations.

More information

Contents 20. Trigonometric Formulas, Identities, and Equations

Contents 20. Trigonometric Formulas, Identities, and Equations Contents 20. Trigonometric Formulas, Identities, and Equations 2 20.1 Basic Identities............................... 2 Using Graphs to Help Verify Identities................... 2 Example 20.1................................

More information

0.5 Graphing Piecewise-Defined Functions

0.5 Graphing Piecewise-Defined Functions 0.5 Graphing Piecewise-Defined Functions To graph a piecewise-defined function, such as f(x) = { 3x + if x < x if x we must specify each piece of the function and the values of x to use for that particular

More information

Maple Quick Start. Maplesoft, a division of Waterloo Maple Inc.

Maple Quick Start. Maplesoft, a division of Waterloo Maple Inc. Maple Quick Start Maplesoft, a division of Waterloo Maple Inc. This tutorial is designed to help you become familiar with the Maple environment and teach you the few fundamental concepts and tools you

More information

Surfaces and Partial Derivatives

Surfaces and Partial Derivatives Surfaces and James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 15, 2017 Outline 1 2 Tangent Planes Let s go back to our simple surface

More information

HOW CAN I USE MAPLE TO HELP MY STUDENTS LEARN MULTIVARIATE CALCULUS?

HOW CAN I USE MAPLE TO HELP MY STUDENTS LEARN MULTIVARIATE CALCULUS? HOW CAN I USE MAPLE TO HELP MY STUDENTS LEARN MULTIVARIATE CALCULUS? Thomas G. Wangler Benedictine University 5700 College Road, Lisle, IL 6053-0900 twangler@ben.edu Introduction Maple is a powerful software

More information

CALCULUS II. Parametric Equations and Polar Coordinates. Paul Dawkins

CALCULUS II. Parametric Equations and Polar Coordinates. Paul Dawkins CALCULUS II Parametric Equations and Polar Coordinates Paul Dawkins Table of Contents Preface... ii Parametric Equations and Polar Coordinates... 3 Introduction... 3 Parametric Equations and Curves...

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

How to Do Everything We Need to Do on a TI Calculator in Algebra 2 for Now (Unless Davies Forgot Something)

How to Do Everything We Need to Do on a TI Calculator in Algebra 2 for Now (Unless Davies Forgot Something) How to Do Everything We Need to Do on a TI Calculator in Algebra 2 for Now (Unless Davies Forgot Something) 10.01.17 Before you do anything, set up your calculator so that it won t get in your way. Basics:

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

4 Visualization and. Approximation

4 Visualization and. Approximation 4 Visualization and Approximation b A slope field for the differential equation y tan(x + y) tan(x) tan(y). It is not always possible to write down an explicit formula for the solution to a differential

More information

Introduction to PDEs: Notation, Terminology and Key Concepts

Introduction to PDEs: Notation, Terminology and Key Concepts Chapter 1 Introduction to PDEs: Notation, Terminology and Key Concepts 1.1 Review 1.1.1 Goal The purpose of this section is to briefly review notation as well as basic concepts from calculus. We will also

More information

Functions of Several Variables, Limits and Derivatives

Functions of Several Variables, Limits and Derivatives Functions of Several Variables, Limits and Derivatives Introduction and Goals: The main goal of this lab is to help you visualize surfaces in three dimensions. We investigate how one can use Maple to evaluate

More information

LAB #8 Numerical Methods

LAB #8 Numerical Methods LAB #8 Numerical Methods Goal: The purpose of this lab is to explain how computers numerically approximate solutions to differential equations. Required tools: Matlab routine dfield ; numerical routines

More information

B. Examples Set up the integral(s) needed to find the area of the region bounded by

B. Examples Set up the integral(s) needed to find the area of the region bounded by Math 176 Calculus Sec. 6.1: Area Between Curves I. Area between the Curve and the x Axis A. Let f(x) 0 be continuous on [a,b]. The area of the region between the graph of f and the x-axis is A = f ( x)

