Rendering Algebraic Surfaces CS348B Final Project

Size: px
Start display at page:

Download "Rendering Algebraic Surfaces CS348B Final Project"

Transcription

1 Rendering Algebraic Surfaces CS348B Final Project Gennadiy Chuyeshov Overview This project is devoted to the visualization of a class consisting of implicit algebraic surfaces in three-dimensional space, i.e. the surfaces given by an equation of the form,, 0 where is polynomial with real coefficients. Due to the idea of ray tracing algorithm instead of this equation we can consider the equation of intersection between the ray and the surface which can be transformed to the algebraic equation 0, where is the polynomial of a single variable constructed from. Implicit Surfaces Let f be a continuous scalar function defined on a domain. The implicit surface generated by the function is the locus of points at which the function has zero value, i.e.,, :,, 0 As mentioned in the previous subsection to nd a ray-surface intersection we must put the parametric representation for the ray into the equation of the surface, namely,, 0. This yields the following equation,, 0 with respect to a single variable. Thus on the semi-axis we have the equation 0; where,,. The next step is to determine whether there exists a root of this equation, because if this equation has no real roots then the ray does not intersect the surface. It is natural to restrict the visualization of a surface to some volume which represents a part of the real space. Since we use convex extents, a ray may intersect it through an interval only and it is quite easy to calculate the end points of this interval, and where. Surely, the interval, depends on the parameters of the ray,,,,,. The task is now to check whether this ray intersects the surface. If the ray intersects the surface, then the parameter of the intersection point lies between and. Assume that,,, are roots of equation. It is clear that to visualize the surface we should find the smallest root from the interval,. Having found this root we can calculate the coordinates,, of the point on the surface and a normal vector at this point by the following formula,,,,,,,,,, Algebraic Surfaces As it was mentioned in the overview an algebraic surface is the surface given by an equation of the form,, 0 1

2 where is a polynomial with real coefficients. It can be written as,,, where and deg is the degree of the polynomial. Plugging in the parametric representation of the ray into this equation we obtain the polynomial,, of a single variable t with real coefficients. Thus we get the equation 0,, where, is the ray-extent intersection interval. According to previous section the problem is now to find, i.e. to find the smallest root of the equation on the specified interval. We solve this problem in two steps: 1. Root Isolation. This step allows us to find an interval (if it exists), where is isolated, i.e. an interval, where there is the only root. 2. Root-Finding calculates a prescribed approximation of in an isolating interval (provided this interval exists and we have found it). Root Isolation To isolate the root we involve Descartes' Sign Rule [1] a method of determining the maximum number of positive real roots of a polynomial. Let,, be a sequence of real numbers and let,, be the subsequence of non-zero elements of. Then the number var of variations in is the number of integers such that 0 and 0. Let be a real polynomial. It is uniquely determined by a string of its coefficients,,. We define var as var. Descartes' Sign Rule asserts that the number of positive real roots (taking into account their multiplicity) of a real polynomial is equal to var 2 where is a non-negative integer. In other words, a number of allowable roots can be var, var 2, var 4 and so on. We emphasize that this rule is applicable on the positive semi-axis. In the implementation of Descartes' Sign Rule in our problem we should first transform the polynomial to another one, which is defined on but not on,. Below for the sake of simplicity we denote,. We first consider the polynomial If α,, α are the roots of such that α a, b for 1 i k, then,, are the roots of from the interval 0,1. In order to avoid the consideration of the roots which are greater than one we further transform into the polynomial

