Separation of variables: Cartesian coordinates

Size: px
Start display at page:

Download "Separation of variables: Cartesian coordinates"

Transcription

1 Separation of variables: Cartesian coordinates October 3, 15 1 Separation of variables in Cartesian coordinates The separation of variables technique is more powerful than the methods we have studied so far. The approach begins with a simplifying assumption, that the potential may be written as a product or in some cases, the sum) of some simpler functions. The procedure is the same for other coordinate systems. For the case of Cartesian coordinates, the solution is particularly simple. The aplace equation in Cartesian coordiates is V x + V y V x, y, z) + V z 1.1 Step 1: We assume a solution of the form Substitution gives V x, y, z) X x) Y y) Z z) Y Z d X + XZ d Y dy where the partial derivatives now become ordinary. 1. Step : Next, divide by V XY Z. This gives 1 d X X + 1 Y d Y dy + XY d Z dz + 1 Z d Z dz and each terms is now a function of only one variable. Taking the partial derivative of the whole expression with respect to x gives 1 d ) X x X + 1 d ) Y x Y dy + 1 d ) Z x Z dz showing that 1 X d X x 1 X d X ) + + must be independent of x, hence constant. The same holds if we take y- or z-derivatives: 1

2 1 y Y z 1 Z d ) Y dy ) d Z dz This means that each of the three terms must be constant, and the constants must add to zero: 1 d X X a 1 d X X b 1 d Z Z dz c a + b + c 1.3 Step 3: Solve the equations. It is easiest to choose the constants to be in the form ±α ce the solutions are either exponential or usoidal. If we choose a α then and we immediately have the familiar solution, If we choose a +α instead then the equation is and the solution is 1 d X X α d X + α X X A αx + B cos αx d X α X X Ae αx + Be αx Because a + b + c, both signs must occur. If two of the constants are negative giving oscillating solutions) then the third must be positive and will have exponential solutions. If two of the signs are positive then there are two directions with exponential solutions. Then the third constant is negative and has oscillating solutions. Choose the signs so that the solutions match your boundary conditions. Suppose we choose a α b β c α + β Then X A αx + B cos αx

3 and Y C βy + D cos βy while Z satisfies d Z dz α + β ) Z For convenience, define γ α + β, so that d Z dz γ Z It is easy to see that e ±γz both give solutions, so the general solution is the arbitrary linear combination Z E e γz + F e γz It is often more useful to use the symmetric and antisymmetric combinations, Then and our solution is cosh γz eγz + e γz h γz eγz e γz e γz cosh γz + h γz e γz cosh γz h γz Z E cosh γz + h γz) + F cosh γz h γz) E + F ) cosh γz + E F ) h γz Renaming the constants, E E + F and F E F, this is just 1.4 Step 4: Z E cosh γz + F h γz Write the full solution as a linear combination. For any particular values of α and β the solution is V α,β x, y, z) A αx + B cos αx) C βy + D cos βy) E cosh γz + F h γz) Since the aplace equation is linear, we may build the general solution for V as a sum of such solutions for different α and β. The leading constants may be different for each choice of α and β, so we have V x, y, z) α,β A α,β αx + B α,β cos αx) C α,β βy + D α,β cos βy) E α,β cosh γz + F α,β h γz) However, this latter form is too general for most problems. It is simpler to choose some of the constants to satisfy the boundary conditions automatically. Fitting boundary conditions in Cartesian coordinates Suppose we wish to find the potential everywhere inside a conducting cube of side. et the boundary be held at zero potential except for the top of the box, which is held at V. This means that in the x-direction, the potential starts and ends at zero: V, y, z) V, y, z) 3

4 .1 Satisfying the first five conditions The easiest way to satisfy this condition is to choose the usoidal solutions in the x-direction, Then the boundary conditions require for all y and z. Therefore, With B we look at the second condition, X x) A αx + B cos αx V, y, z) X ) Y y) Z z) V, y, z) X ) Y y) Z z) X ) A + B cos B X ) A α + B cos α A α Since A would make the entire potential vanish, we must restrict the possible values of α instead. The boundary condition is satisfied if and only if α nπ α nπ for any integer n. We conclude X n x) A n nπx Notice that the constant A n may depend on n. The y-direction is completely analogous. We require vanishing potential on both sides, for all x and z, and this is achieved only if V x,, z) V x,, z) Y ) Y ) Again, we choose an oscillating solution and we find that Y m y) C m The integer m is independent of the integer n. Finally, we fit the boundary condition for Z z). Remembering that the solution in this direction must be exponential, we write Z E cosh γz + F h γz 4

