Using Mathematica to solve ODEs (part 1)

Size: px
Start display at page:

Download "Using Mathematica to solve ODEs (part 1)"

Transcription

1 Using Mathematica to solve ODEs (part ) Basic tool is DSolve Note that in DSolve the dependent variable (usually y below) must be written y[x] or y [x] (for the derivative) or y [x] (for the second derivative) etc.. You cannot write just y. Mathematica needs to know that y is dependent. Also don t forget to use a double equals sign: == First-order linear ODEs Apply to separable equation discussed in class: Sec. 8. # General solution. C[] is the integration constant. In[9]:= DSolve@y'@xD Sin@xD ã y@xd Log@y@xDD, y@xd, xd Out[9]= ::y@xd Ø C@D TanA x E >> Solution given BC: In[]:= DSolve@8y'@xD Sin@xD ã y@xd Log@y@xDD, y@pi ê D ã E<, y@xd, xd Out[]= ::y@xd Ø TanA x E >> Sec. 8. # (another example discussed in class) General linear first-order but non-separable In[]:= Out[]= DSolve@y'@xD + y@xd Cos@xD ã Sin@ xd, y@xd, xd 99y@xD Ø - + -Sin@xD C@D + Sin@xD== Note that this solution differs from that derived in class only in that the constant C[] here corresponds to (+y()) in the expresssion in lecture notes. This comparison is what Boas calls reconciling.

2 ODE.nb In[]:= Useful plots---methods are needed for HW Will use example of Sec. 8. # Family of solution curves Here is a plot of solutions for values of y(). These are refered to as a family of solution curves (depending, in this case, on parameter). Notice that the solutions are periodic with period, as makes sense from the ODE given the periodicity of Cos[x] and Sin[x]. yy@x_, y_d := Sin@xD - + H + yl Exp@-Sin@xDD In[9]:= solnplot = Plot@8yy@x, -D, yy@x, D, yy@x, D<, 8x,, 7<, PlotStyle Ø 88Thick, Red<, 8Thick, Purple<, 8Thick, Green<<D Out[9]= Slope plot Here is the slope plot, with the slope arrows normalized to unit length. Note that the normalized slope vector is given by {, y } / Sqrt[+(y )^].

3 ODE.nb In[]:= slopeplot = VectorPlot@ 8, Sin@ xd - y Cos@xD< ê Sqrt@ + HSin@ xd - y Cos@xDL^D, 8x,, 7<, 8y, -.5,.5<D Out[]= Overlaying the solutions on the slope plot shows how the slope plot allows you to visualize the solutions by following arrows (head to tail to head to tail etc.): In[5]:= Show@slopeplot, solnplotd Out[5]=

4 ODE.nb In[55]:= Stream Plot Here s an alternative, using StreamPlot[] in which Mathematica does the work of connecting the arrows head to tail and curving them so that one can see the flows (which are the solutions to the original differential equation). Note that in this case one does not need to normalize the slope vectors streamplot = StreamPlot@8, Sin@ xd - y Cos@xD<, 8x,, 7<, 8y, -.5,.5<D Out[55]= Overlaying shows that the head-to-tail arrows really do map out the solutions

5 ODE.nb 5 In[56]:= Show@streamplot, solnplotd Out[56]= Contour plot Here is another way of showing the family of solutions using a contour plot First rewrite the solution so that only the constant of integration (here y()) is on the RHS. Then put the LHS into contour plot. The labels on the lines give the values of y().

6 6 ODE.nb In[6]:= curvefamily = ContourPlot@Hy - Sin@xD + L ê Exp@-Sin@xDD -, 8x,, 7<, 8y, -, 5<, ContourLabels Ø TrueD Out[6]= Solutions and contours indeed match: In[7]:= Show@curvefamily, solnplotd Out[7]= Orthogonal curves

7 ODE.nb 7 These are curves orthogonal to the solutions at all points. In some cases one can solve analytically for these (as in the examples in Boas and in one of the HW problems), but in the present case one cannot. However one can visualize these curves using StreamPlot[] without having an explicit solution. Note that (as discussed in class lecture notes) the slope of the orthogonal curve at a given point {x,y} is given by -/(slope of solution). The directions of the arrows in the following plot should be ignored. In[68]:= orthogcurves = StreamPlot@8, - ê HSin@ xd - y Cos@xDL<, 8x,, 7<, 8y, -, 5<, StreamStyle Ø 8Red, Thick<D 5 Out[68]= Superimposing on the family of solution curves, one sees that the orthogonal trajectories can be thought of as paths of steepest descent over the landscape of the solutions.