3 It is easy to see that,, are the roots of from the semi-interval, if and only if 1,, 1 are the positive real roots of. We consider the following cases. 1. The case when var 0. In this case according Descartes' Sign Rule there is no positive roots of. Hence there are no roots of on,. It means that the ray does not intersect the surface. 2. The case when var 1. We obviously have a single positive root of, which implies that has only one root on,. 3. The case when 2. We cannot determine the exact number of roots, but we can bisect, and consider two subintervals separately. Thus after a number of steps we can determine whether there exist any roots of in, and if they exist, find an interval containing the smallest one. Root Finding To find a prescribed approximation of we use the Dekker-Brent method as it was described in [2]. The Dekker-Brent method combines the bisection and some more advanced root-finding algorithm (either quadratic interpolation or secant). On each step this method operates with three abscissas, and, where is the latest and the closest approximation of the root, is the previous approximation, and is either previous or even an older approximation (it is possible that ). Using the values of the polynomial in,, and and involving either the inverse quadratic interpolation method (if ) or the secant method (when ), we obtain an approximation of the root. The key of the Dekker-Brent method is that we take as the next approximation of the root only if the following criteria hold 3 4 and 1 2 Otherwise instead of we take following the bisection method. Then we take new, and we keep the same if 0 otherwise we take. We stop our process when or 4 max, 1 where is the machine precision and is the prescribed tolerance. Ideally, to find the best approximation for the root we should take, but in our case we empirically obtain the tolerance basing on the quality of image. As it is mentioned in [2] numerous computer experiments have shown that this method has a faster convergence in comparison with the customary methods. The point is that Dekker-Brent method combines the sureness and the universality of the standard bisection method with relatively fast convergence of the secant or the quadratic interpolation method. Implementation The algorithm was implemented within pbrt physically based ray tracer [4]. I created the new type of object algebraicsurface which makes it possible to specify the equation of an algebraic surface directly in the pbrt-script file as follows: Shape "algebraicsurface" "integer elements" [ ] "float coefs" [ ] "float xmin" [-1.5] "float xmax" [1.5] 3

4 "float ymin" [-1.5] "float ymax" [1.5] "float zmin" [-1.5] "float zmax" [1.5] In this example I specified a unit sphere centered at the origin and placed into a bounding cube with the side of length 3. The elements array of triples of integers describes which particular components are present in the equation (in this example we have,,, and ); coefs array of floats contains the coefficients for every component we specified in the elements array. Thus, the equation we specified here is or 1. 4

5 Images Kiss Surface [4] 1 Tooth Surface [5] 5

6 Tanglecube [6] Chmutov Surface of 6 th order [7]

7 Chmutov Surface of 6 th order, close-up render References [1] Collins G. E., Akritas A. G., Polynomial Real Root Isolation Using Descarte's Rule of Signs. Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computations, pp , [2] Forsythe G. E., Malcolm M. A., Moler C. B., Computer Methods for Mathematical Computations. Prentice-Hall, Englewood Cliffs, NJ, [3] Hanrahan P., Ray Tracing Algebraic Surfaces. Computer Graphics, 17(3), pp 83-90, 1983 (Proceedings of the SIGGRAPH 83). [4] Pharr M., Humphreys G., Physically Based Rendering, Morgan Kaufmann, San Francisco, CA, [5] Kiss Surface from Wolfram MathWorld. [6] Tooth Surface from Wolfram MathWorld. [7] Tanglecube from Wolfram MathWorld. [8] Chmutov Surface from Wolfram MathWorld. 7

EXAMPLE. 1. Enter y = x 2 + 8x + 9.

EXAMPLE. 1. Enter y = x 2 + 8x + 9. VI. FINDING INTERCEPTS OF GRAPHS As we have seen, TRACE allows us to find a specific point on the graph. Thus TRACE can be used to solve a number of important problems in algebra. For example, it can be

More information

Robust Ray Intersection with Interval Arithmetic

Robust Ray Intersection with Interval Arithmetic Robust Ray Intersection with Interval Arithmetic Don P. Mitchell AT&T Bell Laboratories Murray Hill, NJ 07974 1. Abstract This paper discusses a very general root-isolation algorithm, based on interval

More information

2.3. Graphing Calculators; Solving Equations and Inequalities Graphically

2.3. Graphing Calculators; Solving Equations and Inequalities Graphically 2.3 Graphing Calculators; Solving Equations and Inequalities Graphically Solving Equations and Inequalities Graphically To do this, we must first draw a graph using a graphing device, this is your TI-83/84

More information

Lesson 8 - Practice Problems

Lesson 8 - Practice Problems Lesson 8 - Practice Problems Section 8.1: A Case for the Quadratic Formula 1. For each quadratic equation below, show a graph in the space provided and circle the number and type of solution(s) to that

More information

Section 1.6. Inverse Functions

Section 1.6. Inverse Functions Section 1.6 Inverse Functions Important Vocabulary Inverse function: Let f and g be two functions. If f(g(x)) = x in the domain of g and g(f(x) = x for every x in the domain of f, then g is the inverse

More information

Robust Ray Intersection with Interval Arithmetic. Don P. Mitchell. AT &T Bell Laboratories Murray Hill, NJ 07974