5 where γ + nπ ) + mπ ) + π n + m. With the potential on the top of the box equal to V, the boundary conditions for z are V x, y, ) V x, y, ) V Since these relations hold for all x and y, they must be satisfied by our choice of Z ) and Z ). The z condition is completely satisfied by This leaves our complete solution in the form Z ) E V x, y, z) A n nπx C m E m,n h γz A n C m E m,n ) nπx A nm nπx h γz h γz where it is sufficient to set A nm A n C m E m,n ce we only have a gle overall constant for each pair m, n.. The final solution Now comes the tricky part. We have one final boundary condition, V x, y, ) V, and we no longer have the freedom to satisfy it by choog γ. Instead, we must choose the constants A mn so that V A nm h γ) nπx for all x and all y. This is a double Fourier series. To solve, we use the orthogonality property of the e function see below for the explicit integrations), ˆ n 1πx n πx δ n 1n Consider the x-direction first. Multiply both sides of the boundary condition by x from to, ˆ V x A nm h γ) ˆ nπx x The left side is easy to integrate in this example!), while on the right we use orthogonality: V cos x A nm h γ) δ kn and integrate x 5

6 Performing the sum over all n, only one term survives, V cos + V cos V 1 1) k) m1 m1 Now repeat the procedure for the y direction. Multiply by jπy V V V 1 1) k) ˆ 1 1) k) [ jπy cos jπ jπy dy ] m1 A km h ) k + m A km h ) k + m and integrate, A km h k + m ) m1 ) A kj h k + j 1 1) k) jπ ) cos jπ jπ 4V j 1 1) k) 1 1) j) A kj h k + j ˆ ) A km h k + m ) δ jm jπy dy Since we can carry out these steps for any values of j and k, we have found all of the coefficients A kj, A kj Substituting these constant!) values into the potential, 4V 1 j h 1) k) 1 1) j) k + j V x, y, z) 4V mnπ h n + m ) 1 1)n ) 1 1) m ) nπx h γz This simplifies to sums over the odd terms ce and we may write This is our final potential. V x, y, z) 16V π 1 1) n ) nodd modd 1 mn { n even n odd h n + m z h n + m nπx.3 Orthogonality of e functions We evaluate the integrals ˆ n 1πx n πx 6

7 First, when n 1 and n are different, we use the sum and difference formulas to write ˆ n 1πx n πx 1 ˆ [ n1 πx cos 1 [ πx π n 1 n ) 1 n ) πx n1 πx cos ) n 1 n ) π n 1 n ) π n 1 n )) + n )] πx πx ) ] π n 1 + n ) n 1 + n ) π n 1 + n ) π n 1 + n )) ) π n 1 n ) π n 1 + so the integral vanishes. However, when n 1 n, ˆ n 1πx n πx ˆ n 1πx ˆ ˆ 1 cos n 1πx 1 cos n ) 1πx [ x n 1 π n ] 1πx + n ) 1πx We summarize these integrals by writing ˆ n 1πx n πx δ n 1n 3 Example Consider the same cube as in the example above, and let V on the sides and bottom as before, but suppose the potential on the top is V x, y, ) V πx 4 ) πx 3 3 The steps are the same as above up to the final integration. At z, we must satisfy V πx 4 ) πx 3 3 A nm h γ) nπx and the Fourier series in the y-direction is found as above to reduce this to V 1 1) k) πx 4 ) πx 3 3 n1 A nk h γ) nπx 7

