Edexcel GCSE Physics

Size: px
Start display at page:

Download "Edexcel GCSE Physics"

Transcription

1 Edexcel GCSE Physics Tpic 5: Light and the Electrmagnetic Spectrum Ntes (Cntent in bld is fr Higher Tier nly)

2 Ray Diagrams (Physics nly) - Arrws shw directin f light travelling - The nrmal is an (imaginary) dashed line which is perpendicular t the surface, and frm which all angles are measured frm - Incident Angle is the angle f the entering ray - Reflected Angle is the angle f the exiting ray Reflectin (Physics nly) - Incident angle = reflectin angle - Angles are always measured frm nrmal Refractin (Physics nly) - If entering a denser material, it bends twards the nrmal - If entering a less dense material, it bends away frm nrmal Ttal Internal Reflectin (TIR) (Physics nly) - This ccurs when the light is passing frm a denser medium int a less dense medium (glass t air) - If the angle f incidence is equal t the critical angle, the refracted ray will pass alng the bundary and nt exit the medium The critical angle is a unique angle fr each tw media (the critical angle fr glass-air is different t glass-water) - Fr larger angles, the light internally reflects (fllwing the abve law f reflectin) back int the glass Denser medium Critical Angle Summary fr glass t air (Physics nly) - If angle LESS than critical angle, light refracts away frm nrmal - If angle EQUAL t critical angle, light passes alng bundary - If angle MORE than critical angle, light reflects Specular Reflectin (Physics nly) - Mirrr reflectin, fllwing law f reflectin, fr a smth surface (all light incident at the same angle all exit at the same angle) Diffuse Reflectin (Physics nly) - Light hitting a rugh surface incident ray is reflected at many angles rather than just ne angle Clur (Physics nly) - Each clur is just a certain wavelength in visible light - All the clurs tgether make up white light Opaque Material (Physics nly) - Objects appear t have a certain clur (e.g. green ), as ut f the incident white light nly that certain clur light (green light) is reflected, all ther clurs are absrbed

3 Clur Filters (Physics nly) - All ther clurs are absrbed, and nly a certain clur is allwed t pass thrugh - s nly a certain wavelength is transmitted thrugh the filter Lenses (Physics nly) - Fcal Length is the distance between the lens and the fcal pint - Fcal Pint is the pint where all hrizntal rays meet after passing thrugh the lens - Pwer f the lens is the inverse f the fcal length Shrter fcal length, greater pwer Thicker lens means shrter fcal length, s greater pwer Cncave Lenses (Physics nly) - Caves inward - Thinner at centre than at edges - Spreads light utwards - Light appears t have cme frm the fcal pint Draw hrizntal ray frm tp f bject t lens Draw a faint line frm fcal pint t pint where the ray hits the lens The ray exits the lens alng the same directin as the faint line (shwn by blue line) - It is used t spread ut light further images.slideplayer.cm E.g. they are used t crrect shrt-sightedness As light is fcused in frnt f the retina, s needs t be spread ut slightly t be able t be fcused nt retina Cnvex Lenses (Physics nly) - Fatter at centre - Fcuses light inwards - Hrizntal rays fcus nt fcal pint - They are used fr magnifying glasses, binculars and t crrect lngsightedness, as it fcuses the rays clser penstudy.cm Images (Physics nly) - A Real image is an image prduced at the ppsite side f the lens t the bject The abve image fr a cnvex lens is a real image - Virtual images appear t cme frm the same side f the lens t the bject This is if the bject lies clser t the lens than the fcal pint (F) leydenscience.rg

4 EM Waves - All electrmagnetic waves transfer energy frm surce t bserver The waves cntain energy, fr example micrwaves which transfers energy frm surce t fd - They are transverse waves - They all travel at the same speed in a vacuum westernreservepublicmedia.rg Need t learn the main grups, and in which rder (fr increasing wavelength r frequency) - EM waves d nt need particles t mve - In space, all waves have the same velcity (speed f light) - They can transfer energy frm a surce t absrber Micrwave surce t fd Sun emits energy t Earth - Our eyes can nly detect visible light - Materials interact with EM waves differently depending n the wavelength Glass can transmit visible light, reflect/absrb UV and IR Relatinships - As speed is cnstant fr all EM waves in a vacuum - As wavelength decreases, frequency must increase - As frequency increases, energy f the wave increases All Bdies emit radiatin - The higher the temperature, the mre intense (and mre wavelengths) will be emitted

