# Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple

Size: px
Start display at page:

Download "Until now we have worked with flat entities such as lines and flat polygons. Fit well with graphics hardware Mathematically simple"

Transcription

1 Curves and surfaces

2 Escaping Flatland Until now we have worked with flat entities such as lines and flat polygons Fit well with graphics hardware Mathematically simple But the world is not composed of flat entities Need curves and curved surfaces May only have need at the application level Implementation can render them approximately with flat primitives

3 Modelling with curves

4 What is a good representation? There are many ways to represent curves and surfaces Want a representation that is Stable Smooth Easy to evaluate Must we interpolate or can we just come close to data?

5 Explicit representation Most familiar form of curve in 2D y=f(x) Cannot represent all curves Vertical lines Circles Extension to 3D y=f(x), z=g(x) The form z = f(x,y) defines a surface

6 Implicit representation Two-dimensional curve(s) g(x,y)=0 Much more robust Lines ax+by+c=0 Circles x 2 +y 2 -r 2 =0 In 3D, g(x,y,z)=0 defines a surface Intersect two surface to get a curve In general, we cannot find y for a given x

7 Parametric curves Separate equation for each spatial variable x=x(u) y=y(u) z=z(u) p(u)=[x(u), y(u), z(u)] T

8 Parametric lines We can normalize u to be over the interval [0,1] Line connecting two points p 0 and p 1 p(u)=(1-u)p 0 +up 1 Ray from p 0 in the direction d p(u)=p 0 +ud

9 Parametric surfaces Surfaces require 2 parameters x=x(u,v) y=y(u,v) z=z(u,v)

10 Normals We can differentiate with respect to u and v to obtain the normal at any point p

11 Curve segments After normalizing u, each curve is written p(u)=[x(u), y(u), z(u)] T, 0 u 1 In classical numerical methods, we design a single global curve. In computer graphics and CAD, it is often better to design small connected curve segments.

12 Selecting functions We want functions that can approximate or interpolate known data are easy to evaluate are easy to differentiate are smooth...

13 Polynomials Easy to evaluate Continuous and differentiable everywhere Must worry about continuity at join points, including continuity of derivatives

14 Cubic parametric polynomials Polynomials of degree three gives balance between ease of evaluation and flexibility in design Four coefficients to determine for each of x, y and z Seek four independent conditions for various values of u resulting in 4 equations in 4 unknowns for each of x, y and z Conditions are a mixture of continuity requirements at the join points and conditions for fitting the data

15 Matrix-vector form

16 Interpolating curve Given four data (control) points p 0, p 1, p 2, p 3. Determine cubic p(u) which passes through them. Must find c 0, c 1, c 2, c 3.

17 Interpolating equations apply the interpolating conditions at u=0, 1/3, 2/3, 1

18 Interpolating equations...or in matrix form with p = Ac, where p = [p0 p1 p2 p3] T

19 Interpolating matrix -The resulting curve is p(u) = u T c = u T M I p, which we can write p(u)=b(u) T p where b(u)=m I Tu. -The polynomials b i (u) are called blending polynomials, where each polynomial is a cubic.

20 Interpolating blending functions

21 Multiple segments

22 Interpolating patch Need 16 conditions to determine the 16 coefficients c ij

23 Other types of curves and surfaces How can we get around the limitations of the interpolating form Lack of smoothness Discontinuous derivatives at join points We have four conditions (for cubics) that we can apply to each segment Use them other than for interpolation Need only come close to the data

24 Hermite form Use two interpolating conditions and two derivative conditions per segment. Ensures continuity and first derivative continuity between segments

25 Hermite equations Interpolating conditions are the same at ends Differentiating, we find Evaluating at endpoints

26 Hermite matrix Solving, we find c=m H q where M H is the Hermite matrix

27 Hermite blending polynomials Although these functions are smooth, the Hermite form is not used directly in Computer Graphics and CAD because we usually have control points but not derivatives. However, the Hermite form is the basis of the Bézier form

28 Parametric and geometric continuity We can require the derivatives of x, y,and z to each be continuous at join points (parametric continuity). Alternatively, we can only require that the tangents of the resulting curve be continuous (geometry continuity) The latter gives more flexibility as we need to satisfy only two conditions rather than three at each join point

29 Example Here the p and q have the same tangents at the ends of the segment but different derivatives. Generate different Hermite curves. This techniques is used in drawing applications.