8 8 ODE.nb In[69]:= orthogcurvesd Out[69]= Second-order, linear ODEs Sec 8.5 #7 Simple second order linear with constant coeffs and homogeneous. Answer agrees with lecture notes. In[7]:= Out[7]= - 5 y'@xd + 6 y@xd ã, y@xd, xd 99y@xD Ø x C@D + x C@D== In[8]:= Sec. 8.6 #5 Second-order linear with constant coeffs and non-zero RHS. Answer agrees with lecture notes. DSolve@y''@xD - y'@xd - y@xd ã 6 x^ Exp@-xD, y@xd, xd Out[8]= ::y@xd Ø - -x I + x + x + x M + -x C@D + x C@D>>

Quickstart: Mathematica for Calculus I (Version 9.0) C. G. Melles Mathematics Department United States Naval Academy September 2, 2013

Quickstart: Mathematica for Calculus I (Version 9.0) C. G. Melles Mathematics Department United States Naval Academy September 2, 2013 Quickstart: Mathematica for Calculus I (Version 9.0) C. G. Melles Mathematics Department United States Naval Academy September, 0 Contents. Getting Started. Basic plotting. Solving equations, approximating

More information

1 The Inverse Problem

1 The Inverse Problem The Inverse Problem We have learned that a general solution of a first-order differential equation y = f H, yl (..) is a one-parameter family of (either eplicit or implicit) solutions. Finding a general

More information

Algebra. Mathematica QuickStart for Calculus 101C. Solving Equations. Factoring. Exact Solutions to single equation:

Algebra. Mathematica QuickStart for Calculus 101C. Solving Equations. Factoring. Exact Solutions to single equation: Mathematica QuickStart for Calculus 101C Algebra Solving Equations Exact Solutions to single equation: In[88]:= Solve@x^3 + 5 x - 6 ã 0, xd Out[88]= :8x Ø 1, :x Ø 1 2 I-1 + Â 23

More information

4 Visualization and. Approximation

4 Visualization and. Approximation 4 Visualization and Approximation b A slope field for the differential equation y tan(x + y) tan(x) tan(y). It is not always possible to write down an explicit formula for the solution to a differential

More information

H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P. H* Plot a Single Red Point of "Size" 0.05 *L

H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P. H* Plot a Single Red Point of Size 0.05 *L Define and plotting a point and vector H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P H* Plot a Single Red Point of "Size" 0.05 *L Graphics3D@8PointSize@0.05D, Red, Point@PD

More information

Mathematica for Dirac delta functions and Green functions

Mathematica for Dirac delta functions and Green functions Mathematica for Dirac delta functions and Green functions DiracDelta function Mathematic has Dirac s delta function built in for use in integrals and solving differential equations. If you evaluate it

More information

A model for an intramuscular injection of a medication.

A model for an intramuscular injection of a medication. injection_model.nb 1 A model for an intramuscular injection of a medication. Needs@"Graphics`Colors`"D; Intravenous injection of a medication: Injected drug in blood decays exponentially due to metabolic

More information

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information

Maple Commands for Surfaces and Partial Derivatives

Maple Commands for Surfaces and Partial Derivatives Math 235 Lab 2 Intro Maple Commands for Surfaces and Partial Derivatives We ve seen that a curve can be written as y = f(x), or more generally in parametric form using one parameter (usually t), and the

More information

REPRESENTATION OF CURVES IN PARAMETRIC FORM

REPRESENTATION OF CURVES IN PARAMETRIC FORM - Representation of curves in parametric form 1 REPRESENTATION OF CURVES IN PARAMETRIC FORM.1. Parametrization of curves in the plane Given a curve in parametric form, its graphical representation in a

More information

Dynamical Systems - Math 3280 Mathematica: From Algebra to Dynamical Systems c

Dynamical Systems - Math 3280 Mathematica: From Algebra to Dynamical Systems c Dynamical Systems - Math 3280 Mathematica: From Algebra to Dynamical Systems c Edit your document (remove extras and errors, ensure the rest works correctly). If needed, add comments. It is not necessary

More information

How to prepare interactive Mathematica demonstrations for classroom

How to prepare interactive Mathematica demonstrations for classroom How to prepare interactive Mathematica demonstrations for classroom János Karsai University of Szeged http://silver.szote.u-szeged.hu/~karsai karsai@dmi.u-szeged.hu 2 workshop.nb Some examples from the

More information

14.6 Directional Derivatives and the Gradient Vector

14.6 Directional Derivatives and the Gradient Vector 14 Partial Derivatives 14.6 and the Gradient Vector Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and the Gradient Vector In this section we introduce

