h o h d Angular magnification Angular magnification of a magnifying glass

Size: px
Start display at page:

Download "h o h d Angular magnification Angular magnification of a magnifying glass"

Transcription

1 6. Angular Magniicatin an the Magniying Glass Angular magniicatin M θ The reerence angular size θ is base n nrmal reaing/viewing at istance N (either ~5 cm r the near pint istance): θ θ h N The magniie angular size θ is base n the ray trace rm the center the lens, thrugh the tip the bject, t the tip the virtual image θ ' hi i h Angular magniicatin a magniying glass M N i N The user etermines the angular magniicatin by varying the bject istance (but keeping i >N i arsighte)

2 6. The Cmpun Micrscpe T increase the angular magniicatin beyn that pssible with a magniying glass, an aitinal cnverging lens can be inclue t pre-magniy the bject. L L istance between lenses (3) Height the bject r the eyepiece: (4) Image angular size: (5) Cmpare t riginal angular size: θ () Linear magniicatin M the bjective lens is therere: h θ ' h N h i i ( L e ) e h h e Basic perating principle: () Ajust bject istance such that the real, inverte image lies just insie the cal pint the eye piece: ( L ) ( L h M Angular magniicatin a cmpun micrscpe e ) h M i θ θ ' i ( L e ) ( L ) e e e N

3 Chapter 7 Intererence an the Wave Nature Light 3

4 7. The Principle Linear Superpsitin When tw r mre light waves pass thrugh a given pint, their electric (an magnetic) iels cmbine (interere) accring t the principle superpsitin. Special Case Special Case The waves emitte by the surces start ut in phase an arrive at pint P in phase, leaing t cnstructive intererence. m m 0,,,3, The waves emitte by the surces start ut in phase an arrive at pint P in ppsite phase, leaing t estructive intererence. m ( m + ) 0,,,3, I cnstructive r estructive intererence is t cntinue curring at a pint, the surces the waves must be cherent surces. Tw surces are cherent i the waves they emit maintain a cnstant phase relatin. 4

5 7. Yung s Duble Slit Experiment Tw inepenent, cherent light surces are virtually impssible t cnstruct. In Yung s experiment (Yung als participate in the eciphering the Rsetta Stne), tw slits illuminate by a single surce acts as tw separate but cherent surces light. Light waves rm these slits interere bth cnstructively an estructively n the prjectin screen. Fr best results, light a single clr (e.g. pruce by a laser) is use. The waves cming rm the slits interere cnstructively r estructively, epening n the ierence in istances between the slits an the screen. 5

6 7. Yung s Duble Slit Experiment In the typical set up, the screen is very ar away cmpare t the separatin the slits. We treat the rays rm the slits as i they were parallel Bright ringes rm slits sinθ m Bright ringes Dark ringes sinθ sinθ m sinθ ( m + ) m 0,,,3, Dark ringes rm slits Bright ringe Dark ringe ( m ) sin + θ m Bright ringe Dark ringe Bright ringe 6

7 7. Yung s Duble Slit Experiment Example: Yung s Duble-Slit Experiment Re light (664 nm) is use in Yung s experiment with slits separate by m. The screen is lcate a istance.75 m rm the slits. Fin the istance n the screen between the central bright ringe an the thir-rer bright ringe. θ m sin m sin m 0.95 (.75 m) tan( 0.95 ) m y L tan θ Nte: Duble slit intererence als separates ut the clrs rm a white r multi-clre surce. The angle the bright ringes is ierent r each wavelength the bright ringes r ierent clrs rm a rainbw n screen. 7

8 7.3 Thin Film Intererence Because relectin an reractin, (at least) tw light waves enter the eye when light shines n a thin ilm gasline lating n a thick layer water. Because the extra istance travele by ray [] relative t ray [], there can be intererence between the tw waves. Fr the cmparisn the extra path t wavelength, we nee t use the wavelength in the meium ilm n vacuum ilm When light travels thrugh a material with a smaller reractive inex twars a material with a larger reractive inex, (partial) relectin at the bunary ccurs alng with a phase change that is equivalent t ne-hal a wavelength in the ilm. When light travels rm a larger twars a smaller reractive inex, there is n phase change upn relectin. 8