8 At this point we could multiply by lx and integrate. However, in this case we may write the left hand side ug trigonometric identities as Since the functions nπx πx 4 πx πx 3 are mutually orthogonal, we immediately see that V 1 1) k) 3πx 3 n1 requires all of the A nk to vanish except for n 3. For A 3k, we have and the unique solution for the potential is A nk h γ) nπx V 1 1) k) 3πx A 3k h γ 3πx 3 V A 3k 1 1) k) 3 h γ V x, y, z) m odd 4V h γz 3πx 3mπ h γ This simplification works any time the potential on the left can be easily written in terms of Fourier series. The same approach works in other coordinate systems when the potential on a given boundary can be written in terms of the orthogonal functions of the solution. 4 Exercise Repeat the problem of a cube, but this time center the cube in the z-direction and let both the top and the bottom have potential V. Now the boundary conditions are: V, y, z) V, y, z) V x,, z) V x,, z) V x, y, ) V V x, y, + ) V Notice that cosh γz is symmetrical in z, so that cosh γz) cosh γz). Suggestion: work through all the details rather than just copying the calculations above. 8

Is the statement sufficient? If both x and y are odd, is xy odd? 1) xy 2 < 0. Odds & Evens. Positives & Negatives. Answer: Yes, xy is odd

Is the statement sufficient? If both x and y are odd, is xy odd? 1) xy 2 < 0. Odds & Evens. Positives & Negatives. Answer: Yes, xy is odd Is the statement sufficient? If both x and y are odd, is xy odd? Is x < 0? 1) xy 2 < 0 Positives & Negatives Answer: Yes, xy is odd Odd numbers can be represented as 2m + 1 or 2n + 1, where m and n are

More information

Trigonometric Fourier series

Trigonometric Fourier series Trigonometric Fourier series Recall that two vectors are orthogonal if their inner product is zero Suppose we consider all functions with at most a finite number of discontinuities ined on the interval

More information

Parallel and perspective projections such as used in representing 3d images.

Parallel and perspective projections such as used in representing 3d images. Chapter 5 Rotations and projections In this chapter we discuss Rotations Parallel and perspective projections such as used in representing 3d images. Using coordinates and matrices, parallel projections

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

( 3) ( 4 ) 1. Exponents and Radicals ( ) ( xy) 1. MATH 102 College Algebra. still holds when m = n, we are led to the result

( 3) ( 4 ) 1. Exponents and Radicals ( ) ( xy) 1. MATH 102 College Algebra. still holds when m = n, we are led to the result Exponents and Radicals ZERO & NEGATIVE EXPONENTS If we assume that the relation still holds when m = n, we are led to the result m m a m n 0 a = a = a. Consequently, = 1, a 0 n n a a a 0 = 1, a 0. Then

More information

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k I.f Tangent Planes and Normal Lines Again we begin by: Recall: (1) Given two vectors A = a 1 i + a 2 j + a 3 k, B = b 1 i + b 2 j + b 3 k then A B is a vector perpendicular to both A and B. Then length

More information

5-2 Verifying Trigonometric Identities

5-2 Verifying Trigonometric Identities 5- Verifying Trigonometric Identities Verify each identity. 1. (sec 1) cos = sin 3. sin sin 3 = sin cos 4 5. = cot 7. = cot 9. + tan = sec Page 1 5- Verifying Trigonometric Identities 7. = cot 9. + tan

More information

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014

Section 4.2 selected answers Math 131 Multivariate Calculus D Joyce, Spring 2014 4. Determine the nature of the critical points of Section 4. selected answers Math 11 Multivariate Calculus D Joyce, Spring 014 Exercises from section 4.: 6, 1 16.. Determine the nature of the critical

More information

used to describe all aspects of imaging process: input scene f, imaging system O, and output image g.

used to describe all aspects of imaging process: input scene f, imaging system O, and output image g. SIMG-716 Linear Imaging Mathematics I 03 1 Representations of Functions 1.1 Functions Function: rule that assigns one numerical value (dependent variable) to each of a set of other numerical values (independent

More information

used to describe all aspects of imaging process: input scene f, imaging system O, and output image g.

used to describe all aspects of imaging process: input scene f, imaging system O, and output image g. SIMG-716 Linear Imaging Mathematics I 03 1 Representations of Functions 1.1 Functions Function: rule that assigns one numerical value (dependent variable) to each of a set of other numerical values (independent

