Yaron Lipman Thomas Funkhouser. RifR Raif Rustamov. Princeton University. Drew University

Size: px
Start display at page:

Download "Yaron Lipman Thomas Funkhouser. RifR Raif Rustamov. Princeton University. Drew University"

Transcription

1 Barycentric Coordinates on Surfaces Yaron Lipman Thomas Funkhouser RifR Raif Rustamov Princeton University Drew University

2 Motivation Barycentric coordinates good for: interpolation shading deformation Bezier surfaces parameterization interior distance image cloning shape retrieval finite i elements

3 Goal Define barycentric coordinates on surfaces: generalize planar intrinsic fast to compute

4 Definition on the plane v 1 v v 2 5 p p = affine comb of vertices v3 v4

5 Challenges on surfaces p belongs to convex hull of vertices

6 Challenges on surfaces Mobius, Alfeld et al, Cabral et al Ju et al Spherical triangles Spherical convex Langer et al Spherical all

7 Challenges on surfaces involves Cartesian coords not intrinsic

8 Our approach

9 Our approach Riemannian

10 Outline Introduction Riemannian Center of Mass Construction Computation Properties Results Applications

11 Usual center of mass Euclidean distance

12 Riemannian center of mass Geodesic distance

13 Karcher s theorem If the points are not too far from each other, the Riemannian center of mass is unique has a unique minimum, which is the unique zero of

14 Construction

15 Construction

16 Construction

17 Construction

18 Computation Summary Pick a kind of planar baryc coords E.g. Mean Value Coords Compute the gradient polygon at each point Explicit formula exists Surface baryc coords = = planar baryc coords wrt gradient polygon

19 Computation of gradients inverse exponential map Schmidt et al. [2006]

20 Computation of gradients Schmidt et al. [2006]

21 Intuitiveness I point towards v1. My length is equal to geod. dist. from p to v1

22 Intuitiveness I am at the correct distance and direction wrt p I point towards v1. My length is equal to geod. dist. from p to v1

23 Discrete setting

24 Discrete setting

25 Discrete setting

26 Discrete setting Pentagon Need five instances of single source, all destinations

27 Properties Defining gproperties p Lagrangian Partition of unity Riemannian center of mass Unique reconstruction from coordinates Due to Karcher s theorem Planar reproduction If surface is plane, get planar coordinates back Similarity invariance Smoothness

28 Properties Edge linearity

29 Properties Isometry invariance isometry invariance + unique reconstruction = = isometry map can be reconstructed

30 Results Darkest red point vertex wrt which coords are computed Dark blue small value Dark red large value Equally spaced isolines Planar baryc coords = =Mean Value Coordinates

31 Effect of surface shape

32 Variety

33 Variety

34 Effect of planar coordinate Mean Value Coordinates Maximum Entropy Coordinates

35 Timing g( (seconds)

36 Application: Interpolation

37 Application: Decal mapping Local parameterizations used for texturing We use the same idea as in image warping

38 Application: Decal mapping

39 App: Correspondence Refinement Based on isometry reconstruction property Correspondence is exact, if true isometry

40 App: Correspondence Refinement

41 App: Correspondence Refinement

42 Summary Definition and construction of barycentric coordinates on surfaces: properly generalize existing planar coordinates insensitive to isometric deformations easy to implement, and fast to compute

43 Future work Better Karcher s theorem Other distances instead of geodesic in Uniqueness of c.m. for larger polygons? More empirical studies of various choices of Distance Planar barycentric coordinates Further applications of surface coordinates

44 Thank you Software Szymon Rusinkiewicz for Trimesh2 Danil Kirsanov for Exact Geodesic 3D models Daniela Giorgi Raison d'être Remy of Ratatouille whose posing for [Joshi et al 2007] got me interested in barycentric coordinates