More information

4.2.1 directional derivatives and the gradient in R 2

4.2.1 directional derivatives and the gradient in R 2 4.2. PARTIAL DIFFERENTIATION IN R 2 161 4.2.1 directional derivatives and the gradient in R 2 Now that we have a little experience in partial differentiation let s return to the problem of the directional

More information

Tangent Lines and Linear Approximations Solutions

Tangent Lines and Linear Approximations Solutions Solutions We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment,

More information

Here are some of the more basic curves that we ll need to know how to do as well as limits on the parameter if they are required.

Here are some of the more basic curves that we ll need to know how to do as well as limits on the parameter if they are required. 1 of 10 23/07/2016 05:15 Paul's Online Math Notes Calculus III (Notes) / Line Integrals / Line Integrals - Part I Problems] [Notes] [Practice Problems] [Assignment Calculus III - Notes Line Integrals Part

More information

, etc. Let s work with the last one. We can graph a few points determined by this equation.

, etc. Let s work with the last one. We can graph a few points determined by this equation. 1. Lines By a line, we simply mean a straight curve. We will always think of lines relative to the cartesian plane. Consider the equation 2x 3y 4 = 0. We can rewrite it in many different ways : 2x 3y =

More information

One-sided Limits and Continuity with Piece-Wise Defined Functions

One-sided Limits and Continuity with Piece-Wise Defined Functions Grade level: 9-12 Subject: math One-sided Limits and Continuity with Piece-Wise Defined Functions by Matt Bohon Activity overview Piece-wise defined functions are used extensively in PreCalculus and Calculus.

More information

Introduction to Functions of Several Variables

Introduction to Functions of Several Variables Introduction to Functions of Several Variables Philippe B. Laval KSU Today Philippe B. Laval (KSU) Functions of Several Variables Today 1 / 20 Introduction In this section, we extend the definition of

More information

Changing Variables in Multiple Integrals

Changing Variables in Multiple Integrals Changing Variables in Multiple Integrals 3. Examples and comments; putting in limits. If we write the change of variable formula as (x, y) (8) f(x, y)dx dy = g(u, v) dudv, (u, v) where (x, y) x u x v (9)

More information

Inverse and Implicit functions

Inverse and Implicit functions CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

More information

IB HL Mathematical Exploration

IB HL Mathematical Exploration IB HL Mathematical Exploration Modelling the surface area of a ceramic pot Personal code: glt101 Table of Contents Introduction... 1 Rationale... 1 Aim... 1-2 Exploring the formula for surface area...

More information

if you have anything on the screen you can clear it by pressing: CLEAR

if you have anything on the screen you can clear it by pressing: CLEAR Graphing Calculators are really very powerful hand held computing devices. The allow mathematics problems to be investigated by those whose learning styles range from the symbolic to the visual to the

More information

USING SPREADSHEETS AND DERIVE TO TEACH DIFFERENTIAL EQUATIONS

USING SPREADSHEETS AND DERIVE TO TEACH DIFFERENTIAL EQUATIONS USING SPREADSHEETS AND DERIVE TO TEACH DIFFERENTIAL EQUATIONS Kathleen Shannon, Ph.D. Salisbury State University Department of Mathematics and Computer Science Salisbury, MD 21801 KMSHANNON@SAE.SSU.UMD.EDU

More information

WHICH GRAPH REPRESENTS THE FOLLOWING PIECEWISE DEFINED FUNCTION FILE

WHICH GRAPH REPRESENTS THE FOLLOWING PIECEWISE DEFINED FUNCTION FILE 22 March, 2018 WHICH GRAPH REPRESENTS THE FOLLOWING PIECEWISE DEFINED FUNCTION FILE Document Filetype: PDF 404.36 KB 0 WHICH GRAPH REPRESENTS THE FOLLOWING PIECEWISE DEFINED FUNCTION FILE Which of the