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

MATH115. Polar Coordinate System and Polar Graphs. Paolo Lorenzo Bautista. June 14, De La Salle University

MATH115. Polar Coordinate System and Polar Graphs. Paolo Lorenzo Bautista. June 14, De La Salle University MATH115 Polar Coordinate System and Paolo Lorenzo Bautista De La Salle University June 14, 2014 PLBautista (DLSU) MATH115 June 14, 2014 1 / 30 Polar Coordinates and PLBautista (DLSU) MATH115 June 14, 2014

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5)

521493S Computer Graphics Exercise 2 Solution (Chapters 4-5) 5493S Computer Graphics Exercise Solution (Chapters 4-5). Given two nonparallel, three-dimensional vectors u and v, how can we form an orthogonal coordinate system in which u is one of the basis vectors?

More information

INTRODUCTION TO THE FAST FOURIER TRANSFORM ALGORITHM

INTRODUCTION TO THE FAST FOURIER TRANSFORM ALGORITHM Course Outline Course Outline INTRODUCTION TO THE FAST FOURIER TRANSFORM ALGORITHM Introduction Fast Fourier Transforms have revolutionized digital signal processing What is the FFT? A collection of tricks

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

The Humble Tetrahedron

The Humble Tetrahedron The Humble Tetrahedron C. Godsalve email:seagods@hotmail.com November 4, 010 In this article, it is assumed that the reader understands Cartesian coordinates, basic vectors, trigonometry, and a bit of

More information

4 Generating functions in two variables

4 Generating functions in two variables 4 Generating functions in two variables (Wilf, sections.5.6 and 3.4 3.7) Definition. Let a(n, m) (n, m 0) be a function of two integer variables. The 2-variable generating function of a(n, m) is F (x,

More information

Student Outcomes. Classwork. Discussion (10 minutes)

Student Outcomes. Classwork. Discussion (10 minutes) Student Outcomes Students know the definition of a number raised to a negative exponent. Students simplify and write equivalent expressions that contain negative exponents. Classwork Discussion (10 minutes)

More information

Interpolation and Splines

Interpolation and Splines Interpolation and Splines Anna Gryboś October 23, 27 1 Problem setting Many of physical phenomenona are described by the functions that we don t know exactly. Often we can calculate or measure the values

More information

in this web service Cambridge University Press

in this web service Cambridge University Press 978-0-51-85748- - Switching and Finite Automata Theory, Third Edition Part 1 Preliminaries 978-0-51-85748- - Switching and Finite Automata Theory, Third Edition CHAPTER 1 Number systems and codes This

More information

CS452/552; EE465/505. Geometry Transformations

CS452/552; EE465/505. Geometry Transformations CS452/552; EE465/505 Geometry Transformations 1-26-15 Outline! Geometry: scalars, points & vectors! Transformations Read: Angel, Chapter 4 (study cube.html/cube.js example) Appendix B: Spaces (vector,

More information

Harmonic Spline Series Representation of Scaling Functions

Harmonic Spline Series Representation of Scaling Functions Harmonic Spline Series Representation of Scaling Functions Thierry Blu and Michael Unser Biomedical Imaging Group, STI/BIO-E, BM 4.34 Swiss Federal Institute of Technology, Lausanne CH-5 Lausanne-EPFL,

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Lecture 8: Jointly distributed random variables

Lecture 8: Jointly distributed random variables Lecture : Jointly distributed random variables Random Vectors and Joint Probability Distributions Definition: Random Vector. An n-dimensional random vector, denoted as Z = (Z, Z,, Z n ), is a function

More information

C O M P U T E R G R A P H I C S. Computer Graphics. Three-Dimensional Graphics I. Guoying Zhao 1 / 52

C O M P U T E R G R A P H I C S. Computer Graphics. Three-Dimensional Graphics I. Guoying Zhao 1 / 52 Computer Graphics Three-Dimensional Graphics I Guoying Zhao 1 / 52 Geometry Guoying Zhao 2 / 52 Objectives Introduce the elements of geometry Scalars Vectors Points Develop mathematical operations among

More information

DRAFT: Mathematical Background for Three-Dimensional Computer Graphics. Jonathan R. Senning Gordon College

DRAFT: Mathematical Background for Three-Dimensional Computer Graphics. Jonathan R. Senning Gordon College DRAFT: Mathematical Background for Three-Dimensional Computer Graphics Jonathan R. Senning Gordon College September 2006 ii Contents Introduction 2 Affine Geometry 3 2. Affine Space...................................