45 Thank you

Generalized Barycentric Coordinates

Generalized Barycentric Coordinates Generalized Barycentric Coordinates Kai Hormann Faculty of Informatics Università della Svizzera italiana, Lugano School of Computer Science and Engineering Nanyang Technological University, Singapore

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

Deformation II. Disney/Pixar

Deformation II. Disney/Pixar Deformation II Disney/Pixar 1 Space Deformation Deformation function on ambient space f : n n Shape S deformed by applying f to points of S S = f (S) f (x,y)=(2x,y) S S 2 Motivation Can be applied to any

More information

Generalized Barycentric Coordinates

Generalized Barycentric Coordinates Generalized Barycentric Coordinates Kai Hormann Faculty of Informatics Università della Svizzera italiana, Lugano My life in a nutshell 2009??? Associate Professor @ University of Lugano 1 Generalized

More information

Generalized Barycentric Coordinates

Generalized Barycentric Coordinates Generalized Barycentric Coordinates Kai Hormann Faculty of Informatics University of Lugano Cartesian coordinates y 3 2 ( 3,1) 1 3 2 1 1 2 3 (2,2) (0,0) 1 2 3 (1, 2) x René Descartes (1596 1650) Appendix

More information

Barycentric Coordinates and Parameterization

Barycentric Coordinates and Parameterization Barycentric Coordinates and Parameterization Center of Mass Geometric center of object Center of Mass Geometric center of object Object can be balanced on CoM How to calculate? Finding the Center of Mass

More information

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo 12 - Spatial And Skeletal Deformations Space Deformations Space Deformation Displacement function defined on the ambient space Evaluate the function on the points of the shape embedded in the space Twist

More information

Comparison and affine combination of generalized barycentric coordinates for convex polygons

Comparison and affine combination of generalized barycentric coordinates for convex polygons Annales Mathematicae et Informaticae 47 (2017) pp. 185 200 http://ami.uni-eszterhazy.hu Comparison and affine combination of generalized barycentric coordinates for convex polygons Ákos Tóth Department

More information

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION 1 Invariant shape similarity Alexer & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book 2 Invariant shape similarity 048921 Advanced topics in vision Processing Analysis

More information

Graphics. Automatic Efficient to compute Smooth Low-distortion Defined for every point Aligns semantic features. Other disciplines

Graphics. Automatic Efficient to compute Smooth Low-distortion Defined for every point Aligns semantic features. Other disciplines Goal: Find a map between surfaces Blended Intrinsic Maps Vladimir G. Kim Yaron Lipman Thomas Funkhouser Princeton University Goal: Find a map between surfaces Automatic Efficient to compute Smooth Low-distortion

More information

Bounded Distortion Mapping and Shape Deformation

Bounded Distortion Mapping and Shape Deformation Bounded Distortion Mapping and Shape Deformation 陈仁杰 德国马克斯普朗克计算机研究所 GAMES Web Seminar, 29 March 2018 Outline Planar Mapping & Applications Bounded Distortion Mapping Harmonic Shape Deformation Shape Interpolation

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Generalized barycentric coordinates

Generalized barycentric coordinates Generalized barycentric coordinates Michael S. Floater August 20, 2012 In this lecture, we review the definitions and properties of barycentric coordinates on triangles, and study generalizations to convex,

More information

Easy modeling generate new shapes by deforming existing ones

Easy modeling generate new shapes by deforming existing ones Deformation I Deformation Motivation Easy modeling generate new shapes by deforming existing ones Motivation Easy modeling generate new shapes by deforming existing ones Motivation Character posing for

More information

CPSC / Texture Mapping

CPSC / Texture Mapping CPSC 599.64 / 601.64 Introduction and Motivation so far: detail through polygons & materials example: brick wall problem: many polygons & materials needed for detailed structures inefficient for memory

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Animation. Motion over time

Animation. Motion over time Animation Animation Motion over time Animation Motion over time Usually focus on character animation but environment is often also animated trees, water, fire, explosions, Animation Motion over time Usually

