CSE452 Computer Graphics

Size: px
Start display at page:

Download "CSE452 Computer Graphics"

Transcription

1 CSE452 Computer Graphics Lecture 19: From Morphing To Animation Capturing and Animating Skin Deformation in Human Motion, Park and Hodgins, SIGGRAPH 2006 CSE452 Lecture 19: From Morphing to Animation 1

2 Let s Make Things Move How to morph between two shapes? How to interactively deform a shape? How to design a natural animation? CSE452 Lecture 19: From Morphing to Animation 2

3 Morphing Change one shape into another Often seen in movie special effects and cartoons Guiness: noitulove Bacardi: Mojito CSE452 Lecture 19: From Morphing to Animation 3

4 Morphing CSE452 Lecture 19: From Morphing to Animation 4

5 Image Morphing Given a source image and target image, determine the pixel values of an intermediate image A B CSE452 Lecture 19: From Morphing to Animation 5

6 Image Morphing Basic approach: linear interpolation Fading in and out Ghost artifact p p p t=0 t=0.5 t=1 CSE452 Lecture 19: From Morphing to Animation 6

7 Image Morphing Better approach: warping Find a mapping between pixels in source and target Linearly interpolate pixel locations and values p f(p) (1-t) p+t f(p) t=0 t=0.5 t=1 CSE452 Lecture 19: From Morphing to Animation 7

8 Mapping Images Automated approaches Known as Registration : compute f[p] for all p such that the color at each f[p] best matches that at p, and distortion is minimized. User-guided approaches User giving feature pairs p i and q i The mapping f[p] is computed so that f[p i ]=q i p i q i CSE452 Lecture 19: From Morphing to Animation 8

9 Mapping Images CSE452 Lecture 19: From Morphing to Animation 9

10 Mapping Images CSE452 Lecture 19: From Morphing to Animation 10

11 Mapping Images Compute a mapping by triangulation Input: feature pairs {p 1, p 2, p 3 } and {q 1, q 2, q 3 } Output: f[p] for every pixel p in the first triangle. q 1 p 1 p f[p] p 3 q 2 p 2 q 3 Compute a,b,c such that a+b+c=1, and p = a*p 1 + b*p 2 + c*p 3 f[p] = a*q 1 + b*q 2 + c*q 3 CSE452 Lecture 19: From Morphing to Animation 11

12 Geometry Morphing Also called shape interpolation, blending, or metamorphosis Shapes represented as polygons (2D) or meshes (3D) A p B f(p) Central problems Correspondence: for a point p on shape A, find the corresponding point f[p] on shape B. Vertex path: linearly interpolating p and f[p] doesn t always work CSE452 Lecture 19: From Morphing to Animation 12

13 Correspondence Problem 2D polygons easy Given user-specified feature pairs f[p] is found by comparing curve lengths 3D meshes harder User inputs feature points and their connectivity Partitions a model into triangular patches Need to build f[p] within each corresponding patch f[p] p Consistent Mesh Parameterizations, Praun et. al., SIGGRAPH 2001 CSE452 Lecture 19: From Morphing to Animation 13

14 Vertex Path Problem Basic approach: linear interpolation Problems: shrinking, distortions, etc. 2D Shape Blending: An Intrinsic Solution to the Vertex Path Problem, Sederberg et. al., SIGGRAPH 1993 Linear Interpolation CSE452 Lecture 19: From Morphing to Animation 14

15 Vertex Path Problem Basic approach: linear interpolation Problems: shrinking, distortions, etc. Better approaches Preserving edge lengths and angles Minimizing distortion of interior volume Linear Interpolation 2D Shape Blending: An Intrinsic Solution to the Vertex Path Problem, Sederberg et. al., SIGGRAPH 1993 Interpolating lengths, angles Linear Interpolation Minimizing interior stretching As-Rigid-As-Possible Shape Interpolation, Alexa et. al., SIGGRAPH 2000 CSE452 Lecture 19: From Morphing to Animation 15

16 State of the art CSE452 Lecture 19: From Morphing to Animation 16

17 Interactive Mesh Deformation To achieve better user-control Free form deformation User control: a 3D lattice Cage deformation User control: a 2D mesh Skeletal deformation User control: a 1D skeleton Directly mesh editing CSE452 Lecture 19: From Morphing to Animation 17

18 Free-Form Deformation Pioneered by Sederberg [SIGGRAPH 93] Embed the shape in a volumetric lattice Every point on the shape is represented as an affine combination of the lattice points. v i v i ' Deform the shape by deforming the lattice New point locations are updated by affine combination of the new lattice locations. Fast and real-time deformation! v i v i ' CSE452 Lecture 19: From Morphing to Animation 18

19 Cage Deformation A volumetric lattice is hard to set up Not all objects have a tube shape Introduced by Ju [SIGGRAPH 2005] Embed the shape in a Cage Every point on the shape is represented as an affine combination of the vertices of the control mesh v i Deform the shape by deforming the cage CSE452 Lecture 19: From Morphing to Animation 19