Robust Ray Intersection with Interval Arithmetic. Don P. Mitchell. AT &T Bell Laboratories Murray Hill, NJ 07974 68 Robust Ray Intersection with Interval Arithmetic Don P. Mitchell AT &T Bell Laboratories Murray Hill, NJ 07974 1. Abstract This paper discusses a very general root-isolation algorithm, based on interval

More information

Three Applications of Interval Analysis in Computer Graphics

Three Applications of Interval Analysis in Computer Graphics Three Applications of Interval Analysis in Computer Graphics Don P. Mitchell AT&T Bell Laboratories Murray Hill, NJ 07974 ABSTRACT Interval arithmetic and automatic differentiation are simple and robust

More information

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving The Bisection Method and Newton s Method. If f( x ) a function, then a number r for which f( r) 0 is called a zero or a root of the function f( x ), or a solution to the equation f( x) 0. You are already

More information

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method.

Reals 1. Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. Reals 1 13 Reals Floating-point numbers and their properties. Pitfalls of numeric computation. Horner's method. Bisection. Newton's method. 13.1 Floating-point numbers Real numbers, those declared to be

More information

Geometric Queries for Ray Tracing

Geometric Queries for Ray Tracing CSCI 420 Computer Graphics Lecture 16 Geometric Queries for Ray Tracing Ray-Surface Intersection Barycentric Coordinates [Angel Ch. 11] Jernej Barbic University of Southern California 1 Ray-Surface Intersections

More information

COURSE: NUMERICAL ANALYSIS. LESSON: Methods for Solving Non-Linear Equations

COURSE: NUMERICAL ANALYSIS. LESSON: Methods for Solving Non-Linear Equations COURSE: NUMERICAL ANALYSIS LESSON: Methods for Solving Non-Linear Equations Lesson Developer: RAJNI ARORA COLLEGE/DEPARTMENT: Department of Mathematics, University of Delhi Page No. 1 Contents 1. LEARNING

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

CS770/870 Spring 2017 Ray Tracing Implementation

CS770/870 Spring 2017 Ray Tracing Implementation Useful ector Information S770/870 Spring 07 Ray Tracing Implementation Related material:angel 6e: h.3 Ray-Object intersections Spheres Plane/Polygon Box/Slab/Polyhedron Quadric surfaces Other implicit/explicit

More information

8.1 Geometric Queries for Ray Tracing

8.1 Geometric Queries for Ray Tracing Fall 2017 CSCI 420: Computer Graphics 8.1 Geometric Queries for Ray Tracing Hao Li http://cs420.hao-li.com 1 Outline Ray-Surface Intersections Special cases: sphere, polygon Barycentric coordinates 2 Outline

More information

Homework #2. Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves

Homework #2. Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves Computer Graphics Instructor: Brian Curless CSE 457 Spring 2013 Homework #2 Hidden Surfaces, Projections, Shading and Texture, Ray Tracing, and Parametric Curves Assigned: Sunday, May 12 th Due: Thursday,

More information

Graphical Solutions (How to solve equations graphically; how to find intersection of two lines)

Graphical Solutions (How to solve equations graphically; how to find intersection of two lines) Graphical Solutions (How to solve equations graphically; how to find intersection of two lines) Dr. Gisela Acosta-Carr. (8-page document) Let us review: Solve the equation 2x + 1 = 7 algebraically. First,

More information

Calculator Basics TI-83, TI-83 +, TI-84. Index Page

Calculator Basics TI-83, TI-83 +, TI-84. Index Page Calculator Basics TI-83, TI-83 +, TI-84 Index Page Getting Started Page 1 Graphing Page 2 Evaluating Functions page 4 Minimum and Maximum Values Page 5 Table of Values Page 6 Graphing Scatter Plots Page

More information

Quadratics Functions: Review

Quadratics Functions: Review Quadratics Functions: Review Name Per Review outline Quadratic function general form: Quadratic function tables and graphs (parabolas) Important places on the parabola graph [see chart below] vertex (minimum

More information

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

More information

Final Exam Review Algebra Semester 1

Final Exam Review Algebra Semester 1 Final Exam Review Algebra 015-016 Semester 1 Name: Module 1 Find the inverse of each function. 1. f x 10 4x. g x 15x 10 Use compositions to check if the two functions are inverses. 3. s x 7 x and t(x)

More information

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED DETERMINING THE INTERSECTIONS USING THE GRAPHING CALCULATOR

MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED DETERMINING THE INTERSECTIONS USING THE GRAPHING CALCULATOR FOM 11 T15 INTERSECTIONS & OPTIMIZATION PROBLEMS - 1 1 MATH SPEAK - TO BE UNDERSTOOD AND MEMORIZED 1) INTERSECTION = a set of coordinates of the point on the grid where two or more graphed lines touch