More information

The transition: Each student passes half his store of candies to the right. students with an odd number of candies eat one.

The transition: Each student passes half his store of candies to the right. students with an odd number of candies eat one. Kate s problem: The students are distributed around a circular table The teacher distributes candies to all the students, so that each student has an even number of candies The transition: Each student

More information

Chapter 1. Math review. 1.1 Some sets

Chapter 1. Math review. 1.1 Some sets Chapter 1 Math review This book assumes that you understood precalculus when you took it. So you used to know how to do things like factoring polynomials, solving high school geometry problems, using trigonometric

More information

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Linear Equations and Straight Lines 2 of 71 Outline 1.1 Coordinate Systems and Graphs 1.4 The Slope of a Straight Line 1.3 The Intersection Point of a Pair of Lines 1.2 Linear Inequalities 1.5

More information

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces Chapter 6 Curves and Surfaces In Chapter 2 a plane is defined as the zero set of a linear function in R 3. It is expected a surface is the zero set of a differentiable function in R n. To motivate, graphs

More information

Math Quiz 2 - Tuesday, October 4 Your name here:

Math Quiz 2 - Tuesday, October 4 Your name here: Math 241 - Quiz 2 - Tuesday, October 4 Your name here: 1. Let f (x, y) =sin x sin y. (a) Find r f (x, y). (1 point) r f (x, y) =hcos x sin y, sin x cos yi (b) Find all critical points of f and use the

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Introduction to Complex Analysis

Introduction to Complex Analysis Introduction to Complex Analysis George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 413 George Voutsadakis (LSSU) Complex Analysis October 2014 1 / 50 Outline

More information

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 2 Section 15 Dividing Expressions

Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 2 Section 15 Dividing Expressions Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 2 Please watch Section 15 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item67.cfm

More information

A is any set of ordered pairs of real numbers. This is a set of ordered pairs of real numbers, so it is a.

A is any set of ordered pairs of real numbers. This is a set of ordered pairs of real numbers, so it is a. Fry Texas A&M University!! Math 150!! Chapter 3!! Fall 2014! 1 Chapter 3A Rectangular Coordinate System A is any set of ordered pairs of real numbers. A relation can be finite: {(-3, 1), (-3, -1), (0,

More information

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let

Polar Coordinates. Calculus 2 Lia Vas. If P = (x, y) is a point in the xy-plane and O denotes the origin, let Calculus Lia Vas Polar Coordinates If P = (x, y) is a point in the xy-plane and O denotes the origin, let r denote the distance from the origin O to the point P = (x, y). Thus, x + y = r ; θ be the angle

More information

Partial Derivatives (Online)

Partial Derivatives (Online) 7in x 10in Felder c04_online.tex V3 - January 21, 2015 9:44 A.M. Page 1 CHAPTER 4 Partial Derivatives (Online) 4.7 Tangent Plane Approximations and Power Series It is often helpful to use a linear approximation

More information

When implementing FEM for solving two-dimensional partial differential equations, integrals of the form

When implementing FEM for solving two-dimensional partial differential equations, integrals of the form Quadrature Formulas in Two Dimensions Math 57 - Finite Element Method Section, Spring Shaozhong Deng, PhD (shaodeng@unccedu Dept of Mathematics and Statistics, UNC at Charlotte When implementing FEM for

More information

SAT Timed Section*: Math

SAT Timed Section*: Math SAT Timed Section*: Math *These practice questions are designed to be taken within the specified time period without interruption in order to simulate an actual SAT section as much as possible. Time --

More information

Math Triple Integrals in Cylindrical Coordinates

Math Triple Integrals in Cylindrical Coordinates Math 213 - Triple Integrals in Cylindrical Coordinates Peter A. Perry University of Kentucky November 2, 218 Homework Re-read section 15.7 Work on section 15.7, problems 1-13 (odd), 17-21 (odd) from Stewart

More information

MATH 2400, Analytic Geometry and Calculus 3

MATH 2400, Analytic Geometry and Calculus 3 MATH 2400, Analytic Geometry and Calculus 3 List of important Definitions and Theorems 1 Foundations Definition 1. By a function f one understands a mathematical object consisting of (i) a set X, called

More information

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y.