20 Cage Deformation A volumetric lattice is hard to set up Not all objects have a tube shape Introduced by Ju [SIGGRAPH 2005] Embed the shape in a Cage Every point on the shape is represented as an affine combination of the vertices of the control mesh v i Deform the shape by deforming the cage CSE452 Lecture 19: From Morphing to Animation 20

21 Skeleton and Skinning Skeleton: a collection of bones and joints Skinning: associating each point on the shape to an affine combination of bone/joint locations. Constructed using a binding pose. Real-time deformation by applying skinning weights to deformed skeleton. Binding Pose Great for animating articulated shapes Deformed Skeleton CSE452 Lecture 19: From Morphing to Animation 21

22 Skeleton and Skinning q = p1 + S(0.4).R(pi/4).(p2 p1) q p0 p1 p2 CSE452 Lecture 19: From Morphing to Animation 22

23 Skeletal Animation Most popular in movie/games Supported by main-stream software such as Maya, 3D Max What s hard: Resolving skinning artifacts Designing natural skeleton movements CSE452 Lecture 19: From Morphing to Animation 23

24 Corrective shapes CSE452 Lecture 19: From Morphing to Animation 24

25 CSE452 Lecture 19: From Morphing to Animation 25

26 Moving The Skeleton Forward kinematics Calculating locations of every joint based on joint angles Inverse kinematics (IK) Given location of the end of limbs, compute the joint angles Important in robotics, 3D games, and model design Solution is not unique! (and finding one can be hard) No Solution One Solution Two Solutions Many Solutions CSE452 Lecture 19: From Morphing to Animation 26

27 Solving for IK A simple example Finding correct angles a,b to reach target Reduces to a configuration space problem Iterative methods Starting from current configuration Searching the minimum by Following the gradient (going downhill) Downhill Simplex Algorithm Simulated Annealing CSE452 Lecture 19: From Morphing to Animation 27

28 Direct Mesh Editing User selects and drags a vertex (or a group of vertices) The rest of the shape changes in a natural manner Laplacian Surface Editing, Sorkine et. al., SGP 04 CSE452 Lecture 19: From Morphing to Animation 28

29 CSE452 Lecture 19: From Morphing to Animation 29

30 Laplacian Mesh Editing Represent surface detail as local difference (Laplacian) CSE452 Lecture 19: From Morphing to Animation 30

31 Laplacian Mesh Editing Represent surface detail as local difference (Laplacian) Mesh deformation as minimization Move handle p to new location q while minimizing changes in local surface details (Laplacians) CSE452 Lecture 19: From Morphing to Animation 31

32 Creating Natural Motions Motion capturing (MoCap) Motion synthesis CSE452 Lecture 19: From Morphing to Animation 32

33 Motion Capturing The systems Acoustic, inertial, LED, magnetic or reflective markers Records the positions, angles, velocities, accelerations and impulses What can be captured Body and finger motions Facial expressions Skin deformation Capturing and Animating Skin Deformation in Human Motion, Park and Hodgins, SIGGRAPH 2006 Tom Hanks, Polar Express CSE452 Lecture 19: From Morphing to Animation 33

34 Motion Capture CSE452 Lecture 19: From Morphing to Animation 34

35 Skin Mocap CSE452 Lecture 19: From Morphing to Animation 35

36 Using MoCap Data Mocap databases The CMU MoCap database. Building longer sequence from captured segments Physical constraints and dynamic response Dynamic Response for Motion Capture Animation, Zordan et. al., SIGGRAPH 2005 Motion Patches: Building Blocks for Virtual Environments Annotated With Motion Data, Lee et. al., SIGGRAPH 2006 CSE452 Lecture 19: From Morphing to Animation 36

37 Limitations of Mocap Time consuming and expensive Mocap system costs from 50K to millions, and go obsolete easily Mostly indoor (with attempts to go outdoors ) Registration and dealing with missing data still faces challenges Requires special processing to be applied to bodies of different sizes Challenges on multiple persons The future: Can we make a realistic movie without using real characters? CSE452 Lecture 19: From Morphing to Animation 37

38 Quiz4 next time A TA will do the quiz Interpolation Approximation CSE452 Lecture 19: From Morphing to Animation 38

CSE 554 Lecture 7: Deformation II

CSE 554 Lecture 7: Deformation II CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize

More information

Animation. CS 465 Lecture 22

Animation. CS 465 Lecture 22 Animation CS 465 Lecture 22 Animation Industry production process leading up to animation What animation is How animation works (very generally) Artistic process of animation Further topics in how it works

More information

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala Animations Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Kavita Bala Animation Artistic process What are animators trying to do? What tools