30 Beziér s idea In graphics and CAD, we do not usually have derivative data Bezier suggested using the same 4 data points as with the cubic interpolating curve to approximate the derivatives in the Hermite form

31 Approximating derivatives

32 Bézier equations Interpolating conditions are the same p(0) = p 0 = c 0 p(1) = p 3 = c 0 +c 1 +c 2 +c 3 Approximating derivative conditions p (0) = 3(p 1 - p 0 ) = c 0 p (1) = 3(p 3 - p 2 ) = c 1 +2c 2 +3c 3 Solve four linear equations for c=m B p

33 Bézier matrix

34 Bézier blending functions Note that all zeros are at 0 and 1 which forces the functions to be smooth over (0,1)

35 Convex hull property All Bezier curves lie in the convex hull of their control points Hence, even though we do not interpolate all the data, we cannot be too far away

36 Bézier patches Using same data array P=[p ij ] as with interpolating form

37 Analysis Although the Bézier form is much better than the interpolating form, we have discontinuous derivatives at join points We need to have another representation to represent curves that even have continuous 2 nd derivatives We need to do more work per segment and use more control points to apply more continuity conditions to each segment

38 B-splines Basis splines: use the data at p=[p i-2 p i-1 p i p i-1 ] T to define curve only between p i-1 and p i We relax the condition that the curve segments should interpolate any of the control points and we utilize symmetry in approximating the tangents at the joints For cubics, we can have C 2 continuity at join points Three times as much work for curves and nine times as much work for surfaces

39 Cubic B-Spline

40 Cubic B-Spline

41 Blending functions

42 Splines and basis If we examine the cubic B-spline from the perspective of each control (data) point, each interior point contributes (through the blending functions) to four segments We can rewrite p(u) in terms of the data points as defining the basis functions {B i (u)}

43 Basis functions In terms of the blending polynomials

44 B-spline patches

45 Generalizing Splines We can extend to splines of any degree Data and conditions do not have to given at equally spaced values (the knots) Non-uniform and uniform splines Can have repeated knots Can force spline to interpolate points

46 NURBS Non-uniform Rational B-Spline curves and surfaces add a fourth variable w to x,y,z Can interpret as weight to give more importance to some control data Can also interpret as moving to homogeneous coordinate Requires a perspective division NURBS act correctly for perspective viewing Quadrics (spheres, cylinders,...) are a special case of NURBS

47 Rendering Simplest method to render a polynomial curve is to evaluate the polynomial at many points and form an approximating polyline For surfaces we can form an approximating mesh of triangles or quadrilaterals Use Horner s method to evaluate polynomials p(u)=c 0 +u(c 1 +u(c 2 +uc 3 )) 3 multiplications/evaluation for cubic

48 Recursive subdivision We can use the convex hull property of Bézier curves to obtain an efficient recursive method that does not require any function evaluations Uses only the values at the control points Based on the idea that any polynomial and any part of a polynomial is a Bézier polynomial for properly chosen control data

49 Splitting a cubic Bézier p 0, p 1, p 2, p 3 determine a cubic Bezier polynomial and its convex hull Consider left half l(u) and right half r(u)

50 l(u) and r(u) Since l(u) and r(u) are Bezier curves, we should be able to find two sets of control points {l 0, l 1, l 2, l 3 } and {r 0, r 1, r 2, r 3 } that determine them. {l 0, l 1, l 2, l 3 } and {r 0, r 1, r 2, r 3 } each have a convex hull that that is closer to p(u) than the convex hull of {p 0, p 1, p 2, p 3 } Repeating recursively, we get a good approximation