9 7.3 Thin Film Intererence Example Clr a Thin Film Gasline A thin ilm gasline lats n a pule water. Sunlight alls perpenicularly n the ilm an relects int yur eyes. The ilm has a yellw hue because estructive intererence eliminates the clr blue (469 nm) rm the relecte light. The reractive inices the blue light in gasline an water are.40 an.33. Determine the minimum nn-zer thickness the ilm. Ray []: relectin at pint A rm lwer t higher inex: phase shit equivalent t ½ ilm ilm A B Ray []: relectin at pint B rm higher t lwer n phase shit ; but runtrip thrugh ilm: t Eective path ierence between Ray [] an Ray [] (incluing phase shit r relectin) t ilm Destructive intererence between Ray [] an Ray []: ierence hal-integer wavelengths t ilm, ilm, 3ilm... t ilm, 3 ilm ilm, 5 ilm... Minimum nn-zer thickness t : t 469 nm.40 ilm 68 nm 9

10 7.3 Thin Film Intererence The wege air rme between tw glass plates causes an intererence pattern alternating ark an bright ringes. Thin-ilm ban-pass ptical ilter y Dark Fringes y ( m + ) m 0,,,3 Bright Fringes... m As lng as the ilm has the highest reractive inex the three regins, then neither the tw relectins incur a phase shit. t Cnstructive intererence between transmitte ray [] an ray [] ccurs r the minimum thickness t ilm 0

11 7.5 Diractin In the -slit intererence pattern, the alternating bright an ark ringes appears t be mulate by a larger scale structure These are the result the inite with the slits Using a single slit the same with, we can pruce a pattern that cnsists just the mulating envelpe nly This single-slit pattern is ue t the iractin light Diractin reers t the bening waves arun bstacles r the eges an pening. Huygens principle Every pint n a wave rnt acts as a surce tiny wavelets that mve rwar with the same spee as the wave; the wave rnt at a latter instant is the surace that is tangent t the wavelets.

12 7.5 Diractin This tp view shws the rays r ive surces Huygens wavelets. Wave rnts rm all ive arrive in phase at the central maximum (bright ringe) First Dark Fringe: wavelets rm,3,5 arrive successively separate by hal wave-length: Destructive intererence Wavelets rm,4 als arrive separate by hal wave-length. This ccurs at Wsinθ

13 7.5 Diractin Secn Dark Fringe: wavelets rm,,3,4, an 5 arrive successively separate by hal wavelength: Destructive intererence This ccurs at Wsinθ Dark ringes r single slit iractin sin θ m m,,3, W Fr higher rer ark ringe, we nee t break the slit up int mre surces Nte that the m0 case here crrespns t the central maximum 3

14 7.7 The Diractin Grating An arrangement cnsisting a large number clsely space, parallel slits is calle a iractin grating. The multiple slits enhances the cnstructive intererence at the maxima (bright ringes) the -slit case (with the same slit spacing ) 4

15 7.7 The Diractin Grating The bright ringes pruce bya iractin grating are much narrwer than thse pruce by a uble slit. Principal maxima a iractin grating sin θ m m 0,,,3, istance between ajacent slits Reversing this equatin sinθ m This technique allws ne t make very precise measurements the wavelength Heate atms emit characteristic wavelengths. The Emissin (absrptin) wavelength pattern is calle the emissin (absrptin) spectrum The element helium (He) was riginally iscvere by its spectrum in sunlight. 5

16 7.7 The Diractin Grating Example: Separating Clrs With a Diractin Grating A mixture vilet (40 nm) light an re (660 nm) light alls nta grating that cntains.00x0 4 lines/cm. Fr each wavelength, in the angle that lcates the irstrer maximum cm.00 0 cm m vilet (40 nm) re (660 nm) θ θ 9 vilet 40 0 m sin sin m 9 re m sin sin m

Physics 102: Lecture 21 Thin Films & Diffraction Gratings

Physics 102: Lecture 21 Thin Films & Diffraction Gratings Physics 102: Lecture 21 Thin Films & Diffraction Gratings Physics 102: Lecture 21, Slie 1 Recall Interference (at least 2 coherent waves) Constructive (full wavelength ifference) Destructive (half wavelength

More information

Diffraction. Factors that affect Diffraction

Diffraction. Factors that affect Diffraction Diffraction What is one common property the four images share? Diffraction: Factors that affect Diffraction TELJR Publications 2017 1 Young s Experiment AIM: Does light have properties of a particle? Or

More information

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location.

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Interference Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Thus, interacting electromagnetic waves also add together.