More information

CS 775: Advanced Computer Graphics. Lecture 4: Skinning

CS 775: Advanced Computer Graphics. Lecture 4: Skinning CS 775: Advanced Computer Graphics Lecture 4: http://www.okino.com/conv/skinning.htm Binding Binding Always done in a standard rest or bind pose. Binding Always done in a standard rest or bind pose. Associate

More information

Animation. Motion over time

Animation. Motion over time Animation Animation Motion over time Animation Motion over time Usually focus on character animation but environment is often also animated trees, water, fire, explosions, Animation Motion over time Usually

More information

Animation COM3404. Richard Everson. School of Engineering, Computer Science and Mathematics University of Exeter

Animation COM3404. Richard Everson. School of Engineering, Computer Science and Mathematics University of Exeter Animation COM3404 Richard Everson School of Engineering, Computer Science and Mathematics University of Exeter R.M.Everson@exeter.ac.uk http://www.secamlocal.ex.ac.uk/studyres/com304 Richard Everson Animation

More information

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation Computer Animation Aitor Rovira March 2010 Human body animation Based on slides by Marco Gillies Human Body Animation Skeletal Animation Skeletal Animation (FK, IK) Motion Capture Motion Editing (retargeting,

More information

Animation II: Soft Object Animation. Watt and Watt Ch.17

Animation II: Soft Object Animation. Watt and Watt Ch.17 Animation II: Soft Object Animation Watt and Watt Ch.17 Soft Object Animation Animation I: skeletal animation forward kinematics x=f(φ) inverse kinematics φ=f -1 (x) Curves and Surfaces I&II: parametric

More information

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation Lecture 10: Animation COMP 175: Computer Graphics March 12, 2018 1/37 Recap on Camera and the GL Matrix Stack } Go over the GL Matrix Stack 2/37 Topics in Animation } Physics (dynamics, simulation, mechanics)

More information

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 33 Cornell CS4620 Fall 2015 1 Announcements Grading A5 (and A6) on Monday after TG 4621: one-on-one sessions with TA this Friday w/ prior instructor Steve Marschner 2 Quaternions

More information

Kinematics & Motion Capture

Kinematics & Motion Capture Lecture 27: Kinematics & Motion Capture Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Forward Kinematics (Slides with James O Brien) Forward Kinematics Articulated skeleton Topology

More information

Advanced Graphics and Animation

Advanced Graphics and Animation Advanced Graphics and Animation Character Marco Gillies and Dan Jones Goldsmiths Aims and objectives By the end of the lecture you will be able to describe How 3D characters are animated Skeletal animation

More information

Warping and Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC

Warping and Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC Warping and Morphing Ligang Liu Graphics&Geometric Computing Lab USTC http://staff.ustc.edu.cn/~lgliu Metamorphosis "transformation of a shape and its visual attributes" Intrinsic in our environment Deformations

More information

Motion Capture. Motion Capture in Movies. Motion Capture in Games

Motion Capture. Motion Capture in Movies. Motion Capture in Games Motion Capture Motion Capture in Movies 2 Motion Capture in Games 3 4 Magnetic Capture Systems Tethered Sensitive to metal Low frequency (60Hz) Mechanical Capture Systems Any environment Measures joint

More information

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based Animation Forward and

More information

Free-Form Deformation and Other Deformation Techniques

Free-Form Deformation and Other Deformation Techniques Free-Form Deformation and Other Deformation Techniques Deformation Deformation Basic Definition Deformation: A transformation/mapping of the positions of every particle in the original object to those

More information

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Video based Animation Synthesis with the Essential Graph Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Goal Given a set of 4D models, how to generate realistic motion from user specified

More information

Computational Design. Stelian Coros

Computational Design. Stelian Coros Computational Design Stelian Coros Schedule for presentations February 3 5 10 12 17 19 24 26 March 3 5 10 12 17 19 24 26 30 April 2 7 9 14 16 21 23 28 30 Send me: ASAP: 3 choices for dates + approximate

More information

Animation of 3D surfaces.

Animation of 3D surfaces. Animation of 3D surfaces Motivations When character animation is controlled by skeleton set of hierarchical joints joints oriented by rotations the character shape still needs to be visible: visible =

More information

CS 523: Computer Graphics, Spring Shape Modeling. Skeletal deformation. Andrew Nealen, Rutgers, /12/2011 1

CS 523: Computer Graphics, Spring Shape Modeling. Skeletal deformation. Andrew Nealen, Rutgers, /12/2011 1 CS 523: Computer Graphics, Spring 2011 Shape Modeling Skeletal deformation 4/12/2011 1 Believable character animation Computers games and movies Skeleton: intuitive, low-dimensional subspace Clip courtesy

More information

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials)

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials) Advanced Computer Graphics CSE 190 [Spring 2015], Lecture 16 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 3 milestone due May 29 Should already be well on way Contact us for difficulties

More information

Data-driven Approaches to Simulation (Motion Capture)