More information

Spline Functions on Triangulations

Spline Functions on Triangulations Spline Functions on Triangulations MING-JUN LAI AND LARRY L. SCHUMAKER CAMBRIDGE UNIVERSITY PRESS Contents Preface xi Chapter 1. Bivariate Polynomials 1.1. Introduction 1 1.2. Norms of Polynomials on Triangles

More information

Morphing Planar Graphs in Spherical Space

Morphing Planar Graphs in Spherical Space Morphing Planar Graphs in Spherical Space Stephen G. Kobourov and Matthew Landis Department of Computer Science University of Arizona {kobourov,mlandis}@cs.arizona.edu Abstract. We consider the problem

More information

Kai Hormann, N. Sukumar. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics

Kai Hormann, N. Sukumar. Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics Kai Hormann, N. Sukumar Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics Contents Chapter 1 Multi-Sided Patches via Barycentric Coordinates 1 Scott Schaefer 1.1 INTRODUCTION

More information

What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape

What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape Geometry Processing What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape What is Geometry Processing? Understanding the math of 3D shape and applying

More information

CAT(0)-spaces. Münster, June 22, 2004

CAT(0)-spaces. Münster, June 22, 2004 CAT(0)-spaces Münster, June 22, 2004 CAT(0)-space is a term invented by Gromov. Also, called Hadamard space. Roughly, a space which is nonpositively curved and simply connected. C = Comparison or Cartan

More information

Bézier Splines. B-Splines. B-Splines. CS 475 / CS 675 Computer Graphics. Lecture 14 : Modelling Curves 3 B-Splines. n i t i 1 t n i. J n,i.

Bézier Splines. B-Splines. B-Splines. CS 475 / CS 675 Computer Graphics. Lecture 14 : Modelling Curves 3 B-Splines. n i t i 1 t n i. J n,i. Bézier Splines CS 475 / CS 675 Computer Graphics Lecture 14 : Modelling Curves 3 n P t = B i J n,i t with 0 t 1 J n, i t = i=0 n i t i 1 t n i No local control. Degree restricted by the control polygon.

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

Intro to Curves Week 1, Lecture 2

Intro to Curves Week 1, Lecture 2 CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University Outline Math review Introduction to 2D curves

More information

Geometry Processing TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA

Geometry Processing TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA Geometry Processing What is Geometry Processing? Understanding the math of 3D shape What is Geometry Processing? Understanding the math of 3D shape and applying that math to discrete shape What is Geometry

More information

Surface Modeling. Polygon Tables. Types: Generating models: Polygon Surfaces. Polygon surfaces Curved surfaces Volumes. Interactive Procedural

Surface Modeling. Polygon Tables. Types: Generating models: Polygon Surfaces. Polygon surfaces Curved surfaces Volumes. Interactive Procedural Surface Modeling Types: Polygon surfaces Curved surfaces Volumes Generating models: Interactive Procedural Polygon Tables We specify a polygon surface with a set of vertex coordinates and associated attribute

More information

CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2

CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 Outline Math review Introduction to 2D curves

More information

CS 475 / CS Computer Graphics. Modelling Curves 3 - B-Splines

CS 475 / CS Computer Graphics. Modelling Curves 3 - B-Splines CS 475 / CS 675 - Computer Graphics Modelling Curves 3 - Bézier Splines n P t = i=0 No local control. B i J n,i t with 0 t 1 J n,i t = n i t i 1 t n i Degree restricted by the control polygon. http://www.cs.mtu.edu/~shene/courses/cs3621/notes/spline/bezier/bezier-move-ct-pt.html

More information

Basics of Combinatorial Topology

Basics of Combinatorial Topology Chapter 7 Basics of Combinatorial Topology 7.1 Simplicial and Polyhedral Complexes In order to study and manipulate complex shapes it is convenient to discretize these shapes and to view them as the union