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 5: Light and the Electrmagnetic Spectrum Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin Ray Diagrams (Physics nly) - Arrws shw directin f light travelling - The nrmal

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

More information

CHAPTER 26 INTERFERENCE AND DIFFRACTION

CHAPTER 26 INTERFERENCE AND DIFFRACTION CHAPTER 26 INTERFERENCE AND DIFFRACTION INTERFERENCE CONSTRUCTIVE DESTRUCTIVE YOUNG S EXPERIMENT THIN FILMS NEWTON S RINGS DIFFRACTION SINGLE SLIT MULTIPLE SLITS RESOLVING POWER 1 IN PHASE 180 0 OUT OF

More information

Chapter 8: Physical Optics

Chapter 8: Physical Optics Chapter 8: Physical Optics Whether light is a particle or a wave had puzzled physicists for centuries. In this chapter, we only analyze light as a wave using basic optical concepts such as interference

More information

Q. No. 1 Newton postulated his corpuscular theory of light on the basis of

Q. No. 1 Newton postulated his corpuscular theory of light on the basis of Q. No. 1 Newton postulate his corpuscular theory of light on the basis of Newton s rings Option Rectilinear propagation of light Colour through thin films Dispersion of white light into colours. Correct

More information

PROBLEM 1-10 points. [ ] n 1 >n 2 >n 3 [ ] n 1 >n 3 >n 2 [ ] n 2 >n 1 >n 3 [ X ] n 2 >n 3 >n 1 [ ] n 3 >n 1 >n 2 [ ] n 3 >n 2 >n 1

PROBLEM 1-10 points. [ ] n 1 >n 2 >n 3 [ ] n 1 >n 3 >n 2 [ ] n 2 >n 1 >n 3 [ X ] n 2 >n 3 >n 1 [ ] n 3 >n 1 >n 2 [ ] n 3 >n 2 >n 1 PROBLEM - 0 pints [5 pints] (a) Three media are placed n tp f ne anther. A ray f light starting in medium experiences ttal internal reflectin at the tp interface but sme f the light refracts int medium

More information

Wavelength Crest. Amp litude. is the highest point of that portion of a transverse wave above the equilibrium position.

Wavelength Crest. Amp litude. is the highest point of that portion of a transverse wave above the equilibrium position. Chapter Twenty-Four: Interference of Light interference patterns are prouce when two (or more) coherent sources prouce waves of the same frequency an amplitue which superimpose in the same region of space

More information

Physical or wave optics

Physical or wave optics Physical or wave optics In the last chapter, we have been studying geometric optics u light moves in straight lines u can summarize everything by indicating direction of light using a ray u light behaves

More information

24-4 Image Formation by Thin Lenses

24-4 Image Formation by Thin Lenses 24-4 Image Frmatin by Thin Lenses Lenses, which are imprtant fr crrecting visin, fr micrscpes, and fr many telescpes, rely n the refractin f light t frm images. As with mirrrs, we draw ray agrams t help

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

Lesson 11 Interference of Light

Lesson 11 Interference of Light Physics 30 Lesson 11 Interference of Light I. Light Wave or Particle? The fact that light carries energy is obvious to anyone who has focuse the sun's rays with a magnifying glass on a piece of paper an

More information

2t = (m+ 1 /2) λ = (m+ 1 /2)(λ/n); min, m = 0, 1, 2,... n1 < n2 < n3 2t = m λ = m(λ/n); min, m = 0, 1, 2,... n1 < n2 > n3

2t = (m+ 1 /2) λ = (m+ 1 /2)(λ/n); min, m = 0, 1, 2,... n1 < n2 < n3 2t = m λ = m(λ/n); min, m = 0, 1, 2,... n1 < n2 > n3 PHY1160C Exam #3 July 8, 1997 Possibly useful information: For reflection, θinc = θref For refraction, image equation apparent depth Young s Double Slit: n1 sin θ1 = n2 sin θ2 n = c/v M = h i = d i h o

More information

PHYSICS - CLUTCH CH 32: WAVE OPTICS.