Data-driven Approaches to Simulation (Motion Capture) 1 Data-driven Approaches to Simulation (Motion Capture) Ting-Chun Sun tingchun.sun@usc.edu Preface The lecture slides [1] are made by Jessica Hodgins [2], who is a professor in Computer Science Department

More information

Deforming Objects. Deformation Techniques. Deforming Objects. Examples

Deforming Objects. Deformation Techniques. Deforming Objects. Examples Deforming Objects Deformation Techniques CMPT 466 Computer Animation Torsten Möller Non-Uniform Scale Global Deformations Skeletal Deformations Grid Deformations Free-Form Deformations (FFDs) Morphing

More information

Game Programming. Bing-Yu Chen National Taiwan University

Game Programming. Bing-Yu Chen National Taiwan University Game Programming Bing-Yu Chen National Taiwan University Character Motion Hierarchical Modeling Character Animation Motion Editing 1 Hierarchical Modeling Connected primitives 2 3D Example: A robot arm

More information

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics On Friday (3/1), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

Chapter 9 Animation System

Chapter 9 Animation System Chapter 9 Animation System 9.1 Types of Character Animation Cel Animation Cel animation is a specific type of traditional animation. A cel is a transparent sheet of plastic on which images can be painted

More information

05 Mesh Animation. Steve Marschner CS5625 Spring 2016

05 Mesh Animation. Steve Marschner CS5625 Spring 2016 05 Mesh Animation Steve Marschner CS5625 Spring 2016 Basic surface deformation methods Blend shapes: make a mesh by combining several meshes Mesh skinning: deform a mesh based on an underlying skeleton

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

Cloning Skeleton-driven Animation to Other Models

Cloning Skeleton-driven Animation to Other Models Cloning Skeleton-driven Animation to Other Models Wan-Chi Luo Jian-Bin Huang Bing-Yu Chen Pin-Chou Liu National Taiwan University {maggie, azar, toby}@cmlab.csie.ntu.edu.tw robin@ntu.edu.tw Abstract-3D

More information

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics Announcements: Quiz On Tuesday (3/10), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

SCAPE: Shape Completion and Animation of People

SCAPE: Shape Completion and Animation of People SCAPE: Shape Completion and Animation of People By Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, James Davis From SIGGRAPH 2005 Presentation for CS468 by Emilio Antúnez

More information

Def De orma f tion orma Disney/Pixar

Def De orma f tion orma Disney/Pixar Deformation Disney/Pixar Deformation 2 Motivation Easy modeling generate new shapes by deforming existing ones 3 Motivation Easy modeling generate new shapes by deforming existing ones 4 Motivation Character

More information

Course Outline. Advanced Computer Graphics. Animation. The Story So Far. Animation. To Do

Course Outline. Advanced Computer Graphics. Animation. The Story So Far. Animation. To Do Advanced Computer Graphics CSE 163 [Spring 2017], Lecture 18 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir 3D Graphics Pipeline Modeling (Creating 3D Geometry) Course Outline Rendering (Creating, shading

More information

Skeletal deformation

Skeletal deformation CS 523: Computer Graphics, Spring 2009 Shape Modeling Skeletal deformation 4/22/2009 1 Believable character animation Computers games and movies Skeleton: intuitive, low dimensional subspace Clip courtesy

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

Animation of 3D surfaces

Animation of 3D surfaces Animation of 3D surfaces 2013-14 Motivations When character animation is controlled by skeleton set of hierarchical joints joints oriented by rotations the character shape still needs to be visible: visible

More information

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics Velocity Interpolation Original image from Foster & Metaxas, 1996 In 2D: For each axis, find the 4 closest face velocity samples: Self-intersecting

More information

Lecture 7: Image Morphing. Idea #2: Align, then cross-disolve. Dog Averaging. Averaging vectors. Idea #1: Cross-Dissolving / Cross-fading

Lecture 7: Image Morphing. Idea #2: Align, then cross-disolve. Dog Averaging. Averaging vectors. Idea #1: Cross-Dissolving / Cross-fading Lecture 7: Image Morphing Averaging vectors v = p + α (q p) = (1 - α) p + α q where α = q - v p α v (1-α) q p and q can be anything: points on a plane (2D) or in space (3D) Colors in RGB or HSV (3D) Whole

More information

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

CS354 Computer Graphics Character Animation and Skinning

CS354 Computer Graphics Character Animation and Skinning Slide Credit: Don Fussell CS354 Computer Graphics Character Animation and Skinning Qixing Huang April 9th 2018 Instance Transformation Start with a prototype object (a symbol) Each appearance of the object

More information

animation computer graphics animation 2009 fabio pellacini 1

animation computer graphics animation 2009 fabio pellacini 1 animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo 12 - Spatial And Skeletal Deformations Space Deformations Space Deformation Displacement function defined on the ambient space Evaluate the function on the points of the shape embedded in the space Twist