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y. 2 Second Derivatives As we have seen, a function f (x, y) of two variables has four different partial derivatives: (x, y), (x, y), f yx (x, y), (x, y) It is convenient to gather all four of these into

More information

Worksheet 3.2: Double Integrals in Polar Coordinates

Worksheet 3.2: Double Integrals in Polar Coordinates Boise State Math 75 (Ultman) Worksheet 3.: ouble Integrals in Polar Coordinates From the Toolbox (what you need from previous classes): Trig/Calc II: Convert equations in x and y into r and θ, using the

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints: Math 9 (Fall 7) Calculus III Solution #5. Find the minimum and maximum values of the following functions f under the given constraints: (a) f(x, y) 4x + 6y, x + y ; (b) f(x, y) x y, x + y 6. Solution:

More information

Analytical Solid Geometry

Analytical Solid Geometry Analytical Solid Geometry Distance formula(without proof) Division Formula Direction cosines Direction ratios Planes Straight lines Books Higher Engineering Mathematics By B S Grewal Higher Engineering

More information

PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017)

PS Geometric Modeling Homework Assignment Sheet I (Due 20-Oct-2017) Homework Assignment Sheet I (Due 20-Oct-2017) Assignment 1 Let n N and A be a finite set of cardinality n = A. By definition, a permutation of A is a bijective function from A to A. Prove that there exist

More information

Section 7.6 Graphs of the Sine and Cosine Functions

Section 7.6 Graphs of the Sine and Cosine Functions Section 7.6 Graphs of the Sine and Cosine Functions We are going to learn how to graph the sine and cosine functions on the xy-plane. Just like with any other function, it is easy to do by plotting points.

More information

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 211 Riemann Sum Approach Suppose we wish to integrate w f (x, y, z), a continuous function, on the box-shaped region

More information

Digital Signal Processing. Soma Biswas

Digital Signal Processing. Soma Biswas Digital Signal Processing Soma Biswas 2017 Partial credit for slides: Dr. Manojit Pramanik Outline What is FFT? Types of FFT covered in this lecture Decimation in Time (DIT) Decimation in Frequency (DIF)

More information

Analytical Solid Geometry

Analytical Solid Geometry Analytical Solid Geometry Distance formula(without proof) Division Formula Direction cosines Direction ratios Planes Straight lines Books Higher Engineering Mathematics by B S Grewal Higher Engineering

More information

SPECIAL TECHNIQUES-II

SPECIAL TECHNIQUES-II SPECIAL TECHNIQUES-II Lecture 19: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Method of Images for a spherical conductor Example :A dipole near aconducting sphere The

More information

6.001 Notes: Section 6.1

6.001 Notes: Section 6.1 6.001 Notes: Section 6.1 Slide 6.1.1 When we first starting talking about Scheme expressions, you may recall we said that (almost) every Scheme expression had three components, a syntax (legal ways of

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z

Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ x + 5y + 7z 9x + 3y + 11z Basic Linear Algebra Linear algebra deals with matrixes: two-dimensional arrays of values. Here s a matrix: [ 1 5 ] 7 9 3 11 Often matrices are used to describe in a simpler way a series of linear equations.

More information

Laminates can be classified according to the fiber orientation.

Laminates can be classified according to the fiber orientation. Laminates Definition A laminate is an assemblage of individual lamina or plies bonded together normal to their principal plane (i.e., plies are stacked and bonded in their thickness direction). Laminates

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

Grade 9 Surface Area and Volume

Grade 9 Surface Area and Volume ID : ae-9-surface-area-and-volume [1] Grade 9 Surface Area and Volume For more such worksheets visit www.edugain.com Answer the questions (1) The radius of a cylinder is halved and the height is tripled.