PHYSICS - CLUTCH CH 32: WAVE OPTICS. !! www.clutchprep.com CONCEPT: DIFFRACTION Remember! Light travels in a straight line so long as it isn t disturbed - This allows light to be described as RAYS A common way to disturb light is to have

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24 AP Physics-B Physical Optics Introduction: We have seen that the reflection and refraction of light can be understood in terms of both rays and wave fronts of light. Light rays are quite compatible with

More information

College Physics 150. Chapter 25 Interference and Diffraction

College Physics 150. Chapter 25 Interference and Diffraction College Physics 50 Chapter 5 Interference and Diffraction Constructive and Destructive Interference The Michelson Interferometer Thin Films Young s Double Slit Experiment Gratings Diffraction Resolution

More information

Light : Reflection And Refraction (Part I Reflection)

Light : Reflection And Refraction (Part I Reflection) 1 Light : Reflectin And Refractin (Part I Reflectin) Light is a frm f energy which enables us t see bjects either frm which it cmes r frm which it is reflected. Luminus bjects are thse bjects which emit

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Early Booklet E.C.: + 1 Unit 5.C Hwk. Pts.: / 25 Unit 5.C Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N 1. Light reflects

More information

Interference of Light

Interference of Light Interference of Light Review: Principle of Superposition When two or more waves interact they interfere. Wave interference is governed by the principle of superposition. The superposition principle says

More information

UNIT 102-9: INTERFERENCE AND DIFFRACTION

UNIT 102-9: INTERFERENCE AND DIFFRACTION Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 102-9: INTERFERENCE AND DIFFRACTION Patterns created by interference of light in a thin film. OBJECTIVES 1. Understand the creation of double-slit

More information

Wave Optics. Physics 2B. If two waves exist at the same point in space at the same time, they will interfere with each other.

Wave Optics. Physics 2B. If two waves exist at the same point in space at the same time, they will interfere with each other. Physics 2B Wave Optics Interference If two waves exist at the same point in space at the same time, they will interfere with each other. Interference Superposition Principle for Waves The Principle of

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch )

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch ) Physics 272 Lecture 27 Interference (Ch 35.4-5) Diffraction (Ch 36.1-3) Thin Film Interference 1 2 n 0 =1 (air) t n 1 (thin film) n 2 Get two waves by reflection off of two different interfaces. Ray 2

More information

Chapter 82 Example and Supplementary Problems

Chapter 82 Example and Supplementary Problems Chapter 82 Example and Supplementary Problems Nature of Polarized Light: 1) A partially polarized beam is composed of 2.5W/m 2 of polarized and 4.0W/m 2 of unpolarized light. Determine the degree of polarization

More information

Models of Light The wave model: The ray model: The photon model:

Models of Light The wave model: The ray model: The photon model: Models of Light The wave model: under many circumstances, light exhibits the same behavior as sound or water waves. The study of light as a wave is called wave optics. The ray model: The properties of

More information

Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference

Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference Effects 6.2 Two-Slit Thin film is a general property of waves. A condition for is that the wave source is coherent. between two waves gives characteristic patterns due to constructive and destructive.

More information

Interference & Diffraction

Interference & Diffraction Electromagnetism & Light Interference & Diffraction https://youtu.be/iuv6hy6zsd0?t=2m17s Your opinion is very important to us. What study material would you recommend for future classes of Phys140/141?

More information

EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics 2 Name 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person who was credited

More information

Interference and diffraction are the important phenomena that distinguish. Interference and Diffraction

Interference and diffraction are the important phenomena that distinguish. Interference and Diffraction C H A P T E R 33 Interference an Diffraction 33- Phase Difference an Coherence 33-2 Interference in Thin Films 33-3 Two-Slit Interference Pattern 33-4 Diffraction Pattern of a Single Slit * 33-5 Using

More information

Dr. Quantum. General Physics 2 Light as a Wave 1

Dr. Quantum. General Physics 2 Light as a Wave 1 Dr. Quantum General Physics 2 Light as a Wave 1 The Nature of Light When studying geometric optics, we used a ray model to describe the behavior of light. A wave model of light is necessary to describe

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics hitt1 An upright object is located a distance from a convex mirror that is less than the mirror's focal length. The image formed by the mirror is (1) virtual, upright, and larger

More information

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from Lecture 5-3 Interference and Diffraction of EM Waves During our previous lectures we have been talking about electromagnetic (EM) waves. As we know, harmonic waves of any type represent periodic process

More information

Chapter 37. Wave Optics

Chapter 37. Wave Optics Chapter 37 Wave Optics Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics. Sometimes called physical optics These phenomena include:

More information

Interference, Diffraction & Polarization

Interference, Diffraction & Polarization Interference, Diffraction & Polarization PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html light as waves so far, light has been treated as