More information

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany

A Primer on Laplacians. Max Wardetzky. Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany A Primer on Laplacians Max Wardetzky Institute for Numerical and Applied Mathematics Georg-August Universität Göttingen, Germany Warm-up: Euclidean case Warm-up The Euclidean case Chladni s vibrating plates

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman

Laplacian Meshes. COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Laplacian Meshes COS 526 Fall 2016 Slides from Olga Sorkine and Yaron Lipman Outline Differential surface representation Ideas and applications Compact shape representation Mesh editing and manipulation

More information

2018 AMS short course Discrete Differential Geometry. Discrete Mappings. Yaron Lipman Weizmann Institute of Science

2018 AMS short course Discrete Differential Geometry. Discrete Mappings. Yaron Lipman Weizmann Institute of Science 2018 AMS short course Discrete Differential Geometry 1 Discrete Mappings Yaron Lipman Weizmann Institute of Science 2 Surfaces as triangulations Triangles stitched to build a surface. 3 Surfaces as triangulations

More information

STATISTICS AND ANALYSIS OF SHAPE

STATISTICS AND ANALYSIS OF SHAPE Control and Cybernetics vol. 36 (2007) No. 2 Book review: STATISTICS AND ANALYSIS OF SHAPE by H. Krim, A. Yezzi, Jr., eds. There are numerous definitions of a notion of shape of an object. These definitions

More information

An Intuitive Framework for Real-Time Freeform Modeling

An Intuitive Framework for Real-Time Freeform Modeling An Intuitive Framework for Real-Time Freeform Modeling Leif Kobbelt Shape Deformation Complex shapes Complex deformations User Interaction Very limited user interface 2D screen & mouse Intuitive metaphor

More information

Introduction to geometry

Introduction to geometry 1 2 Manifolds A topological space in which every point has a neighborhood homeomorphic to (topological disc) is called an n-dimensional (or n-) manifold Introduction to geometry The German way 2-manifold

More information

Computational Geometry [csci 3250]

Computational Geometry [csci 3250] Computational Geometry [csci 3250] Laura Toma Bowdoin College Polygon Triangulation Polygon Triangulation The problem: Triangulate a given polygon. (output a set of diagonals that partition the polygon

More information

Direct Rendering. Direct Rendering Goals

Direct Rendering. Direct Rendering Goals May 2, 2005 Goals General Goals Small memory footprint Fast rendering High-quality results identical to those of Saffron V1 using distance-based anti-aliasing and alignment zones Goals Specific Goals Avoid

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Intro to Curves Week 4, Lecture 7

Intro to Curves Week 4, Lecture 7 CS 430/536 Computer Graphics I Intro to Curves Week 4, Lecture 7 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

More information

CSE 554 Lecture 7: Deformation II

CSE 554 Lecture 7: Deformation II CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize

More information

Lesson 7.1. Angles of Polygons

Lesson 7.1. Angles of Polygons Lesson 7.1 Angles of Polygons Essential Question: How can I find the sum of the measures of the interior angles of a polygon? Polygon A plane figure made of three or more segments (sides). Each side intersects

More information

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Video based Animation Synthesis with the Essential Graph Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Goal Given a set of 4D models, how to generate realistic motion from user specified

More information

Freeform Curves on Spheres of Arbitrary Dimension

Freeform Curves on Spheres of Arbitrary Dimension Freeform Curves on Spheres of Arbitrary Dimension Scott Schaefer and Ron Goldman Rice University 6100 Main St. Houston, TX 77005 sschaefe@rice.edu and rng@rice.edu Abstract Recursive evaluation procedures

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November Surfaces for CAGD FSP Tutorial FSP-Seminar, Graz, November 2005 1 Tensor Product Surfaces Given: two curve schemes (Bézier curves or B splines): I: x(u) = m i=0 F i(u)b i, u [a, b], II: x(v) = n j=0 G

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics CS 2336 Discrete Mathematics Lecture 15 Graphs: Planar Graphs 1 Outline What is a Planar Graph? Euler Planar Formula Platonic Solids Five Color Theorem Kuratowski s Theorem 2 What is a Planar Graph? Definition