More information

3.3 Function minimization

3.3 Function minimization 3.3. Function minimization 55 3.3 Function minimization Beneath the problem of root-finding, minimizing functions constitutes a major problem in computational economics. Let f () : X R a function that

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS In this section, we assume that you have access to a graphing calculator or a computer with graphing software. FUNCTIONS AND MODELS 1.4 Graphing Calculators

More information

TI-84 Calculator Tips, Tricks, and Programs 1 of 11

TI-84 Calculator Tips, Tricks, and Programs 1 of 11 TI-84 Calculator Tips, Tricks, and Programs 1 of 11 Command catalog: a.) [2ND] [CATALOG] b.) press letter to access the Catalog section that begins with the pressed letter c.) scroll down to access a command

More information

The equation to any straight line can be expressed in the form:

The equation to any straight line can be expressed in the form: Student Activity 7 8 9 10 11 12 TI-Nspire Investigation Student 45 min Aims Determine a series of equations of straight lines to form a pattern similar to that formed by the cables on the Jerusalem Chords

More information

6 Using Technology Wisely

6 Using Technology Wisely 6 Using Technology Wisely Concepts: Advantages and Disadvantages of Graphing Calculators How Do Calculators Sketch Graphs? When Do Calculators Produce Incorrect Graphs? The Greatest Integer Function Graphing

More information

Central issues in modelling

Central issues in modelling Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

More information

Lesson 11 Rational Functions

Lesson 11 Rational Functions Lesson 11 Rational Functions In this lesson, you will embark on a study of rational functions. These may be unlike any function you have ever seen. Rational functions look different because they are in

More information

Ray Tracing I: Basics

Ray Tracing I: Basics Ray Tracing I: Basics Today Basic algorithms Overview of pbrt Ray-surface intersection Next lecture Techniques to accelerate ray tracing of large numbers of geometric primitives Light Rays Three ideas

More information

CS348B Lecture 2 Pat Hanrahan, Spring Greeks: Do light rays proceed from the eye to the light, or from the light to the eye?

CS348B Lecture 2 Pat Hanrahan, Spring Greeks: Do light rays proceed from the eye to the light, or from the light to the eye? Page 1 Ray Tracing Today Basic algorithms Overview of pbrt Ray-surface intersection for single surface Next lecture Acceleration techniques for ray tracing large numbers of geometric primitives Classic

More information

Real time Ray-Casting of Algebraic Surfaces

Real time Ray-Casting of Algebraic Surfaces Real time Ray-Casting of Algebraic Surfaces Martin Reimers Johan Seland Center of Mathematics for Applications University of Oslo Workshop on Computational Method for Algebraic Spline Surfaces Thursday

More information

Unit: Quadratic Functions

Unit: Quadratic Functions Unit: Quadratic Functions Learning increases when you have a goal to work towards. Use this checklist as guide to track how well you are grasping the material. In the center column, rate your understand

More information

Supplement to Lecture 16

Supplement to Lecture 16 Supplement to Lecture 16 Global Illumination: View Dependent CS 354 Computer Graphics http://www.cs.utexas.edu/~bajaj/ Notes and figures from Ed Angel: Interactive Computer Graphics, 6 th Ed., 2012 Addison

More information

Computer Graphics Ray Casting. Matthias Teschner

Computer Graphics Ray Casting. Matthias Teschner Computer Graphics Ray Casting Matthias Teschner Outline Context Implicit surfaces Parametric surfaces Combined objects Triangles Axis-aligned boxes Iso-surfaces in grids Summary University of Freiburg

More information

1999, Denis Zorin. Ray tracing

1999, Denis Zorin. Ray tracing Ray tracing Ray tracing shadow rays normal reflected ray pixel ray camera normal Ray casting/ray tracing Iterate over pixels, not objects. Effects that are difficult with Z-buffer, are easy with ray tracing:

More information

Blob-Representation of Multidimensional Objects and Surfaces

Blob-Representation of Multidimensional Objects and Surfaces Blob-Representation of Multidimensional Objects and Surfaces Edgar Garduño and Gabor T. Herman Department of Computer Science The Graduate Center City University of New York Presentation Outline Reconstruction