More information

Activity overview. Background. Concepts. Teacher preparation and Classroom management tips. Off on a Tangent

Activity overview. Background. Concepts. Teacher preparation and Classroom management tips. Off on a Tangent By: Russell Brown Grade level: secondary (Years 10-12) Activity overview Many special properties can be shown to be associated with cubic functions. This activity investigates tangents to the cubic function

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

Math 259 Winter Unit Test 1 Review Problems Set B

Math 259 Winter Unit Test 1 Review Problems Set B Math 259 Winter 2009 Unit Test 1 Review Problems Set B We have chosen these problems because we think that they are representative of many of the mathematical concepts that we have studied. There is no

More information

MTH 122 Calculus II Essex County College Division of Mathematics and Physics 1 Lecture Notes #11 Sakai Web Project Material

MTH 122 Calculus II Essex County College Division of Mathematics and Physics 1 Lecture Notes #11 Sakai Web Project Material MTH Calculus II Essex County College Division of Mathematics and Physics Lecture Notes # Sakai Web Project Material Introduction - - 0 - Figure : Graph of y sin ( x y ) = x cos (x + y) with red tangent

More information

Dr. Allen Back. Nov. 21, 2014

Dr. Allen Back. Nov. 21, 2014 Dr. Allen Back of Nov. 21, 2014 The most important thing you should know (e.g. for exams and homework) is how to setup (and perhaps compute if not too hard) surface integrals, triple integrals, etc. But

More information

3.6 Directional Derivatives and the Gradient Vector

3.6 Directional Derivatives and the Gradient Vector 288 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.6 Directional Derivatives and te Gradient Vector 3.6.1 Functions of two Variables Directional Derivatives Let us first quickly review, one more time, te

More information

1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013.

1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013. 1 MATH 253 LECTURE NOTES for FRIDAY SEPT. 23,1988: edited March 26, 2013. TANGENTS Suppose that Apple Computers notices that every time they raise (or lower) the price of a $5,000 Mac II by $100, the number

More information

This section looks at iterative or recursive formulae. Such formulae have two key characteristics:

This section looks at iterative or recursive formulae. Such formulae have two key characteristics: 252 BLOCK 3 Task 12.2.5 Quadratics and Sine Functions Now apply the same sort of thinking to answer the following two questions: (a) Are all quadratic curves essentially the same? (b) Are all sine function

More information

STEINER TREE CONSTRUCTIONS IN HYPERBOLIC SPACE

STEINER TREE CONSTRUCTIONS IN HYPERBOLIC SPACE STEINER TREE CONSTRUCTIONS IN HYPERBOLIC SPACE DENISE HALVERSON AND DON MARCH Abstract. Methods for the construction of Steiner minimal trees for n fixed points in the hyperbolic plane are developed. A

More information

Gradient Descent - Problem of Hiking Down a Mountain

Gradient Descent - Problem of Hiking Down a Mountain Gradient Descent - Problem of Hiking Down a Mountain Udacity Have you ever climbed a mountain? I am sure you had to hike down at some point? Hiking down is a great exercise and it is going to help us understand

More information

Tips & Tricks for Microsoft Word

Tips & Tricks for Microsoft Word T 330 / 1 Discover Useful Hidden Features to Speed-up Your Work in Word For what should be a straightforward wordprocessing program, Microsoft Word has a staggering number of features. Many of these you

More information

15. PARAMETRIZED CURVES AND GEOMETRY

15. PARAMETRIZED CURVES AND GEOMETRY 15. PARAMETRIZED CURVES AND GEOMETRY Parametric or parametrized curves are based on introducing a parameter which increases as we imagine travelling along the curve. Any graph can be recast as a parametrized

More information

Direct Variations DIRECT AND INVERSE VARIATIONS 19. Name

Direct Variations DIRECT AND INVERSE VARIATIONS 19. Name DIRECT AND INVERSE VARIATIONS 19 Direct Variations Name Of the many relationships that two variables can have, one category is called a direct variation. Use the description and example of direct variation

More information

HP Prime: The 10-Quicky Introduction Version 1.0. HP Prime: A Breakthrough in Mathematics Education Technology!