More information

Warping and Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC

Warping and Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC Warping and Morphing Ligang Liu Graphics&Geometric Computing Lab USTC http://staff.ustc.edu.cn/~lgliu Metamorphosis "transformation of a shape and its visual attributes" Intrinsic in our environment Deformations

More information

Scalar Visualization

Scalar Visualization Scalar Visualization Visualizing scalar data Popular scalar visualization techniques Color mapping Contouring Height plots outline Recap of Chap 4: Visualization Pipeline 1. Data Importing 2. Data Filtering

More information

Geodesics in heat: A new approach to computing distance

Geodesics in heat: A new approach to computing distance Geodesics in heat: A new approach to computing distance based on heat flow Diana Papyan Faculty of Informatics - Technische Universität München Abstract In this report we are going to introduce new method

More information

Exact Volume of Hyperbolic 2-bridge Links

Exact Volume of Hyperbolic 2-bridge Links Exact Volume of Hyperbolic 2-bridge Links Anastasiia Tsvietkova Louisiana State University Parts of this work are joint with M. Thislethwaite, O. Dasbach Anastasiia Tsvietkova (Louisiana State University

More information

Simple Formulas for Quasiconformal Plane Deformations

Simple Formulas for Quasiconformal Plane Deformations Simple Formulas for Quasiconformal Plane Deformations by Yaron Lipman, Vladimir Kim, and Thomas Funkhouser ACM TOG 212 Stephen Mann Planar Shape Deformations Used in Mesh parameterization Animation shape

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Theory of Variational Inference: Inner and Outer Approximation Eric Xing Lecture 14, February 29, 2016 Reading: W & J Book Chapters Eric Xing @

More information

Computer Graphics Curves and Surfaces. Matthias Teschner

Computer Graphics Curves and Surfaces. Matthias Teschner Computer Graphics Curves and Surfaces Matthias Teschner Outline Introduction Polynomial curves Bézier curves Matrix notation Curve subdivision Differential curve properties Piecewise polynomial curves

More information

Manifold T-spline. Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2. Geometric Modeling and Processing 2006

Manifold T-spline. Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2. Geometric Modeling and Processing 2006 Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2 1 School of Computer Engineering Nanyang Technological University, Singapore 2 Center for Visual Computing (CVC) Stony Brook University,

More information

Shape fitting and non convex data analysis

Shape fitting and non convex data analysis Shape fitting and non convex data analysis Petra Surynková, Zbyněk Šír Faculty of Mathematics and Physics, Charles University in Prague Sokolovská 83, 186 7 Praha 8, Czech Republic email: petra.surynkova@mff.cuni.cz,

More information

Review of Tuesday. ECS 175 Chapter 3: Object Representation

Review of Tuesday. ECS 175 Chapter 3: Object Representation Review of Tuesday We have learnt how to rasterize lines and fill polygons Colors (and other attributes) are specified at vertices Interpolation required to fill polygon with attributes 26 Review of Tuesday

More information

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams in the Plane Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams As important as convex hulls Captures the neighborhood (proximity) information of geometric objects

More information

1/25 Warm Up Find the value of the indicated measure

1/25 Warm Up Find the value of the indicated measure 1/25 Warm Up Find the value of the indicated measure. 1. 2. 3. 4. Lesson 7.1(2 Days) Angles of Polygons Essential Question: What is the sum of the measures of the interior angles of a polygon? What you

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

In this lecture we introduce the Gauss-Bonnet theorem. The required section is The optional sections are

In this lecture we introduce the Gauss-Bonnet theorem. The required section is The optional sections are Math 348 Fall 2017 Lectures 20: The Gauss-Bonnet Theorem II Disclaimer. As we have a textbook, this lecture note is for guidance and supplement only. It should not be relied on when preparing for exams.