More information

,!7IA3C1-cjfcei!:t;K;k;K;k ISBN Graphing Calculator Reference Card. Addison-Wesley s. Basics. Created in conjuction with

,!7IA3C1-cjfcei!:t;K;k;K;k ISBN Graphing Calculator Reference Card. Addison-Wesley s. Basics. Created in conjuction with Addison-Wesley s Graphing Calculator Reference Card Created in conjuction with Basics Converting Fractions to Decimals The calculator will automatically convert a fraction to a decimal. Type in a fraction,

More information

Chpt 1. Functions and Graphs. 1.1 Graphs and Graphing Utilities 1 /19

Chpt 1. Functions and Graphs. 1.1 Graphs and Graphing Utilities 1 /19 Chpt 1 Functions and Graphs 1.1 Graphs and Graphing Utilities 1 /19 Chpt 1 Homework 1.1 14, 18, 22, 24, 28, 42, 46, 52, 54, 56, 78, 79, 80, 82 2 /19 Objectives Functions and Graphs Plot points in the rectangular

More information

Grade 9 Math Terminology

Grade 9 Math Terminology Unit 1 Basic Skills Review BEDMAS a way of remembering order of operations: Brackets, Exponents, Division, Multiplication, Addition, Subtraction Collect like terms gather all like terms and simplify as

More information

Unit 1 Algebraic Functions and Graphs

Unit 1 Algebraic Functions and Graphs Algebra 2 Unit 1 Algebraic Functions and Graphs Name: Unit 1 Day 1: Function Notation Today we are: Using Function Notation We are successful when: We can Use function notation to evaluate a function This

More information

An introduction to interpolation and splines

An introduction to interpolation and splines An introduction to interpolation and splines Kenneth H. Carpenter, EECE KSU November 22, 1999 revised November 20, 2001, April 24, 2002, April 14, 2004 1 Introduction Suppose one wishes to draw a curve

More information

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

More information

Homework #2. Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves

Homework #2. Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves Computer Graphics Instructor: Brian Curless CSEP 557 Autumn 2016 Homework #2 Shading, Projections, Texture Mapping, Ray Tracing, and Bezier Curves Assigned: Wednesday, Nov 16 th Due: Wednesday, Nov 30

More information

Foundations of Math II

Foundations of Math II Foundations of Math II Unit 6b: Toolkit Functions Academics High School Mathematics 6.6 Warm Up: Review Graphing Linear, Exponential, and Quadratic Functions 2 6.6 Lesson Handout: Linear, Exponential,

More information

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D From curves to surfaces Parametric surfaces and solid modeling CS 465 Lecture 12 2007 Doug James & Steve Marschner 1 So far have discussed spline curves in 2D it turns out that this already provides of

More information

Handout 2 - Root Finding using MATLAB

Handout 2 - Root Finding using MATLAB Handout 2 - Root Finding using MATLAB Middle East Technical University MATLAB has couple of built-in root finding functions. In this handout we ll have a look at fzero, roots and solve functions. It is

More information

Ray Casting of Trimmed NURBS Surfaces on the GPU

Ray Casting of Trimmed NURBS Surfaces on the GPU Ray Casting of Trimmed NURBS Surfaces on the GPU Hans-Friedrich Pabst Jan P. Springer André Schollmeyer Robert Lenhardt Christian Lessig Bernd Fröhlich Bauhaus University Weimar Faculty of Media Virtual

More information

Finding the axis of symmetry, vertex, and roots of a parabola

Finding the axis of symmetry, vertex, and roots of a parabola Finding the axis of symmetry, vertex, and roots of a parabola 1) Find the Axis of Symmetry of y = x 2-4x + 3 (The AOS is the vertical line that splits the parabola in 2 equal parts) Axis of Symmetry Axis

More information

Table of contents. Jakayla Robbins & Beth Kelly (UK) Precalculus Notes Fall / 27

Table of contents. Jakayla Robbins & Beth Kelly (UK) Precalculus Notes Fall / 27 Table of contents Using Technology Wisely Connecting the Dots. Is This Always a Good Plan? Basic Instructions for the Graphing Calculator Using Technology to Find Approximate Solutions of Equations in

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

MEI STRUCTURED MATHEMATICS. MEI conference University of Hertfordshire June C3 COURSEWORK

MEI STRUCTURED MATHEMATICS. MEI conference University of Hertfordshire June C3 COURSEWORK MEI STRUCTURED MATHEMATICS MEI conference University of Hertfordshire June 29 2009 C3 COURSEWORK What is this coursework designed to do and how do we prepare students for it? Presenter: Val Hanrahan The

More information

The parametric equation below represents a ball being thrown straight up. x(t) = 3 y(t) = 96t! 16t 2

The parametric equation below represents a ball being thrown straight up. x(t) = 3 y(t) = 96t! 16t 2 1 TASK 3.1.2: THROWING Solutions The parametric equation below represents a ball being thrown straight up. x(t) = 3 y(t) = 96t! 16t 2 1. What do you think the graph will look like? Make a sketch below.