More information

Sign Conventions. Sign Conventions. Physics Waves & Oscillations 3/25/2016. Spring 2016 Semester Matthew Jones. Convex surface: Concave surface:

Sign Conventions. Sign Conventions. Physics Waves & Oscillations 3/25/2016. Spring 2016 Semester Matthew Jones. Convex surface: Concave surface: Physics 400 Waves & Oscillatins Lecture 8 Gemetric Optics Spring 06 Semester Matthew Jnes Sign Cnventins > + = Cnvex surface: is psitive fr bjects n the incident-light side is psitive fr images n the refracted-light

More information

New topic: Diffraction only one slit, but wide. From Last time. Huygen s principle. Overlapping diffraction patterns. Diffraction from other objects

New topic: Diffraction only one slit, but wide. From Last time. Huygen s principle. Overlapping diffraction patterns. Diffraction from other objects New topic: Diffraction only one slit, but wide From Last time Two-source interference: Interference-like pattern from a single slit. For a slit: a θ central width ~ 2 Diffraction grating Week3HW on Mastering

More information

PHY 206 SPRING Problem #1 NAME: SIGNATURE: UM ID: Problem #2. Problem #3. Total. θ r =θ a. Prof. Massimiliano Galeazzi. Midterm #3 April 5, 2006

PHY 206 SPRING Problem #1 NAME: SIGNATURE: UM ID: Problem #2. Problem #3. Total. θ r =θ a. Prof. Massimiliano Galeazzi. Midterm #3 April 5, 2006 PHY 06 SPING 006 Pr. assimilian Galeazzi idterm # Aril 5, 006 NAE: Prblem # SIGNAUE: U ID: Prblem # Prblem # tal Sme useul relatins: Wae equatin: Dler shit: Intensity: Fr eridic wae: I A w y( x, t) y(

More information

Interference of Light

Interference of Light Interference of Light Young s Double-Slit Experiment If light is a wave, interference effects will be seen, where one part of wavefront can interact with another part. One way to study this is to do a

More information

Chapter 37. Interference of Light Waves

Chapter 37. Interference of Light Waves Chapter 37 Interference of Light Waves Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics These phenomena include: Interference Diffraction

More information

Electromagnetism & Light. Interference & Diffraction

Electromagnetism & Light. Interference & Diffraction Electromagnetism & Light Interference & Diffraction Your opinion is very important to us. What study material would you recommend for future classes of Phys140/141? A. SmartPhysics alone B. SmartPhysics

More information

Midterm II Physics 9B Summer 2002 Session I

Midterm II Physics 9B Summer 2002 Session I Midterm II Physics 9B Summer 00 Session I Name: Last 4 digits of ID: Total Score: ) Two converging lenses, L and L, are placed on an optical bench, 6 cm apart. L has a 0 cm focal length and is placed to

More information

LECTURE 12 INTERFERENCE OF LIGHT. Instructor: Kazumi Tolich

LECTURE 12 INTERFERENCE OF LIGHT. Instructor: Kazumi Tolich LECTURE 12 INTERFERENCE OF LIGHT Instructor: Kazumi Tolich Lecture 12 2 17.2 The interference of light Young s double-slit experiment Analyzing double-slit interference 17.3 The diffraction grating Spectroscopy

More information

Fresnel's biprism and mirrors

Fresnel's biprism and mirrors Fresnel's biprism and mirrors 1 Table of Contents Section Page Back ground... 3 Basic Experiments Experiment 1: Fresnel's mirrors... 4 Experiment 2: Fresnel's biprism... 7 2 Back ground Interference of

More information

Reflections from a thin film

Reflections from a thin film Reflections from a thin film l Part of the wave reflects from the top surface and part from the bottom surface l The part that reflects from the top surface has a 180 o phase change while the part that

More information

Class 34. Diffraction Grating. Adding sources. Adding sources. Adding sources, II. Adding sources, II. Adding slits

Class 34. Diffraction Grating. Adding sources. Adding sources. Adding sources, II. Adding sources, II. Adding slits Class Adding sources Diffraction Grating What happens to the interference pattern when we add more sources? Let's start by switching from two sources d apart to three sources d apart. Do we still get maxima

More information

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

TEST-05(Solution) TOPIC: OPTICS COMPLETE

TEST-05(Solution) TOPIC: OPTICS COMPLETE Q. boy is walking uner an incline mirror at a constant velocity V m/s along the x-axis as shown in figure. If the mirror is incline at an angle with the horizontal then what is the velocity of the image?