HP Prime: The 10-Quicky Introduction Version 1.0. HP Prime: A Breakthrough in Mathematics Education Technology! HP Prime: A Breakthrough in Mathematics Education Technology! GT Springer, Solutions Architect HP Calculators and Educational Software gt.springer@hp.com This hands-on workshop is a basic introduction

More information

Chapter 2 Scatter Plots and Introduction to Graphing

Chapter 2 Scatter Plots and Introduction to Graphing Chapter 2 Scatter Plots and Introduction to Graphing 2.1 Scatter Plots Relationships between two variables can be visualized by graphing data as a scatter plot. Think of the two list as ordered pairs.

More information

MEI STRUCTURED MATHEMATICS. MEI conference University of Hertfordshire June C3 COURSEWORK

MEI STRUCTURED MATHEMATICS. MEI conference University of Hertfordshire June C3 COURSEWORK MEI STRUCTURED MATHEMATICS MEI conference University of Hertfordshire June 29 2009 C3 COURSEWORK What is this coursework designed to do and how do we prepare students for it? Presenter: Val Hanrahan The

More information

----- o Implicit Differentiation ID: A. dy r.---; d 2 Y 2. If- = '" 1-y- then - = dx 'dx 2. a c. -1 d. -2 e.

----- o Implicit Differentiation ID: A. dy r.---; d 2 Y 2. If- = ' 1-y- then - = dx 'dx 2. a c. -1 d. -2 e. Name: Class: Date: ----- ID: A Implicit Differentiation Multiple Choice Identify the choice that best completes the statement or answers the question.. The slope of the line tangent to the curve y + (xy

More information

MAT 003 Brian Killough s Instructor Notes Saint Leo University

MAT 003 Brian Killough s Instructor Notes Saint Leo University MAT 003 Brian Killough s Instructor Notes Saint Leo University Success in online courses requires self-motivation and discipline. It is anticipated that students will read the textbook and complete sample

More information

EXAMPLE. 1. Enter y = x 2 + 8x + 9.

EXAMPLE. 1. Enter y = x 2 + 8x + 9. VI. FINDING INTERCEPTS OF GRAPHS As we have seen, TRACE allows us to find a specific point on the graph. Thus TRACE can be used to solve a number of important problems in algebra. For example, it can be

More information

Partial Derivatives (Online)

Partial Derivatives (Online) 7in x 10in Felder c04_online.tex V3 - January 21, 2015 9:44 A.M. Page 1 CHAPTER 4 Partial Derivatives (Online) 4.7 Tangent Plane Approximations and Power Series It is often helpful to use a linear approximation

More information

HP Prime Advanced Graphing Calculator

HP Prime Advanced Graphing Calculator HP Prime Advanced Graphing Calculator HP Prime is the latest advanced graphing calculator from Hewlett-Packard. It incorporates a fullcolor, multi-touch screen and comes pre-loaded with 18 HP Apps. HP

More information

Introduction. Classroom Tips and Techniques: The Lagrange Multiplier Method

Introduction. Classroom Tips and Techniques: The Lagrange Multiplier Method Classroom Tips and Techniques: The Lagrange Multiplier Method Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft Introduction The typical multivariate calculus course contains

More information

Proceedings of the Third International DERIVE/TI-92 Conference

Proceedings of the Third International DERIVE/TI-92 Conference Using the TI-92 and TI-92 Plus to Explore Derivatives, Riemann Sums, and Differential Equations with Symbolic Manipulation, Interactive Geometry, Scripts, Regression, and Slope Fields Sally Thomas, Orange

More information

TI-83 Graphing Functions & Relations

TI-83 Graphing Functions & Relations To graph a function: 1. The equation must be written in functional notation in explicit (or y equals ) form. (Y is the dependent variable and X is the independent variable.) For instance, we may need to

More information

Cubic Splines By Dave Slomer

Cubic Splines By Dave Slomer Cubic Splines By Dave Slomer [Note: Before starting any example or exercise below, press g on the home screen to Clear a-z.] Curve fitting, the process of finding a function that passes through (or near)

More information

Students are required to have a graphing calculator. Instructors of the course support topics using a TI-84 or TI-89.