51 Efficient algorithm

52 Every curve is a Bézier curve We can render a given polynomial using the recursive method if we find control points for its representation as a Bezier curve Suppose that p(u) is given as an interpolating curve with control points q There exist Bezier control points p such that Equating and solving, we find p=m B -1M I

53 Matrices Interpolating to Bezier B-spline to Bezier

54 Surfaces Can apply the recursive method to surfaces if we recall that for a Bezier patch curves of constant u (or v) are Bezier curves in u (or v)

55 Subdivision surfaces E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design, 10(6): , DeRose, T., Kass, M., and Truong, T. Subdivision surfaces in character animation. In Proceedings of SIGGRAPH '98.

56 Subdivision surfaces Geri s game, Pixar 1997

57 Exact evaluation of SDS Stam, J Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. In Proceedings of SIGGRAPH '98. ACM.

58 A short note about SIGGRAPH The computer graphics conference A very nice resource for keeping up-todate on developments in computer graphics Relevant links:

59 To summarize... Curves and surfaces for CG: Parametric representation of curves/surfaces is convenient. Complex objects can be built using curve segments/surface patches. All curves/surfaces presented here are based on 3 rd degree polynomials.

### OUTLINE. Quadratic Bezier Curves Cubic Bezier Curves

BEZIER CURVES 1 OUTLINE Introduce types of curves and surfaces Introduce the types of curves Interpolating Hermite Bezier B-spline Quadratic Bezier Curves Cubic Bezier Curves 2 ESCAPING FLATLAND Until

### Computer Graphics. Curves and Surfaces. Hermite/Bezier Curves, (B-)Splines, and NURBS. By Ulf Assarsson

Computer Graphics Curves and Surfaces Hermite/Bezier Curves, (B-)Splines, and NURBS By Ulf Assarsson Most of the material is originally made by Edward Angel and is adapted to this course by Ulf Assarsson.

### Rendering Curves and Surfaces. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Rendering Curves and Surfaces Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Objectives Introduce methods to draw curves - Approximate

### Curves and Surfaces Computer Graphics I Lecture 9

15-462 Computer Graphics I Lecture 9 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] February 19, 2002 Frank Pfenning Carnegie

### Curves and Surface I. Angel Ch.10

Curves and Surface I Angel Ch.10 Representation of Curves and Surfaces Piece-wise linear representation is inefficient - line segments to approximate curve - polygon mesh to approximate surfaces - can

### Curves and Surfaces Computer Graphics I Lecture 10

15-462 Computer Graphics I Lecture 10 Curves and Surfaces Parametric Representations Cubic Polynomial Forms Hermite Curves Bezier Curves and Surfaces [Angel 10.1-10.6] September 30, 2003 Doug James Carnegie

### Curves and Surfaces 1

Curves and Surfaces 1 Representation of Curves & Surfaces Polygon Meshes Parametric Cubic Curves Parametric Bi-Cubic Surfaces Quadric Surfaces Specialized Modeling Techniques 2 The Teapot 3 Representing

### Intro to Modeling Modeling in 3D

Intro to Modeling Modeling in 3D Polygon sets can approximate more complex shapes as discretized surfaces 2 1 2 3 Curve surfaces in 3D Sphere, ellipsoids, etc Curved Surfaces Modeling in 3D ) ( 2 2 2 2

### Fall CSCI 420: Computer Graphics. 4.2 Splines. Hao Li.

Fall 2014 CSCI 420: Computer Graphics 4.2 Splines Hao Li http://cs420.hao-li.com 1 Roller coaster Next programming assignment involves creating a 3D roller coaster animation We must model the 3D curve