More information

View Interpolation for Dynamic Scenes

View Interpolation for Dynamic Scenes EUROGRAPHICS 2002 / I. Navazo Alvaro and Ph. Slusallek (Guest Editors) Short Presentations View Interpolation for Dynamic Scenes Jiangjian Xiao Cen Rao Mubarak Shah Computer Vision Lab School of Electrical

More information

Announcements. Midterms back at end of class ½ lecture and ½ demo in mocap lab. Have you started on the ray tracer? If not, please do due April 10th

Announcements. Midterms back at end of class ½ lecture and ½ demo in mocap lab. Have you started on the ray tracer? If not, please do due April 10th Announcements Midterms back at end of class ½ lecture and ½ demo in mocap lab Have you started on the ray tracer? If not, please do due April 10th 1 Overview of Animation Section Techniques Traditional

More information

Computer Animation and Visualisation. Lecture 3. Motion capture and physically-based animation of characters

Computer Animation and Visualisation. Lecture 3. Motion capture and physically-based animation of characters Computer Animation and Visualisation Lecture 3. Motion capture and physically-based animation of characters Character Animation There are three methods Create them manually Use real human / animal motions

More information

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (1) May 19, 2016 Kenshi Takayama Skeleton-based animation Simple Intuitive Low comp. cost https://www.youtube.com/watch?v=dsonab58qva 2 Representing a pose using

More information

animation projects in digital art animation 2009 fabio pellacini 1

animation projects in digital art animation 2009 fabio pellacini 1 animation projects in digital art animation 2009 fabio pellacini 1 animation shape specification as a function of time projects in digital art animation 2009 fabio pellacini 2 how animation works? flip

More information

Animation, Motion Capture, & Inverse Kinematics

Animation, Motion Capture, & Inverse Kinematics Animation, Motion Capture, & Inverse Kinematics Pop Worksheet! Teams of 2. SOMEONE YOU HAVEN T ALREADY WORKED WITH Enumerate all cases (including rotations) of the 2D version of Marching Cubes, labeling

More information

Character animation Christian Miller CS Fall 2011

Character animation Christian Miller CS Fall 2011 Character animation Christian Miller CS 354 - Fall 2011 Exam 2 grades Avg = 74.4, std. dev. = 14.4, min = 42, max = 99 Characters Everything is important in an animation But people are especially sensitive

More information

Free-form deformation (FFD)

Free-form deformation (FFD) T.D. DeRose, M. Meyer, Harmonic Coordinates. Pixar Technical Memo #06-02 Free-form deformation (FFD) Advanced Computer Animation Techniques Aug-Dec 2014 cesteves@cimat.mx Free-form deformation (FFD) 2d

More information

To Do. History of Computer Animation. These Lectures. 2D and 3D Animation. Computer Animation. Foundations of Computer Graphics (Spring 2010)

To Do. History of Computer Animation. These Lectures. 2D and 3D Animation. Computer Animation. Foundations of Computer Graphics (Spring 2010) Foundations of Computer Graphics (Spring 2010) CS 184, Lecture 24: Animation http://inst.eecs.berkeley.edu/~cs184 To Do Submit HW 4 (today) Start working on HW 5 (can be simple add-on) Many slides courtesy

More information

3D Human Motion Analysis and Manifolds

3D Human Motion Analysis and Manifolds D E P A R T M E N T O F C O M P U T E R S C I E N C E U N I V E R S I T Y O F C O P E N H A G E N 3D Human Motion Analysis and Manifolds Kim Steenstrup Pedersen DIKU Image group and E-Science center Motivation

More information

Rigging / Skinning. based on Taku Komura, Jehee Lee and Charles B.Own's slides

Rigging / Skinning. based on Taku Komura, Jehee Lee and Charles B.Own's slides Rigging / Skinning based on Taku Komura, Jehee Lee and Charles B.Own's slides Skeletal Animation Victoria 2 CSE 872 Dr. Charles B. Owen Advanced Computer Graphics Skinning http://www.youtube.com/watch?

More information

CS 231. Basics of Computer Animation

CS 231. Basics of Computer Animation CS 231 Basics of Computer Animation Animation Techniques Keyframing Motion capture Physics models Keyframe animation Highest degree of control, also difficult Interpolation affects end result Timing must

More information

The 3D rendering pipeline (our version for this class)

The 3D rendering pipeline (our version for this class) The 3D rendering pipeline (our version for this class) 3D models in model coordinates 3D models in world coordinates 2D Polygons in camera coordinates Pixels in image coordinates Scene graph Camera Rasterization

More information

Skeleton Based As-Rigid-As-Possible Volume Modeling

Skeleton Based As-Rigid-As-Possible Volume Modeling Skeleton Based As-Rigid-As-Possible Volume Modeling Computer Science Department, Rutgers University As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There