Students are required to have a graphing calculator. Instructors of the course support topics using a TI-84 or TI-89. AP Calculus AB Course Design and Philosophy Students conceptualize calculus when it is approached in a variety of methods. The course is taught using multiple strategies including algebraic, numerical,

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

Worksheet 3.1: Introduction to Double Integrals

Worksheet 3.1: Introduction to Double Integrals Boise State Math 75 (Ultman) Worksheet.: Introduction to ouble Integrals Prerequisites In order to learn the new skills and ideas presented in this worksheet, you must: Be able to integrate functions of

More information

Objectives. Materials. Teaching Time

Objectives. Materials. Teaching Time Teacher Notes Activity 6 Local Linearity, Differentiability, and Limits of Difference Quotients Objectives Connect the concept of local linearity to differentiability through numerical explorations of

More information

Math 32, August 20: Review & Parametric Equations

Math 32, August 20: Review & Parametric Equations Math 3, August 0: Review & Parametric Equations Section 1: Review This course will continue the development of the Calculus tools started in Math 30 and Math 31. The primary difference between this course

More information

The Tangent Line as The Best Linear Approximation

The Tangent Line as The Best Linear Approximation The Tangent Line as The Best Linear Approximation Mark Howell Gonzaga High School Arlington, VA A tangent line to a curve, y f (x), at a point where x a has two important properties: it contains the point

More information

Functions. Copyright Cengage Learning. All rights reserved.

Functions. Copyright Cengage Learning. All rights reserved. Functions Copyright Cengage Learning. All rights reserved. 2.2 Graphs Of Functions Copyright Cengage Learning. All rights reserved. Objectives Graphing Functions by Plotting Points Graphing Functions with

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

Math Calculus I

Math Calculus I Math 1592 - Calculus I A brief Introduction to the TI92/Voyage 200 Here we give a selection of TI commands that we will be using through this course. 1. Basic Commands solve If we type the following solve(x

More information

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12.

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12. Multivariable Calculus Exam 2 Preparation Math 28 (Spring 2) Exam 2: Thursday, May 2. Friday May, is a day off! Instructions: () There are points on the exam and an extra credit problem worth an additional

More information

Social Science/Commerce Calculus I: Assignment #6 - Solutions Page 1/14

Social Science/Commerce Calculus I: Assignment #6 - Solutions Page 1/14 Social Science/Commerce Calculus I: Assignment #6 - Solutions Page 1/14 3 1. Let f (x) = -2x - 5x + 1. Use the rules of differentiation to compute: 2 The first derivative of f (x): -6x - 5 The second derivative

More information

Number of Regions An Introduction to the TI-Nspire CAS Student Worksheet Created by Melissa Sutherland, State University of New York at Geneseo

Number of Regions An Introduction to the TI-Nspire CAS Student Worksheet Created by Melissa Sutherland, State University of New York at Geneseo 1 Name Number of Regions An Introduction to the TI-Nspire CAS Student Worksheet Created by Melissa Sutherland, State University of New York at Geneseo Below you will find copies of the notes provided on

More information

Graphing Calculator Graphing with the TI-85

Graphing Calculator Graphing with the TI-85 Graphing Calculator Graphing with the TI-85 I. Introduction The TI-85 has fifty keys, many of which will perform multiple functions when used in combination. Each key has a symbol printed on its face.