5 Temperature - It must radiate the same average pwer that it absrbs t remain at a cnstant temperature - If It absrbs mre pwer than it emits the temperature will increase - If it absrbs less pwer than it emits the temperature will decrease - Temperature f the earth this is maintained by the amunt f energy received and emitted frm the sun Shrt-wavelength Infra-red radiatin frm the sun reaches the Earth Sme is reflected by the atmsphere, mst reaches the surface The energy is absrbed and re-emitted as lnger-length IR radiatin This is mstly absrbed by the atmsphere (greenhuse gases, CO 2 etc.) and keeps the Earth warm Danger f the EM spectrum - Higher frequency EM waves have mre energy, s expsure can transfer t much energy t cells, causing them t mutate and ptentially damage them/causing cancer - Micrwaves - Internal heating f bdy cells - Infra-Red - Skin burns - UV - Damage t surface cells and eyes, leading t skin cancer - X-ray/Gamma - Mutatin r damage t cells in the bdy Uses f the EM spectrum, - Radi - Cmmunicatins, satellite transmissin. They can be prduced by scillatins in electrical circuits, r they can induce scillatins in electrical circuits - Micrwave - Cking, cmmunicatin - IR - Cking, thermal imaging, shrt range cmmunicatin, ptical fibres - Visible - Visin, phtgraphy, illuminatin - UV - Security marking, flurescent lamps, disinfecting water - X-ray - Observing internal structure f bjects, airprt/medical scanners - Gamma - Sterilising fd/medical equipment, treating cancer Change in Atms and Nuclei: - Generate radiatins ver a wide frequency range - Be caused by absrptin f a range f radiatin

Light : Reflection And Refraction (Part I Reflection)

Light : Reflection And Refraction (Part I Reflection) 1 Light : Reflectin And Refractin (Part I Reflectin) Light is a frm f energy which enables us t see bjects either frm which it cmes r frm which it is reflected. Luminus bjects are thse bjects which emit

More information

PROBLEM 1-10 points. [ ] n 1 >n 2 >n 3 [ ] n 1 >n 3 >n 2 [ ] n 2 >n 1 >n 3 [ X ] n 2 >n 3 >n 1 [ ] n 3 >n 1 >n 2 [ ] n 3 >n 2 >n 1

PROBLEM 1-10 points. [ ] n 1 >n 2 >n 3 [ ] n 1 >n 3 >n 2 [ ] n 2 >n 1 >n 3 [ X ] n 2 >n 3 >n 1 [ ] n 3 >n 1 >n 2 [ ] n 3 >n 2 >n 1 PROBLEM - 0 pints [5 pints] (a) Three media are placed n tp f ne anther. A ray f light starting in medium experiences ttal internal reflectin at the tp interface but sme f the light refracts int medium

More information

24-4 Image Formation by Thin Lenses

24-4 Image Formation by Thin Lenses 24-4 Image Frmatin by Thin Lenses Lenses, which are imprtant fr crrecting visin, fr micrscpes, and fr many telescpes, rely n the refractin f light t frm images. As with mirrrs, we draw ray agrams t help

More information

S2 Science EM Spectrum Revision Notes --------------------------------------------------------------------------------------------------------------------------------- What is light? Light is a form of

More information

Sign Conventions. Sign Conventions. Physics Waves & Oscillations 3/25/2016. Spring 2016 Semester Matthew Jones. Convex surface: Concave surface:

Sign Conventions. Sign Conventions. Physics Waves & Oscillations 3/25/2016. Spring 2016 Semester Matthew Jones. Convex surface: Concave surface: Physics 400 Waves & Oscillatins Lecture 8 Gemetric Optics Spring 06 Semester Matthew Jnes Sign Cnventins > + = Cnvex surface: is psitive fr bjects n the incident-light side is psitive fr images n the refracted-light

More information

Physics 11 HW #10 Solutions

Physics 11 HW #10 Solutions Physics HW #0 Slutins Chapter 5: Fcus On Cncepts: 4,, 3, 5 Prblems: 3, 5,, 9, 33, 37, 4, 44 Fcus On Cncepts 5-4 (c) The ray f light strikes the mirrr fur units dwn frm the tp f the mirrr with a 45 angle

More information

Shading. Outline. Introduction Diffuse reflection Specular reflection Ambient light Refinements: Rendering Faces