More information

Deformation Transfer for Triangle Meshes

Deformation Transfer for Triangle Meshes Deformation Transfer for Triangle Meshes a Paper (SIGGRAPH 2004) by Robert W. Sumner & Jovan Popovic presented by Roni Oeschger Deformation Transfer Source deformed Target deformed 1 Outline of my presentation

More information

Synthesizing Realistic Facial Expressions from Photographs

Synthesizing Realistic Facial Expressions from Photographs Synthesizing Realistic Facial Expressions from Photographs 1998 F. Pighin, J Hecker, D. Lischinskiy, R. Szeliskiz and D. H. Salesin University of Washington, The Hebrew University Microsoft Research 1

More information

Motion Synthesis and Editing. Yisheng Chen

Motion Synthesis and Editing. Yisheng Chen Motion Synthesis and Editing Yisheng Chen Overview Data driven motion synthesis automatically generate motion from a motion capture database, offline or interactive User inputs Large, high-dimensional

More information

Image Morphing. Application: Movie Special Effects. Application: Registration /Alignment. Image Cross-Dissolve

Image Morphing. Application: Movie Special Effects. Application: Registration /Alignment. Image Cross-Dissolve Image Morphing Application: Movie Special Effects Morphing is turning one image into another (through a seamless transition) First movies with morphing Willow, 1988 Indiana Jones and the Last Crusade,

More information

计算机图形学. Computer Graphics 刘利刚.

计算机图形学. Computer Graphics 刘利刚. 计算机图形学 Computer Graphics 刘利刚 lgliu@ustc.edu.cn http://staff.ustc.edu.cn/~lgliu Computer Animation Skinning and Enveloping The slide are from Durand from MIT. Before getting started One more word about

More information

Research Article Polygon Morphing and Its Application in Orebody Modeling

Research Article Polygon Morphing and Its Application in Orebody Modeling Mathematical Problems in Engineering Volume 212, Article ID 732365, 9 pages doi:1.1155/212/732365 Research Article Polygon Morphing and Its Application in Orebody Modeling Hacer İlhan and Haşmet Gürçay

More information

Cloth Animation. CENG 732 Computer Animation. Simple Draping. Simple Draping. Simple Draping. Simple Draping

Cloth Animation. CENG 732 Computer Animation. Simple Draping. Simple Draping. Simple Draping. Simple Draping Cloth Animation CENG 732 Computer Animation Cloth animation in Blender Cloth animation in Maya Spring 2006-2007 Week 9 Animating Cloth Motion Capture Draping will occur as a cloth is hanged from a fixed

More information

Skinning Mesh Animations

Skinning Mesh Animations Doug L. James, Christopher D. Twigg Carnegie Mellon University presented by Johannes Schmid 1 Outline Introduction & Motivation Overview & Details Results Discussion 2 Introduction Mesh sequence: 3 General

More information

C O M P U T E R G R A P H I C S. Computer Animation. Guoying Zhao 1 / 66

C O M P U T E R G R A P H I C S. Computer Animation. Guoying Zhao 1 / 66 Computer Animation Guoying Zhao 1 / 66 Basic Elements of Computer Graphics Modeling construct the 3D model of the scene Rendering Render the 3D model, compute the color of each pixel. The color is related

More information

Adding Hand Motion to the Motion Capture Based Character Animation

Adding Hand Motion to the Motion Capture Based Character Animation Adding Hand Motion to the Motion Capture Based Character Animation Ge Jin and James Hahn Computer Science Department, George Washington University, Washington DC 20052 {jinge, hahn}@gwu.edu Abstract. Most

More information

Real-Time Universal Capture Facial Animation with GPU Skin Rendering

Real-Time Universal Capture Facial Animation with GPU Skin Rendering Real-Time Universal Capture Facial Animation with GPU Skin Rendering Meng Yang mengyang@seas.upenn.edu PROJECT ABSTRACT The project implements the real-time skin rendering algorithm presented in [1], and

More information

3D Production Pipeline

3D Production Pipeline Overview 3D Production Pipeline Story Character Design Art Direction Storyboarding Vocal Tracks 3D Animatics Modeling Animation Rendering Effects Compositing Basics : OpenGL, transformation Modeling :

More information

MODELING AND HIERARCHY

MODELING AND HIERARCHY MODELING AND HIERARCHY Introduction Models are abstractions of the world both of the real world in which we live and of virtual worlds that we create with computers. We are all familiar with mathematical

More information

Basics of Design p. 2 Approaching Design as an Artist p. 4 Knowing Your Character p. 4 Making Decisions p. 4 Categories of Design p.