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 351 George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 1 /

More information

Review of Trigonometry

Review of Trigonometry Worksheet 8 Properties of Trigonometric Functions Section Review of Trigonometry This section reviews some of the material covered in Worksheets 8, and The reader should be familiar with the trig ratios,

More information

Visualisation Pipeline : The Virtual Camera

Visualisation Pipeline : The Virtual Camera Visualisation Pipeline : The Virtual Camera The Graphics Pipeline 3D Pipeline The Virtual Camera The Camera is defined by using a parallelepiped as a view volume with two of the walls used as the near

More information

A proposal to add special mathematical functions according to the ISO/IEC :2009 standard

A proposal to add special mathematical functions according to the ISO/IEC :2009 standard A proposal to add special mathematical functions according to the ISO/IEC 8-2:29 standard Document number: N3494 Version: 1. Date: 212-12-19 Vincent Reverdy (vince.rev@gmail.com) Laboratory Universe and

More information

Lesson 20: Every Line is a Graph of a Linear Equation

Lesson 20: Every Line is a Graph of a Linear Equation Student Outcomes Students know that any non vertical line is the graph of a linear equation in the form of, where is a constant. Students write the equation that represents the graph of a line. Lesson

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS. 5! x7 7! + = 6! + = 4! x6

SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS. 5! x7 7! + = 6! + = 4! x6 SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS PO-LAM YUNG We defined earlier the sine cosine by the following series: sin x = x x3 3! + x5 5! x7 7! + = k=0 cos x = 1 x! + x4 4! x6 6! + = k=0 ( 1) k x k+1

More information

Constrained Optimization

Constrained Optimization Constrained Optimization Dudley Cooke Trinity College Dublin Dudley Cooke (Trinity College Dublin) Constrained Optimization 1 / 46 EC2040 Topic 5 - Constrained Optimization Reading 1 Chapters 12.1-12.3

More information

Geometry. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Geometry. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Geometry Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Introduce the elements of geometry - Scalars - Vectors - Points

More information

Lecture 2 Algorithms with numbers

Lecture 2 Algorithms with numbers Advanced Algorithms Floriano Zini Free University of Bozen-Bolzano Faculty of Computer Science Academic Year 2013-2014 Lecture 2 Algorithms with numbers 1 RSA Algorithm Why does RSA work? RSA is based

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V Boise State Math 275 (Ultman) Worksheet 3.4: Triple Integrals in Cylindrical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

x 16 d( x) 16 n( x) 36 d( x) zeros: x 2 36 = 0 x 2 = 36 x = ±6 Section Yes. Since 1 is a polynomial (of degree 0), P(x) =

x 16 d( x) 16 n( x) 36 d( x) zeros: x 2 36 = 0 x 2 = 36 x = ±6 Section Yes. Since 1 is a polynomial (of degree 0), P(x) = 9 CHAPTER POLYNOMIAL AND RATIONAL FUNCTIONS Section -. Yes. Since is a polynomial (of degree 0), P() P( ) is a rational function if P() is a polynomial.. A vertical asymptote is a vertical line a that

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

2 Unit Bridging Course Day 10

2 Unit Bridging Course Day 10 1 / 31 Unit Bridging Course Day 10 Circular Functions III The cosine function, identities and derivatives Clinton Boys / 31 The cosine function The cosine function, abbreviated to cos, is very similar

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

CS446: Machine Learning Fall Problem Set 4. Handed Out: October 17, 2013 Due: October 31 th, w T x i w

CS446: Machine Learning Fall Problem Set 4. Handed Out: October 17, 2013 Due: October 31 th, w T x i w CS446: Machine Learning Fall 2013 Problem Set 4 Handed Out: October 17, 2013 Due: October 31 th, 2013 Feel free to talk to other members of the class in doing the homework. I am more concerned that you

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas a t e a t i c a s PROBLEMS, CALCULUS I, st COURSE. FUNCTIONS OF A REAL VARIABLE BACHELOR IN: Audiovisual System

More information

Bernstein-Bezier Splines on the Unit Sphere. Victoria Baramidze. Department of Mathematics. Western Illinois University