Shading. Outline. Introduction Diffuse reflection Specular reflection Ambient light Refinements: Rendering Faces Shading Outline Intrductin Diffuse reflectin Specular reflectin Ambient light Refinements: Incrprating several light surces and distance Adding clr Rendering Faces 1 Shading T add realism Shading mdel

More information

23-1 The Ray Model of Light

23-1 The Ray Model of Light 23-1 The Ray Mdel f Light We will start ur investigatin f gemetrical ptics (ptics based n the gemetry f similar triangles) by learning the basics f the ray mdel f light. We will then apply this mdel t

More information

Exam Review: Geometric Optics 1. Know the meaning of the following terms and be able to apply or recognize them:

Exam Review: Geometric Optics 1. Know the meaning of the following terms and be able to apply or recognize them: Exam Review: Geometric Optics 1. Know the meaning of the following terms and be able to apply or recognize them: physics transparent convex mirror real image optics translucent refraction virtual image

More information

Hot Sync. Materials Needed Today

Hot Sync. Materials Needed Today Chapter 11 Lesson 2 Materials Needed Today Please take these materials out of your backpack. Pencil Blank sheet of paper for a lab! Hot Sync Thursday 3/27/14 After learning how light acts. Write a new

More information

What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

More information

Dr. Linlin Ge. sensor. sensor. atmosphere. atmosphere. Principles of Remote Sensing. Session 1. GMAT 9600 Principles of Remote Sensing

Dr. Linlin Ge. sensor. sensor. atmosphere. atmosphere. Principles of Remote Sensing. Session 1. GMAT 9600 Principles of Remote Sensing GMAT 96 Principles f Remte Sensing Tpic 3 (b): Spectral Reflectance and Atmspheric Attenuatin Dr. Linlin Ge Outline 3.2 Reflectance 3.3 Spectral signatures 3.4 Atmspheric effects 3.5 Transmittance and

More information

LECTURE 13. Reflection and Refraction - How waves can be deflected

LECTURE 13. Reflection and Refraction - How waves can be deflected LECTURE 13 Reflectin and Refractin - Hw waves can be deflected Intrductin T nw I have been telling yu nly abut the prpagatin f waves in ne. Hwever, the waves f mst imprtance t humans, sund waves and light

More information

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME :

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME : KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013 SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME : CLASS : INDEX NO : Track 2 Answer ALL questions in the spaces provided on the

More information

Chapter 5 Mirror and Lenses

Chapter 5 Mirror and Lenses Chapter 5 Mirror and Lenses Name: 5.1 Ray Model of Light Another model for light is that it is made up of tiny particles called. Photons travel in perfect, lines from a light source This model helps us

More information

UNIT C: LIGHT AND OPTICAL SYSTEMS

UNIT C: LIGHT AND OPTICAL SYSTEMS 1 UNIT C: LIGHT AND OPTICAL SYSTEMS Science 8 2 LIGHT BEHAVES IN PREDICTABLE WAYS. Section 2.0 1 3 LIGHT TRAVELS IN RAYS AND INTERACTS WITH MATERIALS Topic 2.1 RAY DIAGRAMS Scientists use ray diagrams

More information

Optics Test Science What are some devices that you use in everyday life that require optics?

Optics Test Science What are some devices that you use in everyday life that require optics? Optics Test Science 8 Introduction to Optics 1. What are some devices that you use in everyday life that require optics? Light Energy and Its Sources 308-8 identify and describe properties of visible light

More information

Red Orange the reflected ray. Yellow Green and the normal. Blue Indigo line. Colours of visible reflection

Red Orange the reflected ray. Yellow Green and the normal. Blue Indigo line. Colours of visible reflection distance the carrying the moves away from rest position Brightness Loudness The angle between the incident ray and the normal line Amplitude Amplitude of a light Amplitude of a sound incidence Angle between

More information

11.2 Refraction. December 10, Wednesday, 11 December, 13

11.2 Refraction. December 10, Wednesday, 11 December, 13 11.2 Refraction December 10, 2013. Refraction Light bends when it passes from one medium (material) to another this bending is called refraction this is because the speed of light changes The Speed of

More information

Pick up Light Packet & Light WS

Pick up Light Packet & Light WS Pick up Light Packet & Light WS Only sit or stand at a station with a cup. Test or Quiz Make Ups Today/Tomorrow after School Only. Sound Test Corrections/Retakes: Wednesday, Next Tuesday, Wednesday, Thursday

More information

HOW-TO Use SAP SUIM OR RSUSR008_009_NEW to Analysing Critical Authorisations

HOW-TO Use SAP SUIM OR RSUSR008_009_NEW to Analysing Critical Authorisations HOW-TO Use SAP SUIM OR RSUSR008_009_NEW t Analysing Critical Authrisatins Len Ye Cntents Preface... 2 Access the Prgram... 2 Analysing Users with Critical Authrisatins... 3 Defining Critical Authrisatins...