Basics of Design p. 2 Approaching Design as an Artist p. 4 Knowing Your Character p. 4 Making Decisions p. 4 Categories of Design p. Basics of Design p. 2 Approaching Design as an Artist p. 4 Knowing Your Character p. 4 Making Decisions p. 4 Categories of Design p. 6 Realistic Designs p. 6 Stylized Designs p. 7 Designing a Character

More information

MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC. Alexandre Meyer Master Informatique

MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC. Alexandre Meyer Master Informatique 1 MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC Alexandre Meyer Master Informatique Overview: Motion data processing In this course Motion editing

More information

3D model-based human modeling and tracking

3D model-based human modeling and tracking 3D model-based human modeling and tracking André Gagalowicz Projet MIRAGES INRIA - Rocquencourt - Domaine de Voluceau 78153 Le Chesnay Cedex E-Mail : Andre.Gagalowicz@inria.fr FORMER APPROACH 2 Golf-Stream

More information

Why animate humans? Why is this hard? Aspects of the Problem. These lectures. Animation Apreciation 101

Why animate humans? Why is this hard? Aspects of the Problem. These lectures. Animation Apreciation 101 Animation by Example Lecture 1: Introduction, Human Representation Michael Gleicher University of Wisconsin- Madison www.cs.wisc.edu/~gleicher www.cs.wisc.edu/graphics Why animate humans? Movies Television

More information

Overview. Animation is a big topic We will concentrate on character animation as is used in many games today. humans, animals, monsters, robots, etc.

Overview. Animation is a big topic We will concentrate on character animation as is used in many games today. humans, animals, monsters, robots, etc. ANIMATION Overview Animation is a big topic We will concentrate on character animation as is used in many games today humans, animals, monsters, robots, etc. Character Representation A character is represented

More information

Motion Graphs for Character Animation

Motion Graphs for Character Animation Parag Chaudhuri Indian Institute of Technology Bombay Research Promotion Workshop on Introduction to Graph and Geometric Algorithms Thapar University Patiala October 30, 2010 Outline Introduction The Need

More information

Advanced Computer Graphics

Advanced Computer Graphics G22.2274 001, Fall 2009 Advanced Computer Graphics Project details and tools 1 Project Topics Computer Animation Geometric Modeling Computational Photography Image processing 2 Optimization All projects

More information

CS 352: Computer Graphics. Hierarchical Graphics, Modeling, And Animation

CS 352: Computer Graphics. Hierarchical Graphics, Modeling, And Animation CS 352: Computer Graphics Hierarchical Graphics, Modeling, And Animation Chapter 9-2 Overview Modeling Animation Data structures for interactive graphics CSG-tree BSP-tree Quadtrees and Octrees Visibility

More information

2D Shape Deformation Using Nonlinear Least Squares Optimization

2D Shape Deformation Using Nonlinear Least Squares Optimization 2D Shape Deformation Using Nonlinear Least Squares Optimization Paper ID: 20 Abstract This paper presents a novel 2D shape deformation algorithm based on nonlinear least squares optimization. The algorithm

More information

Mesh-Based Inverse Kinematics

Mesh-Based Inverse Kinematics CS468, Wed Nov 9 th 2005 Mesh-Based Inverse Kinematics R. W. Sumner, M. Zwicker, C. Gotsman, J. Popović SIGGRAPH 2005 The problem 1 General approach Learn from experience... 2 As-rigid-as-possible shape

More information

Interactive Deformation with Triangles

Interactive Deformation with Triangles Interactive Deformation with Triangles James Dean Palmer and Ergun Akleman Visualization Sciences Program Texas A&M University Jianer Chen Department of Computer Science Texas A&M University Abstract In

More information

Skeleton-Based Shape Deformation using Simplex Transformations

Skeleton-Based Shape Deformation using Simplex Transformations Computer Graphics International 2006 Skeleton-Based Shape Deformation using Simplex Transformations Han-Bing Yan, Shi-Min Hu and Ralph Martin Outline Motivation Introduction Mesh segmentation using skeleton

More information

The Line of Action: an Intuitive Interface for Expressive Character Posing. Martin Guay, Marie-Paule Cani, Rémi Ronfard

The Line of Action: an Intuitive Interface for Expressive Character Posing. Martin Guay, Marie-Paule Cani, Rémi Ronfard The Line of Action: an Intuitive Interface for Expressive Character Posing Martin Guay, Marie-Paule Cani, Rémi Ronfard LJK, INRIA, Université de Grenoble [S.Lee and J. Buscema, Drawing Comics the Marvel

More information

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Computer Animation Fundamentals Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Lecture 21 6.837 Fall 2001 Conventional Animation Draw each frame of the animation great control

More information

A skeleton/cage hybrid paradigm for digital animation

A skeleton/cage hybrid paradigm for digital animation A skeleton/cage hybrid paradigm for digital animation Fabrizio Corda 1 1 Università degli studi di Cagliari Abstract. Digital animators require simple tools and techniques that allow them to create computer

More information

Image Warping and Morphing. Alexey Tikhonov : Computational Photography Alexei Efros, CMU, Fall 2007