More information

Rasterization. MIT EECS Frédo Durand and Barb Cutler. MIT EECS 6.837, Cutler and Durand 1

Rasterization. MIT EECS Frédo Durand and Barb Cutler. MIT EECS 6.837, Cutler and Durand 1 Rasterization MIT EECS 6.837 Frédo Durand and Barb Cutler MIT EECS 6.837, Cutler and Durand 1 Final projects Rest of semester Weekly meetings with TAs Office hours on appointment This week, with TAs Refine

More information

NEW CONCEPTS LEARNED IN THIS LESSON INCLUDE: Fundamental Theorem of Algebra

NEW CONCEPTS LEARNED IN THIS LESSON INCLUDE: Fundamental Theorem of Algebra 2.5. Graphs of polynomial functions. In the following lesson you will learn to sketch graphs by understanding what controls their behavior. More precise graphs will be developed in the next two lessons

More information

Graphing Calculator How To Packet

Graphing Calculator How To Packet Graphing Calculator How To Packet The following outlines some of the basic features of your TI Graphing Calculator. The graphing calculator is a useful tool that will be used extensively in this class

More information

Lesson 8 Introduction to Quadratic Functions

Lesson 8 Introduction to Quadratic Functions Lesson 8 Introduction to Quadratic Functions We are leaving exponential and logarithmic functions behind and entering an entirely different world. As you work through this lesson, you will learn to identify

More information

Correlation of the ALEKS courses Algebra 1 and High School Geometry to the Wyoming Mathematics Content Standards for Grade 11

Correlation of the ALEKS courses Algebra 1 and High School Geometry to the Wyoming Mathematics Content Standards for Grade 11 Correlation of the ALEKS courses Algebra 1 and High School Geometry to the Wyoming Mathematics Content Standards for Grade 11 1: Number Operations and Concepts Students use numbers, number sense, and number

More information

Accelerating Ray-Tracing

Accelerating Ray-Tracing Lecture 9: Accelerating Ray-Tracing Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2016 Course Roadmap Rasterization Pipeline Core Concepts Sampling Antialiasing Transforms Geometric Modeling

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Basic Graphing on TI 83 / 84

Basic Graphing on TI 83 / 84 Basic Graphing on TI 83 / 84 A graphing calculator can, of course, graph but only from an equation in function form. That means each equation must be solved for "y". The first activity is to practice solving

More information

521493S Computer Graphics Exercise 1 (Chapters 1-3)

521493S Computer Graphics Exercise 1 (Chapters 1-3) 521493S Computer Graphics Exercise 1 (Chapters 1-3) 1. Consider the clipping of a line segment defined by the latter s two endpoints (x 1, y 1 ) and (x 2, y 2 ) in two dimensions against a rectangular

More information

Lecture 11: Ray tracing (cont.)

Lecture 11: Ray tracing (cont.) Interactive Computer Graphics Ray tracing - Summary Lecture 11: Ray tracing (cont.) Graphics Lecture 10: Slide 1 Some slides adopted from H. Pfister, Harvard Graphics Lecture 10: Slide 2 Ray tracing -

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

More information

Section 8.3 Vector, Parametric, and Symmetric Equations of a Line in

Section 8.3 Vector, Parametric, and Symmetric Equations of a Line in Section 8.3 Vector, Parametric, and Symmetric Equations of a Line in R 3 In Section 8.1, we discussed vector and parametric equations of a line in. In this section, we will continue our discussion, but,

More information

Contents 20. Trigonometric Formulas, Identities, and Equations

Contents 20. Trigonometric Formulas, Identities, and Equations Contents 20. Trigonometric Formulas, Identities, and Equations 2 20.1 Basic Identities............................... 2 Using Graphs to Help Verify Identities................... 2 Example 20.1................................