Bernstein-Bezier Splines on the Unit Sphere. Victoria Baramidze. Department of Mathematics. Western Illinois University Bernstein-Bezier Splines on the Unit Sphere Victoria Baramidze Department of Mathematics Western Illinois University ABSTRACT I will introduce scattered data fitting problems on the sphere and discuss

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Section A Arithmetic ( 5) Exercise A

Section A Arithmetic ( 5) Exercise A Section A Arithmetic In the non-calculator section of the examination there might be times when you need to work with quite awkward numbers quickly and accurately. In particular you must be very familiar

More information

1.5 Equations of Lines and Planes in 3-D

1.5 Equations of Lines and Planes in 3-D 1.5. EQUATIONS OF LINES AND PLANES IN 3-D 55 Figure 1.16: Line through P 0 parallel to v 1.5 Equations of Lines and Planes in 3-D Recall that given a point P = (a, b, c), one can draw a vector from the

More information

14.4: Tangent Planes and Linear Approximations

14.4: Tangent Planes and Linear Approximations 14.4: Tangent Planes and Linear Approximations Marius Ionescu October 15, 2012 Marius Ionescu () 14.4: Tangent Planes and Linear Approximations October 15, 2012 1 / 13 Tangent Planes Marius Ionescu ()

More information

Section 17.7: Surface Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 4 Lecture. 4.1 Riemann definition

Section 17.7: Surface Integrals. 1 Objectives. 2 Assignments. 3 Maple Commands. 4 Lecture. 4.1 Riemann definition ection 17.7: urface Integrals 1 Objectives 1. Compute surface integrals of function of three variables. Assignments 1. Read ection 17.7. Problems: 5,7,11,1 3. Challenge: 17,3 4. Read ection 17.4 3 Maple

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

Basics of Computational Geometry

Basics of Computational Geometry Basics of Computational Geometry Nadeem Mohsin October 12, 2013 1 Contents This handout covers the basic concepts of computational geometry. Rather than exhaustively covering all the algorithms, it deals

More information

8-1 Simple Trigonometric Equations. Objective: To solve simple Trigonometric Equations and apply them

8-1 Simple Trigonometric Equations. Objective: To solve simple Trigonometric Equations and apply them Warm Up Use your knowledge of UC to find at least one value for q. 1) sin θ = 1 2 2) cos θ = 3 2 3) tan θ = 1 State as many angles as you can that are referenced by each: 1) 30 2) π 3 3) 0.65 radians Useful

More information

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F:

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: CS 177 Homework 1 Julian Panetta October, 009 1 Euler Characteristic 1.1 Polyhedral Formula We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: V E + F = 1 First,

More information

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations.

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations. Objectives Sketch the graph of a curve given by a set of parametric equations. Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve. Understand

More information

Objectives. Materials

Objectives. Materials Activity 13 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the

More information

21. Efficient and fast numerical methods to compute fluid flows in the geophysical β plane

21. Efficient and fast numerical methods to compute fluid flows in the geophysical β plane 12th International Conference on Domain Decomposition Methods Editors: Tony Chan, Takashi Kako, Hideo Kawarada, Olivier Pironneau, c 2001 DDM.org 21. Efficient and fast numerical methods to compute fluid

More information

Multiple Angle and Product-to-Sum Formulas. Multiple-Angle Formulas. Double-Angle Formulas. sin 2u 2 sin u cos u. 2 tan u 1 tan 2 u. tan 2u.

Multiple Angle and Product-to-Sum Formulas. Multiple-Angle Formulas. Double-Angle Formulas. sin 2u 2 sin u cos u. 2 tan u 1 tan 2 u. tan 2u. 3330_0505.qxd 1/5/05 9:06 AM Page 407 Section 5.5 Multiple-Angle and Product-to-Sum Formulas 407 5.5 Multiple Angle and Product-to-Sum Formulas What you should learn Use multiple-angle formulas to rewrite

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

Section 5.1 Rules for Exponents

Section 5.1 Rules for Exponents Objectives Section 5.1 Rules for Exponents Identify bases and exponents Multiply exponential expressions that have like bases Divide exponential expressions that have like bases Raise exponential expressions

More information