More information

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive.

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive. 1.1 INTERFERENCE When two (or more than two) waves of the same frequency travel almost in the same direction and have a phase difference that remains constant with time, the resultant intensity of light

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1975-4 (Physical Optics) a. Light of a single wavelength is incident on a single slit of width w. (w is a few wavelengths.) Sketch a graph of the intensity as

More information

Activity 9.1 The Diffraction Grating

Activity 9.1 The Diffraction Grating PHY385H1F Introductory Optics Practicals Day 9 Diffraction November 29, 2010 Please work in a team of 3 or 4 students. All members should find a way to contribute. Two members have a particular role, and

More information

Chapter 15. Light Waves

Chapter 15. Light Waves Chapter 15 Light Waves Chapter 15 is finished, but is not in camera-ready format. All diagrams are missing, but here are some excerpts from the text with omissions indicated by... After 15.1, read 15.2

More information

Thin Lenses 4/16/2018 1

Thin Lenses 4/16/2018 1 Thin Lenses f 4/16/2018 1 Thin Lenses: Converging Lens C 2 F 1 F 2 C 1 r 2 f r 1 Parallel rays refract twice Converge at F 2 a distance f from center of lens F 2 is a real focal pt because rays pass through

More information

5 10:00 AM 12:00 PM 1420 BPS

5 10:00 AM 12:00 PM 1420 BPS Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) I ve assigned 22.62 as a hand-in

More information

Lab 7 Interference and diffraction

Lab 7 Interference and diffraction Prep this lab, as usual. You may paste this entire lab into your notebook, including the data tables. All this should be completed prior to the start of lab on Wednesday, and I will score your completed

More information

PHYS2002 Spring 2012 Practice Exam 3 (Chs. 25, 26, 27) Constants

PHYS2002 Spring 2012 Practice Exam 3 (Chs. 25, 26, 27) Constants PHYS00 Spring 01 Practice Exam 3 (Chs. 5, 6, 7) Constants m m q q p e ε = 8.85 o o p e = 1.67 = 9.11 7 9 7 31 = + 1.60 = 1.60 μ = 4π k = 8.99 g = 9.8 m/s 1 kg 19 19 C kg T m/a N m C / N m C / C 1. A convex

More information

Chapter 25. Wave Optics

Chapter 25. Wave Optics Chapter 25 Wave Optics Interference Light waves interfere with each other much like mechanical waves do All interference associated with light waves arises when the electromagnetic fields that constitute

More information

Holography & Coherence For Holography need coherent beams Two waves coherent if fixed phase relationship between them for some period of time

Holography & Coherence For Holography need coherent beams Two waves coherent if fixed phase relationship between them for some period of time Hlgraphy & Cherence Fr Hlgraphy need cherent beams Tw waves cherent if fixed phase relatinship between them fr sme perid f time Cherence Cherence appear in tw ways Spatial Cherence Waves in phase in time,

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

LECTURE 20: Interference, Diffraction, Resolution. Interference. Interference: Double Slit (for very narrow slits) Interference: Double Slit (DEMO)

LECTURE 20: Interference, Diffraction, Resolution. Interference. Interference: Double Slit (for very narrow slits) Interference: Double Slit (DEMO) LECTURE 0: Interference, Diffraction, Resolution Interference *Three ways in which the phase ifference between two waves can change: 1. By traveling though meia of ifferent inexes of refraction. By traveling

More information

Chapter 24 The Wave Nature of Light

Chapter 24 The Wave Nature of Light Chapter 24 The Wave Nature of Light 24.1 Waves Versus Particles; Huygens Principle and Diffraction Huygens principle: Every point on a wave front acts as a point source; the wavefront as it develops is

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

Lab 5: Diffraction and Interference

Lab 5: Diffraction and Interference Lab 5: Diffraction and Interference Light is a wave, an electromagnetic wave, and under the proper circumstances, it exhibits wave phenomena, such as constructive and destructive interference. The wavelength

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter The Wave Nature of Light - Interference and Di raction Name: Lab Partner: Section:. Purpose This experiment will demonstrate that light can be considered as a wave. If light is a wave, then interference

More information

L Destructive interference:

L Destructive interference: SPH3UW/SPH4UI Unit 9.3 Interference of Light in Two Diensions Page 1 of 11 Notes Physics Tool box A pair of ientical point sources operating in phase prouces a syetrical pattern of constructive an estructive

More information

Wave Optics. April 9, 2014 Chapter 34 1

Wave Optics. April 9, 2014 Chapter 34 1 Wave Optics April 9, 2014 Chapter 34 1 Announcements! Remainder of this week: Wave Optics! Next week: Last of biweekly exams, then relativity! Last week: Review of entire course, no exam! Final exam Wednesday,

More information

1. (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page)

1. (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page) . (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page) a). An object (an arrow) is placed as shown in front of each of the following optical instruments.