More information

Unit 3: Optics Chapter 4

Unit 3: Optics Chapter 4 Unit 3: Optics Chapter 4 History of Light https://www.youtube.com/watch?v=j1yiapztlos History of Light Early philosophers (Pythagoras) believed light was made up of tiny particles Later scientist found

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

Holography & Coherence For Holography need coherent beams Two waves coherent if fixed phase relationship between them for some period of time

Holography & Coherence For Holography need coherent beams Two waves coherent if fixed phase relationship between them for some period of time Hlgraphy & Cherence Fr Hlgraphy need cherent beams Tw waves cherent if fixed phase relatinship between them fr sme perid f time Cherence Cherence appear in tw ways Spatial Cherence Waves in phase in time,

More information

The Question. What are the 4 types of interactions that waves can have when they encounter an object?

The Question. What are the 4 types of interactions that waves can have when they encounter an object? The Question What are the 4 types of interactions that waves can have when they encounter an object? Waves, Wave fronts and Rays Wave Front: Crests of the waves. Rays: Lines that are perpendicular to the

More information

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013 SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME : CLASS : INDEX NO : Track 3 Answer ALL questions in the spaces provided on the

More information

TRAINING GUIDE. Lucity Mobile

TRAINING GUIDE. Lucity Mobile TRAINING GUIDE The Lucity mbile app gives users the pwer f the Lucity tls while in the field. They can lkup asset infrmatin, review and create wrk rders, create inspectins, and many mre things. This manual

More information

Chapter 5 Mirrors and Lenses

Chapter 5 Mirrors and Lenses Chapter 5 Notes: Mirrors and Lenses Name: Block: The Ray Model of Light The ray model of light represents light as a line, or ray, indicating the path of a beam of light. Light travels in straight lines

More information

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Light Electromagnetic wave with wave-like nature Refraction Interference Diffraction Photons with particle-like nature

More information

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we:

SESSION 5: INVESTIGATING LIGHT. Key Concepts. X-planation. Physical Sciences Grade In this session we: SESSION 5: INVESTIGATING LIGHT Key Concepts In this session we: Explain what light is, where light comes from and why it is important Identify what happens when light strikes the surface of different objects

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Light and Electromagnetic Waves. Honors Physics

Light and Electromagnetic Waves. Honors Physics Light and Electromagnetic Waves Honors Physics Electromagnetic Waves EM waves are a result of accelerated charges and disturbances in electric and magnetic fields (Radio wave example here) As electrons

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

Reflection & refraction

Reflection & refraction 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Reflection & refraction Reflection revision Reflection is the bouncing of light rays off a surface Reflection from a mirror: Normal

More information

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Brief History of the Nature of Light Up until 19 th century, light was modeled as a stream of particles. Newton was a proponent of

More information

Chapter 8 Light in Physics

Chapter 8 Light in Physics Chapter 8 Light in Physics MCQ 1: Our eyes detect light in A. RGB form, Red Blue Green form B. ROYGBIV, rainbow color form C. The simple form of a particular color D. none of these ways MCQ 2: The symbol

More information

h o h d Angular magnification Angular magnification of a magnifying glass

h o h d Angular magnification Angular magnification of a magnifying glass 6. Angular Magniicatin an the Magniying Glass Angular magniicatin M θ The reerence angular size θ is base n nrmal reaing/viewing at istance N (either ~5 cm r the near pint istance): θ θ h N The magniie

More information

Think About This Why would the image you see of yourself in the lake be upright, while the image of the mountain is upside-down? physicspp.

Think About This Why would the image you see of yourself in the lake be upright, while the image of the mountain is upside-down? physicspp. What Yu ll Learn Yu will learn hw light reflects ff different surfaces. Yu will learn abut the different types f mirrrs and their uses. Yu will use ray tracing and mathematical mdels t describe images

More information

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors Ray Optics Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors 1 Ray optics Optical imaging and color in medicine Integral

More information

Phys 1020, Day 18: Questions? Cameras, Blmfld Reminders: Next Up: digital cameras finish Optics Note Final Project proposals next week!