More information

Lecture overview. Visualisatie BMT. Transparency. Transparency. Transparency. Transparency. Transparency Volume rendering Assignment

Lecture overview. Visualisatie BMT. Transparency. Transparency. Transparency. Transparency. Transparency Volume rendering Assignment Visualisatie BMT Lecture overview Assignment Arjan Kok a.j.f.kok@tue.nl 1 Makes it possible to see inside or behind objects Complement of transparency is opacity Opacity defined by alpha value with range

More information

and F is an antiderivative of f

and F is an antiderivative of f THE EVALUATION OF DEFINITE INTEGRALS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions Comments to ingrid.stewart@csn.edu. Thank you! We have finally reached a point,

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Reparametrization of Interval Curves on Rectangular Domain

Reparametrization of Interval Curves on Rectangular Domain International Journal of Video&Image Processing and Network Security IJVIPNS-IJENS Vol:15 No:05 1 Reparametrization of Interval Curves on Rectangular Domain O. Ismail, Senior Member, IEEE Abstract The

More information

2-3 Graphing Rational Functions

2-3 Graphing Rational Functions 2-3 Graphing Rational Functions Factor What are the end behaviors of the Graph? Sketch a graph How to identify the intercepts, asymptotes and end behavior of a rational function. How to sketch the graph

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Geometric Modeling of Curves

Geometric Modeling of Curves Curves Locus of a point moving with one degree of freedom Locus of a one-dimensional parameter family of point Mathematically defined using: Explicit equations Implicit equations Parametric equations (Hermite,

More information

Rational Bezier Curves

Rational Bezier Curves Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

More information

Computer Graphics Volume 17, Number 3 July 1983

Computer Graphics Volume 17, Number 3 July 1983 Computer Graphics Volume 17, Number 3 July 1983 Ray Tracing Algebraic Surfaces Pat Hanrahan Computer Graphics Laboratory New York Institute of Technology Old Westbury, New York Abstract Many interesting

More information

Prof. Manoochehr Shirzaei. RaTlab.asu.edu

Prof. Manoochehr Shirzaei. RaTlab.asu.edu RaTlab.asu.edu Introduction To MATLAB Introduction To MATLAB This lecture is an introduction of the basic MATLAB commands. We learn; Functions Procedures for naming and saving the user generated files

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 6: Analyzing Quadratic Functions Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 6: Analyzing Quadratic Functions Instruction Prerequisite Skills This lesson requires the use of the following skills: factoring quadratic expressions finding the vertex of a quadratic function Introduction We have studied the key features of the

More information

TEAMS National Competition High School Version Photometry Solution Manual 25 Questions

TEAMS National Competition High School Version Photometry Solution Manual 25 Questions TEAMS National Competition High School Version Photometry Solution Manual 25 Questions Page 1 of 15 Photometry Questions 1. When an upright object is placed between the focal point of a lens and a converging

More information

So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources.

So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. 11 11.1 Basics So far, we have considered only local models of illumination; they only account for incident light coming directly from the light sources. Global models include incident light that arrives

More information

Polynomial Approximation and Interpolation Chapter 4

Polynomial Approximation and Interpolation Chapter 4 4.4 LAGRANGE POLYNOMIALS The direct fit polynomial presented in Section 4.3, while quite straightforward in principle, has several disadvantages. It requires a considerable amount of effort to solve the

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 3: Lining Up: 2D Lines Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Department of Computer Science, University of Otago Technical Report OUCS-2002-02 Integer root finding, a functional perspective Author: Michael H. Albert Status: submitted to the Journal of Functional

More information

Quadratic Functions Dr. Laura J. Pyzdrowski

Quadratic Functions Dr. Laura J. Pyzdrowski 1 Names: (8 communication points) About this Laboratory A quadratic function in the variable x is a polynomial where the highest power of x is 2. We will explore the domains, ranges, and graphs of quadratic

More information

Ray Tracing I. History

Ray Tracing I. History History Ray Tracing came from the Physics of lens making. The process was that of drawing lines or rays through a glass shape to determine it s lens properties. It is also related to early perspective

More information

Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method

Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method Module 4 : Solving Linear Algebraic Equations Section 11 Appendix C: Steepest Descent / Gradient Search Method 11 Appendix C: Steepest Descent / Gradient Search Method In the module on Problem Discretization

More information

SKILL: Fraction arithmetic and reducing fractions back to top

SKILL: Fraction arithmetic and reducing fractions back to top Table of Contents 050 Skills 1) Fraction Arithmetic 2) Check Solution 3) Graphing and Ordered Pairs 4) Finding Intercepts From a Graph 5) Solve a System of Equations 6) Evaluate an Expression with Exponents