### CS 4204 Computer Graphics

CS 424 Compter Graphics Crves and Srfaces Yong Cao Virginia Tech Reference: Ed Angle, Interactive Compter Graphics, University of New Mexico, class notes Crve and Srface Modeling Objectives Introdce types

### Splines. Parameterization of a Curve. Curve Representations. Roller coaster. What Do We Need From Curves in Computer Graphics? Modeling Complex Shapes

CSCI 420 Computer Graphics Lecture 8 Splines Jernej Barbic University of Southern California Hermite Splines Bezier Splines Catmull-Rom Splines Other Cubic Splines [Angel Ch 12.4-12.12] Roller coaster

### Parametric Curves. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Parametric Curves University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Representations 3 basic representation strategies: Explicit: y = mx + b Implicit: ax + by + c

### 3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

### Bezier Curves, B-Splines, NURBS

Bezier Curves, B-Splines, NURBS Example Application: Font Design and Display Curved objects are everywhere There is always need for: mathematical fidelity high precision artistic freedom and flexibility

### 3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

### Parametric Curves. University of Texas at Austin CS384G - Computer Graphics

Parametric Curves University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Parametric Representations 3 basic representation strategies: Explicit: y = mx + b Implicit: ax + by + c

### Information Coding / Computer Graphics, ISY, LiTH. Splines

28(69) Splines Originally a drafting tool to create a smooth curve In computer graphics: a curve built from sections, each described by a 2nd or 3rd degree polynomial. Very common in non-real-time graphics,

### Introduction to Computer Graphics

Introduction to Computer Graphics 2016 Spring National Cheng Kung University Instructors: Min-Chun Hu 胡敏君 Shih-Chin Weng 翁士欽 ( 西基電腦動畫 ) Data Representation Curves and Surfaces Limitations of Polygons Inherently

### Computer Graphics Curves and Surfaces. Matthias Teschner

Computer Graphics Curves and Surfaces Matthias Teschner Outline Introduction Polynomial curves Bézier curves Matrix notation Curve subdivision Differential curve properties Piecewise polynomial curves

### CS-184: Computer Graphics

CS-184: Computer Graphics Lecture #12: Curves and Surfaces Prof. James O Brien University of California, Berkeley V2007-F-12-1.0 Today General curve and surface representations Splines and other polynomial

### Design considerations

Curves Design considerations local control of shape design each segment independently smoothness and continuity ability to evaluate derivatives stability small change in input leads to small change in

### Intro to Curves Week 4, Lecture 7

CS 430/536 Computer Graphics I Intro to Curves Week 4, Lecture 7 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University

### 2D Spline Curves. CS 4620 Lecture 18

2D Spline Curves CS 4620 Lecture 18 2014 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes that is, without discontinuities So far we can make things with corners (lines,

### Sung-Eui Yoon ( 윤성의 )

CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

### Curves and Surfaces 2

Curves and Surfaces 2 Computer Graphics Lecture 17 Taku Komura Today More about Bezier and Bsplines de Casteljau s algorithm BSpline : General form de Boor s algorithm Knot insertion NURBS Subdivision

### Dgp _ lecture 2. Curves

Dgp _ lecture 2 Curves Questions? This lecture will be asking questions about curves, their Relationship to surfaces, and how they are used and controlled. Topics of discussion will be: Free form Curves

### 2D Spline Curves. CS 4620 Lecture 13

2D Spline Curves CS 4620 Lecture 13 2008 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes [Boeing] that is, without discontinuities So far we can make things with corners

### Intro to Curves Week 1, Lecture 2

CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University Outline Math review Introduction to 2D curves

### Rational Bezier Curves

Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

### CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside Blending Functions Blending functions are more convenient basis than monomial basis canonical form (monomial

### CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2

CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 Outline Math review Introduction to 2D curves

### From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D

From curves to surfaces Parametric surfaces and solid modeling CS 465 Lecture 12 2007 Doug James & Steve Marschner 1 So far have discussed spline curves in 2D it turns out that this already provides of