More information

CurvesGraphics. A free package for Advanced Calculus illustrations. Gianluca Gorni. Arrows on 2D curves. Motivation

CurvesGraphics. A free package for Advanced Calculus illustrations. Gianluca Gorni. Arrows on 2D curves. Motivation CurvesGraphics A free package for Advanced Calculus illustrations. Gianluca Gorni Motivation As a teacher of Calculus and Mathematical Analysis at college and university level, I feel that Mathematica

More information

Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R 2 and R 3 Robert L.Foote, Fall 2007

Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R 2 and R 3 Robert L.Foote, Fall 2007 CurvesAndSurfaces.nb Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R and R 3 Robert L.Foote, Fall 007 Curves and Surfaces Graphs ü The graph of f : Æ is a curve

More information

Defining and Plotting a Parametric Curve in 3D a(t)=(x(t),y(t),z(t)) H* clears all previous assingments so we can reuse them *L

Defining and Plotting a Parametric Curve in 3D a(t)=(x(t),y(t),z(t)) H* clears all previous assingments so we can reuse them *L Defining and Plotting a Parametric Curve in 3D a(t)=(x(t),y(t),z(t)) Clear@"Global`*"D H* clears all previous assingments so we can reuse them *L H* Define vector functions in 3D of one variable t, i.e.

More information

B. Examples Set up the integral(s) needed to find the area of the region bounded by

B. Examples Set up the integral(s) needed to find the area of the region bounded by Math 176 Calculus Sec. 6.1: Area Between Curves I. Area between the Curve and the x Axis A. Let f(x) 0 be continuous on [a,b]. The area of the region between the graph of f and the x-axis is A = f ( x)

More information

Basic Exercises about Mathematica

Basic Exercises about Mathematica Basic Exercises about Mathematica 1. Calculate with four decimal places. NB F. 2.23607 2.23607 Ë We can evaluate a cell by placing the cursor on it and pressing Shift+Enter (or Enter on the numeric key

More information

Lecture 17 Appendix B (analytic functions and contour integrals)

Lecture 17 Appendix B (analytic functions and contour integrals) Lecture 7 Appendix B (analytic functions and contour integrals) Ex 4.:8 We want to consider the analyticity properties (CR) of the square root function In[]:= f8@z_d := Sqrt@zD Now write this function

More information

An Introduction to Using Maple in Math 23

An Introduction to Using Maple in Math 23 An Introduction to Using Maple in Math 3 R. C. Daileda The purpose of this document is to help you become familiar with some of the tools the Maple software package offers for visualizing solutions to

More information

A Brief Introduction to Mathematica

A Brief Introduction to Mathematica A Brief Introduction to Mathematica Objectives: (1) To learn to use Mathematica as a calculator. (2) To learn to write expressions in Mathematica, and to evaluate them at given point. (3) To learn to plot

More information

Worksheet 2.2: Partial Derivatives

Worksheet 2.2: Partial Derivatives Boise State Math 275 (Ultman) Worksheet 2.2: Partial Derivatives From the Toolbox (what you need from previous classes) Be familiar with the definition of a derivative as the slope of a tangent line (the

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i.

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i. HdPlot.nb In[]:=? Plot Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f, f,, x, x min, x max plots several functions f i. In[]:= Plot Sin 7 x Exp x ^, x,, 4.5

More information

Lecture 4. while and for loops if else test Tuples Functions. Let us start Python Ssh (putty) to UNIX/Linux computer puccini.che.pitt.

Lecture 4. while and for loops if else test Tuples Functions. Let us start Python Ssh (putty) to UNIX/Linux computer puccini.che.pitt. Lecture 4 while and for loops if else test Tuples Functions Let us start Python Ssh (putty) to UNIX/Linux computer puccini.che.pitt.edu Launching Python > python Quick Reminder: while Loop Example >>>

More information

c x y f() f (x) Determine the Determine the Approximate c : Replacin on the AP exam: under-approximation

c x y f() f (x) Determine the Determine the Approximate c : Replacin on the AP exam: under-approximation Tangent Lines and Linear Approximations Students should be able to: Determine the slope of tangent line to a curve at a point Determine the equations of tangent lines and normal lines Approximate a value

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

Math 20A lecture 10 The Gradient Vector

Math 20A lecture 10 The Gradient Vector Math 20A lecture 10 p. 1/12 Math 20A lecture 10 The Gradient Vector T.J. Barnet-Lamb tbl@brandeis.edu Brandeis University Math 20A lecture 10 p. 2/12 Announcements Homework five posted, due this Friday

More information

Introduction to Matlab

Introduction to Matlab Technische Universität München WT 21/11 Institut für Informatik Prof Dr H-J Bungartz Dipl-Tech Math S Schraufstetter Benjamin Peherstorfer, MSc October 22nd, 21 Introduction to Matlab Engineering Informatics

More information

Euler s Method for Approximating Solution Curves

Euler s Method for Approximating Solution Curves Euler s Method for Approximating Solution Curves As you may have begun to suspect at this point, time constraints will allow us to learn only a few of the many known methods for solving differential equations.