More information

Discrete Differential Geometry: An Applied Introduction

Discrete Differential Geometry: An Applied Introduction Discrete Differential Geometry: An Applied Introduction Eitan Grinspun with Mathieu Desbrun, Konrad Polthier, Peter Schröder, & Ari Stern 1 Differential Geometry Why do we care? geometry of surfaces Springborn

More information

Cambridge Essentials Mathematics Core 9 GM1.1 Answers. 1 a

Cambridge Essentials Mathematics Core 9 GM1.1 Answers. 1 a GM1.1 Answers 1 a b 2 Shape Name Regular Irregular Convex Concave A Decagon B Octagon C Pentagon D Quadrilateral E Heptagon F Hexagon G Quadrilateral H Triangle I Triangle J Hexagon Original Material Cambridge

More information

Chapter 10 Polygons and Area

Chapter 10 Polygons and Area Geometry Concepts Chapter 10 Polygons and Area Name polygons according to sides and angles Find measures of interior angles Find measures of exterior angles Estimate and find areas of polygons Estimate

More information

Polygon Triangulation

Polygon Triangulation Polygon Triangulation The problem: Triangulate a given polygon. (output a set of diagonals that partition the polygon into triangles). Computational Geometry [csci 3250] Polygon Triangulation Laura Toma

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

Discrete geometry. Lecture 2. Alexander & Michael Bronstein tosca.cs.technion.ac.il/book

Discrete geometry. Lecture 2. Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Discrete geometry Lecture 2 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 The world is continuous, but the mind is discrete

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

Morphing Planar Graphs in Spherical Space

Morphing Planar Graphs in Spherical Space Morphing Planar Graphs in Spherical Space Stephen G. Kobourov and Matthew Landis Department of Computer Science University of Arizona {kobourov,mlandis}@cs.arizona.edu Abstract. We consider the problem

More information

Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams

Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams Quadratic and cubic b-splines by generalizing higher-order voronoi diagrams Yuanxin Liu and Jack Snoeyink Joshua Levine April 18, 2007 Computer Science and Engineering, The Ohio State University 1 / 24

More information

Multidimensional scaling

Multidimensional scaling Multidimensional scaling Lecture 5 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Cinderella 2.0 2 If it doesn t fit,

More information

Optimal Möbius Transformation for Information Visualization and Meshing

Optimal Möbius Transformation for Information Visualization and Meshing Optimal Möbius Transformation for Information Visualization and Meshing Marshall Bern Xerox Palo Alto Research Ctr. David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science

More information

Real-Time Shape Editing using Radial Basis Functions

Real-Time Shape Editing using Radial Basis Functions Real-Time Shape Editing using Radial Basis Functions, Leif Kobbelt RWTH Aachen Boundary Constraint Modeling Prescribe irregular constraints Vertex positions Constrained energy minimization Optimal fairness

More information

Textures and normals in ray tracing

Textures and normals in ray tracing Textures and normals in ray tracing CS 4620 Lecture 7 1 Texture mapping Objects have properties that vary across the surface 2 Texture Mapping So we make the shading parameters vary across the surface

More information

Research Article Polygon Morphing and Its Application in Orebody Modeling

Research Article Polygon Morphing and Its Application in Orebody Modeling Mathematical Problems in Engineering Volume 212, Article ID 732365, 9 pages doi:1.1155/212/732365 Research Article Polygon Morphing and Its Application in Orebody Modeling Hacer İlhan and Haşmet Gürçay

More information

Interpolation and Basis Fns

Interpolation and Basis Fns CS148: Introduction to Computer Graphics and Imaging Interpolation and Basis Fns Topics Today Interpolation Linear and bilinear interpolation Barycentric interpolation Basis functions Square, triangle,,

More information

Three Points Make a Triangle Or a Circle

Three Points Make a Triangle Or a Circle Three Points Make a Triangle Or a Circle Peter Schröder joint work with Liliya Kharevych, Boris Springborn, Alexander Bobenko 1 In This Section Circles as basic primitive it s all about the underlying

More information

Teaching diary. Francis Bonahon University of Southern California

Teaching diary. Francis Bonahon University of Southern California Teaching diary In the Fall 2010, I used the book Low-dimensional geometry: from euclidean surfaces to hyperbolic knots as the textbook in the class Math 434, Geometry and Transformations, at USC. Most

More information

Definition A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by.