### The Free-form Surface Modelling System

1. Introduction The Free-form Surface Modelling System Smooth curves and surfaces must be generated in many computer graphics applications. Many real-world objects are inherently smooth (fig.1), and much

### 3D Modeling techniques

3D Modeling techniques 0. Reconstruction From real data (not covered) 1. Procedural modeling Automatic modeling of a self-similar objects or scenes 2. Interactive modeling Provide tools to computer artists

### Know it. Control points. B Spline surfaces. Implicit surfaces

Know it 15 B Spline Cur 14 13 12 11 Parametric curves Catmull clark subdivision Parametric surfaces Interpolating curves 10 9 8 7 6 5 4 3 2 Control points B Spline surfaces Implicit surfaces Bezier surfaces

### An introduction to interpolation and splines

An introduction to interpolation and splines Kenneth H. Carpenter, EECE KSU November 22, 1999 revised November 20, 2001, April 24, 2002, April 14, 2004 1 Introduction Suppose one wishes to draw a curve

### B-spline Curves. Smoother than other curve forms

Curves and Surfaces B-spline Curves These curves are approximating rather than interpolating curves. The curves come close to, but may not actually pass through, the control points. Usually used as multiple,

### Central issues in modelling

Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction includes: manual modelling; fitting to

### The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

### CS-184: Computer Graphics. Today

CS-84: Computer Graphics Lecture #5: Curves and Surfaces Prof. James O Brien University of California, Berkeley V25F-5-. Today General curve and surface representations Splines and other polynomial bases

### Computergrafik. Matthias Zwicker Universität Bern Herbst 2016

Computergrafik Matthias Zwicker Universität Bern Herbst 2016 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling 2 Piecewise Bézier curves Each

### Physically-Based Modeling and Animation. University of Missouri at Columbia

Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

### Computer Graphics CS 543 Lecture 13a Curves, Tesselation/Geometry Shaders & Level of Detail

Computer Graphics CS 54 Lecture 1a Curves, Tesselation/Geometry Shaders & Level of Detail Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) So Far Dealt with straight lines

### 08 - Designing Approximating Curves

08 - Designing Approximating Curves Acknowledgement: Olga Sorkine-Hornung, Alexander Sorkine-Hornung, Ilya Baran Last time Interpolating curves Monomials Lagrange Hermite Different control types Polynomials

### Computergrafik. Matthias Zwicker. Herbst 2010

Computergrafik Matthias Zwicker Universität Bern Herbst 2010 Today Curves NURBS Surfaces Parametric surfaces Bilinear patch Bicubic Bézier patch Advanced surface modeling Piecewise Bézier curves Each segment

### Geometric Modeling of Curves

Curves Locus of a point moving with one degree of freedom Locus of a one-dimensional parameter family of point Mathematically defined using: Explicit equations Implicit equations Parametric equations (Hermite,

### Curves D.A. Forsyth, with slides from John Hart

Curves D.A. Forsyth, with slides from John Hart Central issues in modelling Construct families of curves, surfaces and volumes that can represent common objects usefully; are easy to interact with; interaction

### Modeling 3D Objects: Part 2

Modeling 3D Objects: Part 2 Patches, NURBS, Solids Modeling, Spatial Subdivisioning, and Implicit Functions 3D Computer Graphics by Alan Watt Third Edition, Pearson Education Limited, 2000 General Modeling

### Curves. Computer Graphics CSE 167 Lecture 11

Curves Computer Graphics CSE 167 Lecture 11 CSE 167: Computer graphics Polynomial Curves Polynomial functions Bézier Curves Drawing Bézier curves Piecewise Bézier curves Based on slides courtesy of Jurgen

### Shape modeling Modeling technique Shape representation! 3D Graphics Modeling Techniques

D Graphics http://chamilo2.grenet.fr/inp/courses/ensimag4mmgd6/ Shape Modeling technique Shape representation! Part : Basic techniques. Projective rendering pipeline 2. Procedural Modeling techniques Shape