More information

Euler s Methods (a family of Runge- Ku9a methods)

Euler s Methods (a family of Runge- Ku9a methods) Euler s Methods (a family of Runge- Ku9a methods) ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an

More information

dy = dx y dx Project 1 Consider the following differential equations: I. xy II. III.

dy = dx y dx Project 1 Consider the following differential equations: I. xy II. III. Project 1 Consider the following differential equations: dy = dy = y dy x + sin( x) y = x I. xy II. III. 1. Graph the direction field in the neighborhood of the origin. Graph approximate integral curves

More information

Parametric Curves, Polar Plots and 2D Graphics

Parametric Curves, Polar Plots and 2D Graphics Parametric Curves, Polar Plots and 2D Graphics Fall 2016 In[213]:= Clear "Global`*" 2 2450notes2_fall2016.nb Parametric Equations In chapter 9, we introduced parametric equations so that we could easily

More information

Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods

Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods We have seen examples of first-order differential equations which can, by one method of another, be solved

More information

1) Find. a) b) c) d) e) 2) The function g is defined by the formula. Find the slope of the tangent line at x = 1. a) b) c) e) 3) Find.

1) Find. a) b) c) d) e) 2) The function g is defined by the formula. Find the slope of the tangent line at x = 1. a) b) c) e) 3) Find. 1 of 7 1) Find 2) The function g is defined by the formula Find the slope of the tangent line at x = 1. 3) Find 5 1 The limit does not exist. 4) The given function f has a removable discontinuity at x

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

Functions of Several Variables, Limits and Derivatives

Functions of Several Variables, Limits and Derivatives Functions of Several Variables, Limits and Derivatives Introduction and Goals: The main goal of this lab is to help you visualize surfaces in three dimensions. We investigate how one can use Maple to evaluate

More information

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane.

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane. Math 21a Tangent Lines and Planes Fall, 2016 What do we know about the gradient f? Tangent Lines to Curves in the Plane. 1. For each of the following curves, find the tangent line to the curve at the point

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

3.1 Iterated Partial Derivatives

3.1 Iterated Partial Derivatives 3.1 Iterated Partial Derivatives Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.1 Iterated Partial Derivatives Math 20C / Fall 2018 1 / 19 Higher Derivatives Take the partial derivative of f (x, y) = x

More information

.(3, 2) Co-ordinate Geometry Co-ordinates. Every point has two co-ordinates. Plot the following points on the plane. A (4, 1) D (2, 5) G (6, 3)

.(3, 2) Co-ordinate Geometry Co-ordinates. Every point has two co-ordinates. Plot the following points on the plane. A (4, 1) D (2, 5) G (6, 3) Co-ordinate Geometry Co-ordinates Every point has two co-ordinates. (3, 2) x co-ordinate y co-ordinate Plot the following points on the plane..(3, 2) A (4, 1) D (2, 5) G (6, 3) B (3, 3) E ( 4, 4) H (6,

More information

Travelling fronts in stochastic Stokes' drifts H1 ê 3L Adrien Blanchet, Jean Dolbeault, and Michal Kowalczyk

Travelling fronts in stochastic Stokes' drifts H1 ê 3L Adrien Blanchet, Jean Dolbeault, and Michal Kowalczyk 85-.nb Travelling fronts in stochastic Stokes' drifts H ê 3L Adrien Blanchet, Jean Dolbeault, and Michal Kowalczyk Off@NIntegrate::"slwcon"D Off@General::"spell"D Off@NIntegrate::"ncvb"D Off@NIntegrate::"ploss"D

More information

AP Calculus AB Unit 2 Assessment

AP Calculus AB Unit 2 Assessment Class: Date: 203-204 AP Calculus AB Unit 2 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. A calculator may NOT be used on this part of the exam.