Phys 1020, Day 18: Questions? Cameras, Blmfld Reminders: Next Up: digital cameras finish Optics Note Final Project proposals next week! Lights. Action. Phys 1020, Day 18: Questions? Cameras, Blmfld 15.1 Reminders: Next Up: digital cameras finish Optics Note Final Project proposals next week! 1 What have we learned in this section: 1) Lasers

More information

Reflection and Refraction. Chapter 29

Reflection and Refraction. Chapter 29 Reflection and Refraction Chapter 29 Reflection When a wave reaches a boundary between two media, some or all of the wave bounces back into the first medium. Reflection The angle of incidence is equal

More information

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 Chapter 24 Geometric optics Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 A Brief History of Light 1000 AD It was proposed that light consisted of tiny particles

More information

Physics 1C. Lecture 22A. "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton

Physics 1C. Lecture 22A. There are two ways of spreading light: to be the candle or the mirror that reflects it. --Edith Wharton Physics 1C Lecture 22A "There are two ways of spreading light: to be the candle or the mirror that reflects it." --Edith Wharton The Nature of Light An interesting question developed as to the nature of

More information

Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information

Reflections. I feel pretty, oh so pretty

Reflections. I feel pretty, oh so pretty Reflections I feel pretty, oh so pretty Objectives By the end of the lesson, you should be able to: Draw an accurate reflective angle Determine the focal length of a spherical mirror Light Review Light

More information

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook.

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. When summarising notes, use different colours and draw diagrams/pictures. If you

More information

INSERTING MEDIA AND OBJECTS

INSERTING MEDIA AND OBJECTS INSERTING MEDIA AND OBJECTS This sectin describes hw t insert media and bjects using the RS Stre Website Editr. Basic Insert features gruped n the tlbar. LINKS The Link feature f the Editr is a pwerful

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 28: REFLECTION & REFRACTION This lecture will help you understand: Reflection Principle of Least Time Law of Reflection Refraction Cause of Refraction Dispersion

More information

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2 Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

1 Version Spaces. CS 478 Homework 1 SOLUTION

1 Version Spaces. CS 478 Homework 1 SOLUTION CS 478 Hmewrk SOLUTION This is a pssible slutin t the hmewrk, althugh there may be ther crrect respnses t sme f the questins. The questins are repeated in this fnt, while answers are in a mnspaced fnt.

More information

Light and all its colours

Light and all its colours Light and all its colours Hold a CD to the light You can see all the colours of the rainbow The CD is a non-luminous body It is reflecting white light from the sun Where do the colours come from? Truth

More information

Physics 10. Lecture 28A. "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?

Physics 10. Lecture 28A. If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed? Physics 10 Lecture 28A "If Dracula can t see his reflection in the mirror, how come his hair is always so neatly combed?" --Steven Wright The Nature of Light From now on we will have to treat light as

More information

Science 8 Chapter 5 Section 1

Science 8 Chapter 5 Section 1 Science 8 Chapter 5 Section 1 The Ray Model of Light (pp. 172-187) Models of Light wave model of light: a model in which light is a type of wave that travels through space and transfers energy from one

More information

Using MeetingSquared on your ipad or iphone

Using MeetingSquared on your ipad or iphone Using MeetingSquared n yur ipad r iphne Install the MeetingSquared app G t the App Stre n yur ipad r iphne and search fr MeetingSquared. If yu are viewing this dcument n yur ipad r iphne, tap the link

More information

The Ray model of Light. Reflection. Class 18

The Ray model of Light. Reflection. Class 18 The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes

More information

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well Pre AP Physics Light & Optics Chapters 14-16 Light is an electromagnetic wave Electromagnetic waves: Oscillating electric and magnetic fields that are perpendicular to the direction the wave moves Difference

More information

PAPER 2 THEORY QUESTIONS

PAPER 2 THEORY QUESTIONS PAPER 2 THEORY QUESTIONS 1 (a) Fig. 1.1 shows a ray of light incident on a mirror at X. The incident ray makes an angle of 50 with the surface of the mirror. (i) Complete Fig. 1.1 to show the normal and