### Parametric curves. Brian Curless CSE 457 Spring 2016

Parametric curves Brian Curless CSE 457 Spring 2016 1 Reading Required: Angel 10.1-10.3, 10.5.2, 10.6-10.7, 10.9 Optional Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics

### Parametric curves. Reading. Curves before computers. Mathematical curve representation. CSE 457 Winter Required:

Reading Required: Angel 10.1-10.3, 10.5.2, 10.6-10.7, 10.9 Parametric curves CSE 457 Winter 2014 Optional Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric

### CSE 167: Introduction to Computer Graphics Lecture #13: Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017

CSE 167: Introduction to Computer Graphics Lecture #13: Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 Announcements Project 4 due Monday Nov 27 at 2pm Next Tuesday:

### Curve and Surface Basics

Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

### Computer Graphics Splines and Curves

Computer Graphics 2015 9. Splines and Curves Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University 2015-11-23 About homework 3 - an alternative solution with WebGL - links: - WebGL lessons http://learningwebgl.com/blog/?page_id=1217

### LECTURE #6. Geometric Modelling for Engineering Applications. Geometric modeling for engineering applications

LECTURE #6 Geometric modeling for engineering applications Geometric Modelling for Engineering Applications Introduction to modeling Geometric modeling Curve representation Hermite curve Bezier curve B-spline

### CSE 167: Introduction to Computer Graphics Lecture 12: Bézier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics Lecture 12: Bézier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Homework assignment 5 due tomorrow, Nov

### Computer Graphics I Lecture 11

15-462 Computer Graphics I Lecture 11 Midterm Review Assignment 3 Movie Midterm Review Midterm Preview February 26, 2002 Frank Pfenning Carnegie Mellon University http://www.cs.cmu.edu/~fp/courses/graphics/

### EECS 487, Fall 2005 Exam 2

EECS 487, Fall 2005 Exam 2 December 21, 2005 This is a closed book exam. Notes are not permitted. Basic calculators are permitted, but not needed. Explain or show your work for each question. Name: uniqname:

### Representing Curves Part II. Foley & Van Dam, Chapter 11

Representing Curves Part II Foley & Van Dam, Chapter 11 Representing Curves Polynomial Splines Bezier Curves Cardinal Splines Uniform, non rational B-Splines Drawing Curves Applications of Bezier splines

### Curves & Surfaces. Last Time? Progressive Meshes. Selective Refinement. Adjacency Data Structures. Mesh Simplification. Mesh Simplification

Last Time? Adjacency Data Structures Curves & Surfaces Geometric & topologic information Dynamic allocation Efficiency of access Mesh Simplification edge collapse/vertex split geomorphs progressive transmission

### Picking and Curves Week 6

CS 48/68 INTERACTIVE COMPUTER GRAPHICS Picking and Crves Week 6 David Breen Department of Compter Science Drexel University Based on material from Ed Angel, University of New Mexico Objectives Picking

### CHAPTER 1 Graphics Systems and Models 3

?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

### Lecture 25: Bezier Subdivision. And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10

Lecture 25: Bezier Subdivision And he took unto him all these, and divided them in the midst, and laid each piece one against another: Genesis 15:10 1. Divide and Conquer If we are going to build useful

### CS354 Computer Graphics Surface Representation III. Qixing Huang March 5th 2018

CS354 Computer Graphics Surface Representation III Qixing Huang March 5th 2018 Today s Topic Bspline curve operations (Brief) Knot Insertion/Deletion Subdivision (Focus) Subdivision curves Subdivision

### CS130 : Computer Graphics Curves. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Curves Tamar Shinar Computer Science & Engineering UC Riverside Design considerations local control of shape design each segment independently smoothness and continuity ability