More information

C3 Numerical methods

C3 Numerical methods Verulam School C3 Numerical methods 138 min 108 marks 1. (a) The diagram shows the curve y =. The region R, shaded in the diagram, is bounded by the curve and by the lines x = 1, x = 5 and y = 0. The region

More information

Chapter 3 Limits and Derivative Concepts

Chapter 3 Limits and Derivative Concepts Chapter 3 Limits and Derivative Concepts 1. Average Rate of Change 2. Using Tables to Investigate Limits 3. Symbolic Limits and the Derivative Definition 4. Graphical Derivatives 5. Numerical Derivatives

More information

X-values are restricted to [Xmin,Xmax].

X-values are restricted to [Xmin,Xmax]. A. TRACE Working With A Graph TRACE is a very useful tool in graph analyses. Even when a graph is not visible, you can use TRACE to find Y-values. When using TRACE, the X-values are restricted to the interval

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

More information

1.00 Lecture 19. Numerical Methods: Root Finding

1.00 Lecture 19. Numerical Methods: Root Finding 1.00 Lecture 19 Numerical Methods: Root Finding short int Remember Java Data Types Type byte long float double char boolean Size (bits) 8 16 32 64 32 64 16 1-128 to 127-32,768 to 32,767-2,147,483,648 to

More information

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19

Lecture 17: Recursive Ray Tracing. Where is the way where light dwelleth? Job 38:19 Lecture 17: Recursive Ray Tracing Where is the way where light dwelleth? Job 38:19 1. Raster Graphics Typical graphics terminals today are raster displays. A raster display renders a picture scan line

More information

demonstrate an understanding of the exponent rules of multiplication and division, and apply them to simplify expressions Number Sense and Algebra

demonstrate an understanding of the exponent rules of multiplication and division, and apply them to simplify expressions Number Sense and Algebra MPM 1D - Grade Nine Academic Mathematics This guide has been organized in alignment with the 2005 Ontario Mathematics Curriculum. Each of the specific curriculum expectations are cross-referenced to the

More information

Ray Tracing CSCI 4239/5239 Advanced Computer Graphics Spring 2018

Ray Tracing CSCI 4239/5239 Advanced Computer Graphics Spring 2018 Ray Tracing CSCI 4239/5239 Advanced Computer Graphics Spring 2018 What is it? Method for rendering a scene using the concept of optical rays bouncing off objects More realistic Reflections Shadows How

More information

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple

Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple Curves and surfaces Escaping Flatland Until now we have worked with flat entities such as lines and flat polygons Fit well with graphics hardware Mathematically simple But the world is not composed of

More information

Anamorphic Art with a Tilted Cylinder

Anamorphic Art with a Tilted Cylinder Anamorphic Art with a Tilted Cylinder Erika Gerhold and Angela Rose Math and Computer Science Salisbury University 1101 Camden Avenue Salisbury Maryland 21801 USA Faculty Advisor: Dr. Don Spickler Abstract

More information

GRAPHING CALCULATOR - WINDOW SIZING

GRAPHING CALCULATOR - WINDOW SIZING Section 1.1 GRAPHING CALCULATOR - WINDOW SIZING WINDOW BUTTON. Xmin= Xmax= Xscl= Ymin= Ymax= Yscl= Xres=resolution, smaller number= clearer graph Larger number=quicker graphing Xscl=5, Yscal=1 Xscl=10,

More information

Smarter Balanced Vocabulary (from the SBAC test/item specifications)

Smarter Balanced Vocabulary (from the SBAC test/item specifications) Example: Smarter Balanced Vocabulary (from the SBAC test/item specifications) Notes: Most terms area used in multiple grade levels. You should look at your grade level and all of the previous grade levels.

More information

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn Today s class Roots of equation Finish up incremental search Open methods 1 False Position Method Although the interval [a,b] where the root becomes iteratively closer with the false position method, unlike

More information

Basic Graphs of the Sine and Cosine Functions

Basic Graphs of the Sine and Cosine Functions Chapter 4: Graphs of the Circular Functions 1 TRIG-Fall 2011-Jordan Trigonometry, 9 th edition, Lial/Hornsby/Schneider, Pearson, 2009 Section 4.1 Graphs of the Sine and Cosine Functions Basic Graphs of

More information