Image Warping and Morphing. Alexey Tikhonov : Computational Photography Alexei Efros, CMU, Fall 2007 Image Warping and Morphing Alexey Tikhonov 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Image Warping in Biology D'Arcy Thompson http://www-groups.dcs.st-and.ac.uk/~history/miscellaneous/darcy.html

More information

CS-184: Computer Graphics

CS-184: Computer Graphics CS-184: Computer Graphics Lecture #19: Motion Capture!!! Prof. James O Brien! University of California, Berkeley!! V2015-S-18-1.0 Today 1 18-MoCap.key - April 8, 2015 Motion Capture 2 2 18-MoCap.key -

More information

Applications. Systems. Motion capture pipeline. Biomechanical analysis. Graphics research

Applications. Systems. Motion capture pipeline. Biomechanical analysis. Graphics research Motion capture Applications Systems Motion capture pipeline Biomechanical analysis Graphics research Applications Computer animation Biomechanics Robotics Cinema Video games Anthropology What is captured?

More information

How does the magic happen?

How does the magic happen? CHARACTER ANIMATION Dr. Andreas Aristidou Image taken from https://marionettestudio.com/ How does the magic happen? 1 Overview Introduction to Character Animation Character Rigging Setup the skeletal system

More information

Mesh Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC

Mesh Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC Mesh Morphing Ligang Liu Graphics&Geometric Computing Lab USTC http://staff.ustc.edu.cn/~lgliu Morphing Given two objects produce sequence of intermediate objects that gradually evolve from one object

More information

CS 231. Deformation simulation (and faces)

CS 231. Deformation simulation (and faces) CS 231 Deformation simulation (and faces) 1 Cloth Simulation deformable surface model Represent cloth model as a triangular or rectangular grid Points of finite mass as vertices Forces or energies of points

More information

CMSC 425: Lecture 10 Skeletal Animation and Skinning

CMSC 425: Lecture 10 Skeletal Animation and Skinning CMSC 425: Lecture 10 Skeletal Animation and Skinning Reading: Chapt 11 of Gregory, Game Engine Architecture. Recap: Last time we introduced the principal elements of skeletal models and discussed forward

More information

Shape Blending Using the Star-Skeleton Representation

Shape Blending Using the Star-Skeleton Representation Shape Blending Using the Star-Skeleton Representation Michal Shapira Ari Rappoport Institute of Computer Science, The Hebrew University of Jerusalem Jerusalem 91904, Israel. arir@cs.huji.ac.il Abstract:

More information

Example-Based Skeleton Extraction. Scott Schaefer Can Yuksel

Example-Based Skeleton Extraction. Scott Schaefer Can Yuksel Example-Based Skeleton Extraction Scott Schaefer Can Yuksel Example-Based Deformation Examples Previous Work Mesh-based Inverse Kinematics [Sumner et al. 2005], [Der et al. 2006] Example-based deformation

More information

Animating Non-Human Characters using Human Motion Capture Data

Animating Non-Human Characters using Human Motion Capture Data Animating Non-Human Characters using Human Motion Capture Data Laurel Bancroft 1 and Jessica Hodgins 2 1 College of Fine Arts, Carngie Mellon University, lbancrof@andrew.cmu.edu 2 Computer Science, Carnegie

More information

Computer Animation. Conventional Animation

Computer Animation. Conventional Animation Animation The term animation has a Greek (animos) as well as roman (anima) root, meaning to bring to life Life: evolution over time Conventional Animation Animation is a technique in which the illusion

More information

Animation Lecture 10 Slide Fall 2003

Animation Lecture 10 Slide Fall 2003 Animation Lecture 10 Slide 1 6.837 Fall 2003 Conventional Animation Draw each frame of the animation great control tedious Reduce burden with cel animation layer keyframe inbetween cel panoramas (Disney

More information

CS 231. Deformation simulation (and faces)

CS 231. Deformation simulation (and faces) CS 231 Deformation simulation (and faces) Deformation BODY Simulation Discretization Spring-mass models difficult to model continuum properties Simple & fast to implement and understand Finite Element

More information

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO Stefan Krauß, Juliane Hüttl SE, SoSe 2011, HU-Berlin PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO 1 Uses of Motion/Performance Capture movies games, virtual environments biomechanics, sports science,

More information

7 Modelling and Animating Human Figures. Chapter 7. Modelling and Animating Human Figures. Department of Computer Science and Engineering 7-1

7 Modelling and Animating Human Figures. Chapter 7. Modelling and Animating Human Figures. Department of Computer Science and Engineering 7-1 Modelling and Animating Human Figures 7-1 Introduction Modeling and animating an articulated figure is one of the most formidable tasks that an animator can be faced with. It is especially challenging

More information

Animation Movie under Autodesk Maya

Animation Movie under Autodesk Maya Animation Movie under Autodesk Maya Julio Manuel Vega Pérez University Rey Juan Carlos, Móstoles (Madrid), Spain March 5, 2009 1 Abstract Computer graphics matured over many years and played an important

More information