Definition A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by. Chapter 1 Geometry: Nuts and Bolts 1.1 Metric Spaces Definition 1.1.1. A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by (x, y) inf p. p:x

More information

Cross-Parameterization and Compatible Remeshing of 3D Models

Cross-Parameterization and Compatible Remeshing of 3D Models Cross-Parameterization and Compatible Remeshing of 3D Models Vladislav Kraevoy Alla Sheffer University of British Columbia Authors Vladislav Kraevoy Ph.D. Student Alla Sheffer Assistant Professor Outline

More information

Blended barycentric coordinates

Blended barycentric coordinates Blended barycentric coordinates Dmitry Anisimov a, Daniele Panozzo b, Kai Hormann a, a Università della Svizzera italiana, Lugano, Switzerland b New York University, New York, USA Abstract Generalized

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

SEOUL NATIONAL UNIVERSITY

SEOUL NATIONAL UNIVERSITY Fashion Technology 5. 3D Garment CAD-1 Sungmin Kim SEOUL NATIONAL UNIVERSITY Overview Design Process Concept Design Scalable vector graphics Feature-based design Pattern Design 2D Parametric design 3D

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

For each question, indicate whether the statement is true or false by circling T or F, respectively.

For each question, indicate whether the statement is true or false by circling T or F, respectively. True/False For each question, indicate whether the statement is true or false by circling T or F, respectively. 1. (T/F) Rasterization occurs before vertex transformation in the graphics pipeline. 2. (T/F)

More information

A new 8-node quadrilateral spline finite element

A new 8-node quadrilateral spline finite element Journal of Computational and Applied Mathematics 195 (2006) 54 65 www.elsevier.com/locate/cam A new 8-node quadrilateral spline finite element Chong-Jun Li, Ren-Hong Wang Institute of Mathematical Sciences,

More information

CS 498 VR. Lecture 18-4/4/18. go.illinois.edu/vrlect18

CS 498 VR. Lecture 18-4/4/18. go.illinois.edu/vrlect18 CS 498 VR Lecture 18-4/4/18 go.illinois.edu/vrlect18 Review and Supplement for last lecture 1. What is aliasing? What is Screen Door Effect? 2. How image-order rendering works? 3. If there are several

More information

IMAGE-BASED RENDERING

IMAGE-BASED RENDERING IMAGE-BASED RENDERING 1. What is Image-Based Rendering? - The synthesis of new views of a scene from pre-recorded pictures.!"$#% "'&( )*+,-/.). #0 1 ' 2"&43+5+, 2. Why? (1) We really enjoy visual magic!

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Local Barycentric Coordinates

Local Barycentric Coordinates Local Barycentric Coordinates Juyong Zhang Bailin Deng Zishun Liu Giuseppe Patanè Sofien Bouaziz Kai Hormann Ligang Liu USTC EPFL USTC CNR-IMATI EPFL USI USTC Introduction Given a point p inside a polygon

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE452 Computer Graphics Lecture 19: From Morphing To Animation Capturing and Animating Skin Deformation in Human Motion, Park and Hodgins, SIGGRAPH 2006 CSE452 Lecture 19: From Morphing to Animation 1

More information

INF3320 Computer Graphics and Discrete Geometry

INF3320 Computer Graphics and Discrete Geometry INF3320 Computer Graphics and Discrete Geometry Texturing Christopher Dyken Martin Reimers 06.10.2010 Page 1 Texturing Linear interpolation Real Time Rendering: Chapter 5: Visual Appearance Chapter 6:

More information