More information

Chapter 24 - The Wave Nature of Light

Chapter 24 - The Wave Nature of Light Chapter 24 - The Wave Nature of Light Summary Four Consequences of the Wave nature of Light: Diffraction Dispersion Interference Polarization Huygens principle: every point on a wavefront is a source of

More information

Higher -o-o-o- Past Paper questions o-o-o- 3.2 Refraction

Higher -o-o-o- Past Paper questions o-o-o- 3.2 Refraction Higher -o-o-o- Past Paper questions 2000-2010 -o-o-o- 3.2 Refraction 2000 Q27 A student is investigating the effect that a semicircular glass block has on a ray of monochromatic light. She observes that

More information

Interference of Light

Interference of Light Lecture 23 Chapter 22 Physics II 08.07.2015 Wave Optics: Interference of Light Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

Physics 214 Midterm Fall 2003 Form A

Physics 214 Midterm Fall 2003 Form A 1. A ray of light is incident at the center of the flat circular surface of a hemispherical glass object as shown in the figure. The refracted ray A. emerges from the glass bent at an angle θ 2 with respect

More information

Year 2 Optics Dr Kenny Weir

Year 2 Optics Dr Kenny Weir Year Optics 0- Dr Kenny Weir.0 Intrductin Optics has an imprt rle, and inluence, in many areas physics, science and technlgy. It is used when lking at the big and the small, it can be used in systems precisin

More information

Lab 12 - Interference-Diffraction of Light Waves

Lab 12 - Interference-Diffraction of Light Waves Lab 12 - Interference-Diffraction of Light Waves Equipment and Safety: No special safety equipment is required for this lab. Do not look directly into the laser. Do not point the laser at other people.

More information

Optics Final Exam Name

Optics Final Exam Name Instructions: Place your name on all of the pages. Do all of your work in this booklet. Do not tear off any sheets. Show all of your steps in the problems for full credit. Be clear and neat in your work.

More information

Electromagnetic waves

Electromagnetic waves Electromagnetic waves Now we re back to thinking of light as specifically being an electromagnetic wave u u u oscillating electric and magnetic fields perpendicular to each other propagating through space

More information

Single slit diffraction

Single slit diffraction Single slit diffraction Book page 364-367 Review double slit Core Assume paths of the two rays are parallel This is a good assumption if D >>> d PD = R 2 R 1 = dsin θ since sin θ = PD d Constructive interference

More information

10.4 Interference in Thin Films

10.4 Interference in Thin Films 0. Interference in Thin Films You have probably noticed the swirling colours of the spectrum that result when gasoline or oil is spilled on water. And you have also seen the colours of the spectrum shining

More information

Lecture 16 Diffraction Ch. 36

Lecture 16 Diffraction Ch. 36 Lecture 16 Diffraction Ch. 36 Topics Newtons Rings Diffraction and the wave theory Single slit diffraction Intensity of single slit diffraction Double slit diffraction Diffraction grating Dispersion and

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

Lecture 39. Chapter 37 Diffraction

Lecture 39. Chapter 37 Diffraction Lecture 39 Chapter 37 Diffraction Interference Review Combining waves from small number of coherent sources double-slit experiment with slit width much smaller than wavelength of the light Diffraction

More information

Chapter 35 Homework (due 12/03/13)!!

Chapter 35 Homework (due 12/03/13)!! Chapter 35 Homework (ue 12/03/13) 35.6 35.20 35.21 35.29 35.51 35.55 35.66 35.68 page 1 Problem 35.6 An unerwater scuba iver sees the sun an in the parent angle of 45 above the horizontal. What is the

More information

Physics 202 Homework 9

Physics 202 Homework 9 Physics 202 Homework 9 May 29, 2013 1. A sheet that is made of plastic (n = 1.60) covers one slit of a double slit 488 nm (see Figure 1). When the double slit is illuminated by monochromatic light (wavelength