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

COP2800 Homework #3 Assignment Spring 2013

COP2800 Homework #3 Assignment Spring 2013 YOUR NAME: DATE: LAST FOUR DIGITS OF YOUR UF-ID: Please Print Clearly (Blck Letters) YOUR PARTNER S NAME: DATE: LAST FOUR DIGITS OF PARTNER S UF-ID: Please Print Clearly Date Assigned: 15 February 2013

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

SNC 2PI Optics Unit Review /95 Name:

SNC 2PI Optics Unit Review /95 Name: SNC 2PI Optics Unit Review /95 Name: Part 1: True or False Indicate in the space provided if the statement is true (T) or false(f) [15] 1. Light is a form of energy 2. Shadows are proof that light travels

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 14: PROPERTIES OF LIGHT This lecture will help you understand: Reflection Refraction Dispersion Total Internal Reflection Lenses Polarization Properties of Light

More information

Exercise 4: Working with tabular data Exploring infant mortality in the 1900s

Exercise 4: Working with tabular data Exploring infant mortality in the 1900s Exercise 4: Wrking with tabular data Explring infant mrtality in the 1900s Backgrund Althugh peple tend t think abut GIS as being primarily cncerned with mapping. It is better thught f as a type f database

More information

Unit 3: Optics Chapter 4

Unit 3: Optics Chapter 4 Unit 3: Optics Chapter 4 History of Light https://www.youtube.com/watch?v=j1yiapztlos History of Light Early philosophers (Pythagoras) believed light was made up of tiny particles Later scientist found

More information

waves_05 ELECTROMAGNETIC WAVES

waves_05 ELECTROMAGNETIC WAVES waves_05 ELECTROMAGNETIC WAVES 1 waves_05: MINDMAP SUMMARY - ELECTROMAGNETIC WAVES Electromagnetic waves, electromagnetic radiation, speed of light, electromagnetic spectrum, electric field, magnetic field,

More information

4. Refraction. glass, air, Perspex and water.

4. Refraction. glass, air, Perspex and water. Mr. C. Grima 11 1. Rays and Beams A ray of light is a narrow beam of parallel light, which can be represented by a line with an arrow on it, in diagrams. A group of rays makes up a beam of light. In laboratory

More information

Vijaya Nallari -Math 8 SOL TEST STUDY GUIDE

Vijaya Nallari -Math 8 SOL TEST STUDY GUIDE Name Perid SOL Test Date Vijaya Nallari -Math 8 SOL TEST STUDY GUIDE Highlighted with RED is Semester 1 and BLUE is Semester 2 8.1- Simplifying Expressins and Fractins, Decimals, Percents, and Scientific

More information

Access 2000 Queries Tips & Techniques

Access 2000 Queries Tips & Techniques Access 2000 Queries Tips & Techniques Query Basics The query is the basic tl that Access prvides fr retrieving infrmatin frm yur database. Each query functins like a questin that can be asked immediately

More information

Tips and Tricks in Word 2000 Part II. Presented by Carla Torgerson

Tips and Tricks in Word 2000 Part II. Presented by Carla Torgerson Tips and Tricks in Wrd 2000 Part II Presented by Carla Trgersn (cnt2@psu.edu) 1. using styles Styles are used t create frmatting shrtcuts s yu can create a dcument that has frmatting cnsistency. Fr example,

More information

Instance Based Learning

Instance Based Learning Instance Based Learning Vibhav Ggate The University f Texas at Dallas Readings: Mitchell, Chapter 8 surces: curse slides are based n material frm a variety f surces, including Tm Dietterich, Carls Guestrin,

More information

SOLAR-REFLECTIVE COLORANTS

SOLAR-REFLECTIVE COLORANTS SOLAR-REFLECTIVE COLORANTS Bas van Ravenswaaij CPS Clr, Sittard (NL) In cperatin with Judith Huijnen Eurpean Catings Cnference, Sustainable catings 18 & 19 June 2013, Düsseldrf, Germany Business Overview

More information

Chapter 11 Mirrors and Lenses KEY

Chapter 11 Mirrors and Lenses KEY Science 8 Physics Unit http://moodle.sd23.bc.ca/drk Question Completion Asking for Help Working in Class G I have completed all of the assigned questions, completed all diagrams, and corrected all wrong

More information

Light. Reflection of light. Types of reflection

Light. Reflection of light. Types of reflection Light Reflection of light Reflection is when light bounces off an object. If the surface is smooth and shiny, like glass, water or polished metal, the light will reflect at the same angle as it hit the