### Approximate Catmull-Clark Patches. Scott Schaefer Charles Loop

Approximate Catmull-Clark Patches Scott Schaefer Charles Loop Approximate Catmull-Clark Patches Scott Schaefer Charles Loop Catmull-Clark Surface ACC-Patches Polygon Models Prevalent in game industry Very

### CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15

Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

### Subdivision Surfaces

Subdivision Surfaces CS 4620 Lecture 31 Cornell CS4620 Fall 2015 1 Administration A5 due on Friday Dreamworks visiting Thu/Fri Rest of class Surfaces, Animation, Rendering w/ prior instructor Steve Marschner

### Interactive Graphics. Lecture 9: Introduction to Spline Curves. Interactive Graphics Lecture 9: Slide 1

Interactive Graphics Lecture 9: Introduction to Spline Curves Interactive Graphics Lecture 9: Slide 1 Interactive Graphics Lecture 13: Slide 2 Splines The word spline comes from the ship building trade

### Review of Tuesday. ECS 175 Chapter 3: Object Representation

Review of Tuesday We have learnt how to rasterize lines and fill polygons Colors (and other attributes) are specified at vertices Interpolation required to fill polygon with attributes 26 Review of Tuesday

### Rational Bezier Surface

Rational Bezier Surface The perspective projection of a 4-dimensional polynomial Bezier surface, S w n ( u, v) B i n i 0 m j 0, u ( ) B j m, v ( ) P w ij ME525x NURBS Curve and Surface Modeling Page 97

### CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15

Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

### Objects 2: Curves & Splines Christian Miller CS Fall 2011

Objects 2: Curves & Splines Christian Miller CS 354 - Fall 2011 Parametric curves Curves that are defined by an equation and a parameter t Usually t [0, 1], and curve is finite Can be discretized at arbitrary

### Lecture IV Bézier Curves

Lecture IV Bézier Curves Why Curves? Why Curves? Why Curves? Why Curves? Why Curves? Linear (flat) Curved Easier More pieces Looks ugly Complicated Fewer pieces Looks smooth What is a curve? Intuitively:

### INF3320 Computer Graphics and Discrete Geometry

INF3320 Computer Graphics and Discrete Geometry More smooth Curves and Surfaces Christopher Dyken, Michael Floater and Martin Reimers 10.11.2010 Page 1 More smooth Curves and Surfaces Akenine-Möller, Haines

### Introduction to Geometry. Computer Graphics CMU /15-662

Introduction to Geometry Computer Graphics CMU 15-462/15-662 Assignment 2: 3D Modeling You will be able to create your own models (This mesh was created in Scotty3D in about 5 minutes... you can do much

### Local Modification of Subdivision Surfaces Based on Curved Mesh

Local Modification of Subdivision Surfaces Based on Curved Mesh Yoshimasa Tokuyama Tokyo Polytechnic University tokuyama@image.t-kougei.ac.jp Kouichi Konno Iwate University konno@cis.iwate-u.ac.jp Junji

### Further Graphics. Bezier Curves and Surfaces. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd

Further Graphics Bezier Curves and Surfaces Alex Benton, University of Cambridge alex@bentonian.com 1 Supported in part by Google UK, Ltd CAD, CAM, and a new motivation: shiny things Expensive products

### Need for Parametric Equations

Curves and Surfaces Curves and Surfaces Need for Parametric Equations Affine Combinations Bernstein Polynomials Bezier Curves and Surfaces Continuity when joining curves B Spline Curves and Surfaces Need

### (Refer Slide Time: 00:02:24 min)

CAD / CAM Prof. Dr. P. V. Madhusudhan Rao Department of Mechanical Engineering Indian Institute of Technology, Delhi Lecture No. # 9 Parametric Surfaces II So these days, we are discussing the subject

### Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include

Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include motion, behavior Graphics is a form of simulation and

### COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

### Splines Computer Graphics I Lecture 10

15-462 Computer Graphics I Lecture 10 Splines Cubic B-Splines Nonuniform Rational B-Splines Rendering by Subdivision Curves and Surfaces in OpenGL [Angel, Ch 10.7-10.14] February 21, 2002 Frank Pfenning

### Curves and Surfaces. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd

Curves and Surfaces Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 4/11/2007 Final projects Surface representations Smooth curves Subdivision Todays Topics 2 Final Project Requirements

### Spline Morphing. CG software practical course in the IWR. Carl Friedrich Bolz. Carl Friedrich Bolz

Spline Morphing CG software practical course in the IWR Introduction Motivation: Splines are an important part n of vector graphics, 3D-graphics, CAD/CAM,... Splines are often used to describe characters,

### Splines. Connecting the Dots

Splines or: Connecting the Dots Jens Ogniewski Information Coding Group Linköping University Before we start... Some parts won t be part of the exam Basically all that is not described in the book. More

### Subdivision Curves and Surfaces: An Introduction

Subdivision Curves and Surfaces: An Introduction Corner Cutting De Casteljau s and de Boor s algorithms all use corner-cutting procedures. Corner cutting can be local or non-local. A cut is local if it

### VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK M.E: CAD/CAM I SEMESTER ED5151 COMPUTER APPLICATIONS IN DESIGN Regulation 2017 Academic

### CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics Lecture #11: Bezier Curves Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Announcements Project 3 due tomorrow Midterm 2 next

### Freeform Curves on Spheres of Arbitrary Dimension

Freeform Curves on Spheres of Arbitrary Dimension Scott Schaefer and Ron Goldman Rice University 6100 Main St. Houston, TX 77005 sschaefe@rice.edu and rng@rice.edu Abstract Recursive evaluation procedures

### Advanced Graphics. Subdivision Surfaces. Alex Benton, University of Cambridge Supported in part by Google UK, Ltd

Advanced Graphics Subdivision Surfaces Alex Benton, University of Cambridge A.Benton@damtp.cam.ac.uk Supported in part by Google UK, Ltd NURBS patches aren t the greatest NURBS patches are nxm, forming

### Subdivision Surfaces

Subdivision Surfaces 1 Geometric Modeling Sometimes need more than polygon meshes Smooth surfaces Traditional geometric modeling used NURBS Non uniform rational B-Spline Demo 2 Problems with NURBS A single

### Spline Notes. Marc Olano University of Maryland, Baltimore County. February 20, 2004

Spline Notes Marc Olano University of Maryland, Baltimore County February, 4 Introduction I. Modeled after drafting tool A. Thin strip of wood or metal B. Control smooth curved path by running between

### Final Exam CS 184: Foundations of Computer Graphics! page 1 of 12!

Final Exam CS 184: Foundations of Computer Graphics! page 1 of 12! Student Name:! Class Account Username: Instructions: Read them carefully!! The exam begins at 8:10pm and ends at 10:00pm. You must turn

### Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL

International Edition Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL Sixth Edition Edward Angel Dave Shreiner Interactive Computer Graphics: A Top-Down Approach with Shader-Based

### 3D Modeling: Surfaces

CS 430/536 Computer Graphics I 3D Modeling: Surfaces Week 8, Lecture 16 David Breen, William Regli and Maxim Peysakhov Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel

### Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur

Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur Email: jrkumar@iitk.ac.in Curve representation 1. Wireframe models There are three types

### Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches

Approximating Catmull-Clark Subdivision Surfaces with Bicubic Patches Charles Loop Microsoft Research Scott Schaefer Texas A&M University April 24, 2007 Technical Report MSR-TR-2007-44 Microsoft Research

### MA 323 Geometric Modelling Course Notes: Day 31 Blended and Ruled Surfaces Coons Patches

MA 323 Geometric Modelling Course Notes: Day 31 Blended and Ruled Surfaces Coons Patches David L. Finn Today, we want to start considering patches that are constructed solely by specifying the edge curves.