More information

Physics 2c Lecture 25. Chapter 37 Interference & Diffraction

Physics 2c Lecture 25. Chapter 37 Interference & Diffraction Physics 2c Lecture 25 Chapter 37 Interference & Diffraction Outlook for rest of quarter Today: finish chapter 37 Tomorrow & Friday: E&M waves (Chapter 34) Next Monday, June 4 th : Quiz 8 on Chapter 37

More information

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) s Problem 1 (5x2 = 10 points) Label the following statements as True or False, with a one- or two-sentence explanation for why you chose

More information

10. WAVE OPTICS ONE MARK QUESTIONS

10. WAVE OPTICS ONE MARK QUESTIONS 1 10. WAVE OPTICS ONE MARK QUESTIONS 1. Define wavefront.. What is the shape of wavefront obtaine from a point source at a (i) small istance (ii) large istance? 3. Uner what conitions a cylinrical wavefront

More information

Review Session 1. Dr. Flera Rizatdinova

Review Session 1. Dr. Flera Rizatdinova Review Session 1 Dr. Flera Rizatdinova Summary of Chapter 23 Index of refraction: Angle of reflection equals angle of incidence Plane mirror: image is virtual, upright, and the same size as the object

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves PHY 92 Diffraction and Interference of Plane Light Waves Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when

More information

Wave Optics. April 11, 2014 Chapter 34 1

Wave Optics. April 11, 2014 Chapter 34 1 Wave Optics April 11, 2014 Chapter 34 1 Announcements! Exam tomorrow! We/Thu: Relativity! Last week: Review of entire course, no exam! Final exam Wednesday, April 30, 8-10 PM Location: WH B115 (Wells Hall)

More information

Recall. Young s Double Slit Review. Preflight 21.1, 21.2 L 11/4/2010. Multiple Slits (Diffraction Grating N slits with spacing d)

Recall. Young s Double Slit Review. Preflight 21.1, 21.2 L 11/4/2010. Multiple Slits (Diffraction Grating N slits with spacing d) //00 Physics 6: ecture Diffraction, Gratings, Resolving Poer Textbook sections 8-8-6 Recall Interference (at least coherent aves) Constructive (full avelength ifference) Destructive (½ avelength ifference)

More information

LECTURE 13 THIN FILM INTERFERENCE. Instructor: Kazumi Tolich

LECTURE 13 THIN FILM INTERFERENCE. Instructor: Kazumi Tolich LECTURE 13 THIN FILM INTERFERENCE Instructor: Kazumi Tolich Lecture 13 2 17.4 Thin film interference Interference of reflected light waves Thin films of air The colors of soap bubbles and oil slicks 17.4

More information

CHAPTER 24 The Wave Nature of Light

CHAPTER 24 The Wave Nature of Light CHAPTER 24 The Wave Nature of Light http://www.physicsclassroom.com/class/light/lighttoc.html Units Waves Versus Particles; Huygens Principle and Diffraction Huygens Principle and the Law of Refraction

More information

Wallace Hall Academy

Wallace Hall Academy Wallace Hall Academy CfE Higher Physics Unit 2 - Waves Notes Name 1 Waves Revision You will remember the following equations related to Waves from National 5. d = vt f = n/t v = f T=1/f They form an integral

More information

INTERFERENCE OF LIGHT

INTERFERENCE OF LIGHT LIGHT INTRFRNC OF LIGHT J-Physics The physical cause, with the help of which our eyes experience the sensation of vision, is known as light or the form of energy, which excites our retina an prouce the

More information

WAVE SUPERPOSITION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

WAVE SUPERPOSITION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe WVE SUPERPOSITION hallenging MQ questions by The Physics afe ompiled and selected by The Physics afe 1 Two coherent monochromatic waves of equal amplitude are brought together to form an interference pattern

More information

Where n = 0, 1, 2, 3, 4

Where n = 0, 1, 2, 3, 4 Syllabus: Interference and diffraction introduction interference in thin film by reflection Newton s rings Fraunhofer diffraction due to single slit, double slit and diffraction grating Interference 1.

More information

Polarisation and Diffraction

Polarisation and Diffraction 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Polarisation and Diffraction Polarization Polarization is a characteristic of all transverse waves. Oscillation which take places

More information

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE 58 UNIT VI OPTICS ALL THE POSSIBLE FORMULAE Relation between focal length and radius of curvature of a mirror/lens, f = R/2 Mirror formula: Magnification produced by a mirror: m = - = - Snell s law: 1

More information