More information

Refraction of Light. light ray. rectangular plastic slab. normal rectangular slab

Refraction of Light. light ray. rectangular plastic slab. normal rectangular slab Refraction of Light light ray light box single slit rectangular plastic slab What is the light path for a ray aligned with the normal? What is the light path for rays not aligned with the normal? light

More information

Automatic imposition version 5

Automatic imposition version 5 Autmatic impsitin v.5 Page 1/9 Autmatic impsitin versin 5 Descriptin Autmatic impsitin will d the mst cmmn impsitins fr yur digital printer. It will autmatically d flders fr A3, A4, A5 r US Letter page

More information

16/05/2016. Book page 110 and 112 Syllabus 3.18, Snell s Law. cgrahamphysics.com 2016

16/05/2016. Book page 110 and 112 Syllabus 3.18, Snell s Law. cgrahamphysics.com 2016 16/05/2016 Snell s Law cgrahamphysics.com 2016 Book page 110 and 112 Syllabus 3.18, 3.19 Match the words to the objects absorbs transmits emits diffracts disperses refracts reflects Fibre optics Totally

More information

Light and Lenses Notes

Light and Lenses Notes Light and Lenses Notes Refraction The change in speed and direction of a wave Due to change in medium Must cross boundary at an angle other than 90 o, otherwise no change in direction I R (unlike reflection)

More information

3 Interactions of Light Waves

3 Interactions of Light Waves CHAPTER 22 3 Interactions of Light Waves SECTION The Nature of Light BEFORE YOU READ After you read this section, you should be able to answer these questions: How does reflection affect the way we see

More information

Web of Science Institutional authored and cited papers

Web of Science Institutional authored and cited papers Web f Science Institutinal authred and cited papers Prcedures written by Diane Carrll Washingtn State University Libraries December, 2007, updated Nvember 2009 Annual review f paper s authred and cited

More information

Light travels in straight lines, this is referred to as... this means that light does not bend...

Light travels in straight lines, this is referred to as... this means that light does not bend... SNC 2DI - 10.2 Properties of Light and Reflection Light travels in straight lines, this is referred to as... this means that light does not bend... Reflection : Light travels in a straight line as long

More information

TOPIC 3 PROPERTIES OF WAVES INCLUDING LIGHT AND SOUND

TOPIC 3 PROPERTIES OF WAVES INCLUDING LIGHT AND SOUND IGCSE Physics 0625 notes Topic 3: Waves. Light and Sound: Revised on: 17 September 2010 1 TOPIC 3 PROPERTIES OF WAVES INCLUDING LIGHT AND SOUND WHAT IS WAVE MOTION? The wave motion is a means of transferring

More information

Focal Points of Spherical Mirrors. Spherical Mirrors. A plane mirror is a spherical mirror with an infinite radius of curvature. O Height = I Height

Focal Points of Spherical Mirrors. Spherical Mirrors. A plane mirror is a spherical mirror with an infinite radius of curvature. O Height = I Height Radus f Curvature Plane Mrrr A plane mrrr s a sphercal mrrr wth an nfnte radus f curvature. O Heght = I Heght phercal Mrrrs Cncave Mrrr: (e.g. make up mrrr) Center f curvature s n frnt f mrrr Feld f vew

More information

Lecture 16: Geometrical Optics. Reflection Refraction Critical angle Total internal reflection. Polarisation of light waves

Lecture 16: Geometrical Optics. Reflection Refraction Critical angle Total internal reflection. Polarisation of light waves Lecture 6: Geometrical Optics Reflection Refraction Critical angle Total internal reflection Polarisation of light waves Geometrical Optics Optics Branch of Physics, concerning the interaction of light

More information

Refracon. Refracon The spoon in the glass photo can be translated into a ray diagram.