More information

Section 1.1 Graphs Graphs

Section 1.1 Graphs Graphs Section 1.1 Graphs 55 1.1 Graphs Much of algebra is concerned with solving equations. Many algebraic techniques have been developed to provide insights into various sorts of equations, and those techniques

More information

Functions of Several Variables

Functions of Several Variables Chapter 3 Functions of Several Variables 3.1 Definitions and Examples of Functions of two or More Variables In this section, we extend the definition of a function of one variable to functions of two or

More information

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Planes, and Differentials ( 11.3-11.4) Feb. 26, 2012 (Sun) Signs of Partial Derivatives on Level Curves Level curves are shown for a function

More information

Objectives. Materials

Objectives. Materials Activity 6 Local Linearity, Differentiability, and Limits of Difference Quotients Objectives Connect the concept of local linearity to differentiability through numerical explorations of limits of difference

More information

0.7 Graphing Features: Value (Eval), Zoom, Trace, Maximum/Minimum, Intersect

0.7 Graphing Features: Value (Eval), Zoom, Trace, Maximum/Minimum, Intersect 0.7 Graphing Features: Value (Eval), Zoom, Trace, Maximum/Minimum, Intersect Value (TI-83 and TI-89), Eval (TI-86) The Value or Eval feature allows us to enter a specific x coordinate and the cursor moves

More information

Let s start with occluding contours (or interior and exterior silhouettes), and look at image-space algorithms. A very simple technique is to render

Let s start with occluding contours (or interior and exterior silhouettes), and look at image-space algorithms. A very simple technique is to render 1 There are two major classes of algorithms for extracting most kinds of lines from 3D meshes. First, there are image-space algorithms that render something (such as a depth map or cosine-shaded model),

More information

A GENTLE INTRODUCTION TO THE BASIC CONCEPTS OF SHAPE SPACE AND SHAPE STATISTICS

A GENTLE INTRODUCTION TO THE BASIC CONCEPTS OF SHAPE SPACE AND SHAPE STATISTICS A GENTLE INTRODUCTION TO THE BASIC CONCEPTS OF SHAPE SPACE AND SHAPE STATISTICS HEMANT D. TAGARE. Introduction. Shape is a prominent visual feature in many images. Unfortunately, the mathematical theory

More information

Functions of Several Variables

Functions of Several Variables Chapter 3 Functions of Several Variables 3.1 Definitions and Examples of Functions of two or More Variables In this section, we extend the definition of a function of one variable to functions of two or

More information

Math 115 Second Midterm March 25, 2010

Math 115 Second Midterm March 25, 2010 Math 115 Second Midterm March 25, 2010 Name: Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 9 pages including this cover. There are 8 problems. Note that the

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

Workshop: Dynamic Inspirations with Nspire Dr. René Hugelshofer, Heerbrugg, Switzerland.

Workshop: Dynamic Inspirations with Nspire Dr. René Hugelshofer, Heerbrugg, Switzerland. Workshop: Dynamic Inspirations with Nspire Dr. René Hugelshofer, Heerbrugg, Switzerland. Part One: Presentation of TI-nspire Preface: TI-nspire is the new software from TI. This version is only a test

More information

Differentiation. The Derivative and the Tangent Line Problem 10/9/2014. Copyright Cengage Learning. All rights reserved.

Differentiation. The Derivative and the Tangent Line Problem 10/9/2014. Copyright Cengage Learning. All rights reserved. Differentiation Copyright Cengage Learning. All rights reserved. The Derivative and the Tangent Line Problem Copyright Cengage Learning. All rights reserved. 1 Objectives Find the slope of the tangent

More information

CREATING CALCULUS DEMOS WITH GEOGEBRA 4

CREATING CALCULUS DEMOS WITH GEOGEBRA 4 CREATING CALCULUS DEMOS WITH GEOGEBRA 4 Barbara K. D Ambrosia Carl R. Spitznagel John Carroll University Department of Mathematics and Computer Science Cleveland, OH 44118 bdambrosia@jcu.edu spitz@jcu.edu

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture - 35 Quadratic Programming In this lecture, we continue our discussion on

More information