Refracon. Refracon The spoon in the glass photo can be translated into a ray diagram. The of Light Learning Goals: to understand why light refracts when travelling through different media to calculate the index of refraction to use the index of refraction to calculate the speed of light

More information

REFLECTION & REFRACTION

REFLECTION & REFRACTION Name_ Date Period NOTES/LAB DIRECTIONS: REFLECTION & REFRACTION SHOW ALL WORK USING G.U.E.S.S. WRITE ANSWERS IN A COMPLETE SENTENCE IN CONTEXT OF THE PROBLEM. BOX FINAL ANSWERS PHYSICS U6-10 DUE: End of

More information

Using the Swiftpage Connect List Manager

Using the Swiftpage Connect List Manager Quick Start Guide T: Using the Swiftpage Cnnect List Manager The Swiftpage Cnnect List Manager can be used t imprt yur cntacts, mdify cntact infrmatin, create grups ut f thse cntacts, filter yur cntacts

More information

Lecture 14: Refraction

Lecture 14: Refraction Lecture 14: Refraction We know from experience that there are several transparent substances through which light can travel air, water, and glass are three examples When light passes from one such medium

More information

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

11.1 CHARACTERISTICS OF LIGHT

11.1 CHARACTERISTICS OF LIGHT CHARACTERISTICS OF LIGHT 11.1 An electromagnetic wave has both electric and magnetic parts; it does not require a medium, and it travels at the speed of light. As wavelength decreases, energy increases.

More information

Physics 1502: Lecture 29 Today s Agenda

Physics 1502: Lecture 29 Today s Agenda Physcs 1502: Lecture 29 Tday s Agenda Annuncements: Mdterm 2: Mnday Nv. 16 Hmewrk 08: due Frday Optcs Index f Refractn 1 Prsms Enterng Extng 1 3 4 2 Fr ar/glass nterface, we use n(ar)=1, n(glass)=n LIKE

More information

Today s Topic: Refraction / Snell s Law

Today s Topic: Refraction / Snell s Law Today s Topic: Refraction / Snell s Law Learning Goal: Students will be able to calculate the angle of reflection of a bent light wave. Take out your notes from yesterday as we learn about Snell s Law.

More information

The path of light is bent. Refraction and Lenses 4/26/2016. The angle of incidence equals the angle of reflection. Not so for refraction.

The path of light is bent. Refraction and Lenses 4/26/2016. The angle of incidence equals the angle of reflection. Not so for refraction. The path of light is bent. Refraction and Lenses These are not photographs, but rather computer generated graphics based on the artist s understanding of the index of refraction. The angle of incidence

More information

Chapter 5: Mirrors and Lenses. 5.1 Ray Model of Light

Chapter 5: Mirrors and Lenses. 5.1 Ray Model of Light Chapter 5: Mirrors and Lenses 5.1 Ray Model of Light Ray Model of Light Another model for light is that it is made up of 3ny par3cles called photons Photons travel in perfect, straight lines away from

More information

Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below.

Refraction of Light. c = m / s. n = c v. The index of refraction is never less than 1. Some common indices of refraction are listed below. Refraction of Light The speed of light in a vacuum is c = 3.00 10 8 m / s In air, the speed is only slightly less. In other transparent materials, such as glass and water, the speed is always less than

More information

Draw a diagram showing the fibre and the path of the ray of light. Describe one use of optical fibres in medicine. You may draw a diagram.

Draw a diagram showing the fibre and the path of the ray of light. Describe one use of optical fibres in medicine. You may draw a diagram. 1 (a) (i) A ray of light passes through a length of curved optical fibre. Draw a diagram showing the fibre and the path of the ray of light. [1] Describe one use of optical fibres in medicine. You may

More information

PROCEEDINGS OF SPIE. Use of computer graphics methods for efficient stray light analysis in optical design

PROCEEDINGS OF SPIE. Use of computer graphics methods for efficient stray light analysis in optical design PROCEEDINGS OF SPIE SPIEDigitalLibrary.rg/cnference-prceedings-f-spie Use f cmputer graphics methds fr efficient stray light analysis in ptical design Dmitry Zhdanv, Igr S. Ptemin, Andrey D. Zhdanv, Alexey

More information

Physics 202, Lecture 23

Physics 202, Lecture 23 Physics 202, Lecture 23 Today s Topics Lights and Laws of Geometric Optics Nature of Light Reflection and Refraction Law of Reflection Law of Refraction Index of Reflection, Snell s Law Total Internal

More information

Lecture #5.3 Mirrors

Lecture #5.3 Mirrors Lecture #5.3 Mrrrs We ave already dscussed reflectn f EM waves. Ts penmenn fnds useful applcatn n te devces we use n ur everyday lfe. Tday we sall talk abut w reflectn wrks n rder t prduce mages n dfferent

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Test Light Equations Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which colour of light has the shortest wavelength? a. red c. green b. blue

More information