More information

Tangent Lines and Linear Approximations Solutions

Tangent Lines and Linear Approximations Solutions Solutions We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment,

More information

Chapter 7: Analytic Trigonometry

Chapter 7: Analytic Trigonometry Chapter 7: Analytic Trigonometry 7. Trigonometric Identities Below are the basic trig identities discussed in previous chapters. Reciprocal csc(x) sec(x) cot(x) sin(x) cos(x) tan(x) Quotient sin(x) cos(x)

More information

Level Curves and Contour Maps (sec 14.1) & Partial Derivatives (sec 14.3) Today, We Will: Level Curves. Notes. Notes. Notes.

Level Curves and Contour Maps (sec 14.1) & Partial Derivatives (sec 14.3) Today, We Will: Level Curves. Notes. Notes. Notes. Level Curves and Contour Maps (sec 14.1) & Partial Derivatives (sec 14.3) 11 February 2015 Today, We Will: Wrap-up our discussion of level curves and contour maps. Define partial derivatives of a function

More information

You can drag the graphs using your mouse to rotate the surface.

You can drag the graphs using your mouse to rotate the surface. The following are some notes for relative maxima and mimima using surfaces plotted in Mathematica. The way to run the code is: Select Menu bar -- Evaluation -- Evaluate Notebook You can drag the graphs

More information

Mathematica examples relevant to Bessel functions

Mathematica examples relevant to Bessel functions Mathematica eamples relevant to Bessel functions The original Bessel function---that discussed etensively in Boas Also called Bessel functions of the first kind, or cylindrical Bessel functions It is a

More information

Introduction to Matlab

Introduction to Matlab Introduction to Matlab Kristian Sandberg Department of Applied Mathematics University of Colorado Goal The goal with this worksheet is to give a brief introduction to the mathematical software Matlab.

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information

Higher. The Wave Equation. The Wave Equation 146

Higher. The Wave Equation. The Wave Equation 146 Higher Mathematics UNIT OUTCOME 4 The Wave Equation Contents The Wave Equation 146 1 Expressing pcosx + qsinx in the form kcos(x a 146 Expressing pcosx + qsinx in other forms 147 Multiple Angles 148 4

More information

Graphs of Functions, Limits, and

Graphs of Functions, Limits, and Chapter Continuity Graphs of Functions, Limits, and ü. Plotting Graphs Students should read Chapter of Rogawski's Calculus [] for a detailed discussion of the material presented in this section. ü.. Basic

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

Not for reproduction

Not for reproduction x=a GRAPHING CALCULATORS AND COMPUTERS (a, d ) y=d (b, d ) (a, c ) y=c (b, c) (a) _, by _, 4 x=b FIGURE 1 The viewing rectangle a, b by c, d _4 4 In this section we assume that you have access to a graphing

More information

Approximate First and Second Derivatives

Approximate First and Second Derivatives MTH229 Project 6 Exercises Approximate First and Second Derivatives NAME: SECTION: INSTRUCTOR: Exercise 1: Let f(x) = sin(x 2 ). We wish to find the derivative of f when x = π/4. a. Make a function m-file

More information

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i.

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i. HdPlot.nb? Plot Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f, f,, x, x min, x max plots several functions f i. Plot Sin 7 x Exp x ^, x,, 4.5 3 4.5 Plot Sin

More information

Introduction to Simulink

Introduction to Simulink Introduction to Simulink There are several computer packages for finding solutions of differential equations, such as Maple, Mathematica, Maxima, MATLAB, etc. These systems provide both symbolic and numeric

More information

Unit #22 - The Chain Rule, Higher Partial Derivatives & Optimization Section 14.7

Unit #22 - The Chain Rule, Higher Partial Derivatives & Optimization Section 14.7 Unit #22 - The Chain Rule, Higher Partial Derivatives & Optimization Section 14.7 Some material from Calculus, Single and MultiVariable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John

More information

4.2.1 directional derivatives and the gradient in R 2

4.2.1 directional derivatives and the gradient in R 2 4.2. PARTIAL DIFFERENTIATION IN R 2 161 4.2.1 directional derivatives and the gradient in R 2 Now that we have a little experience in partial differentiation let s return to the problem of the directional

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus Fall 006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture 6: Trigonometric

More information

Differentiated Learning with Mathematical Software: Orthogonal Curves from Wire Grid to Differential Equation

Differentiated Learning with Mathematical Software: Orthogonal Curves from Wire Grid to Differential Equation Differentiated Learning with Mathematical Software: Orthogonal Curves from Wire Grid to Differential Equation Tanja Van Hecke Ghent University, Faculty of Engineering and Architecture (Belgium) Tanja.VanHecke@ugent.be

More information

Application 2.4 Implementing Euler's Method

Application 2.4 Implementing Euler's Method Application 2.4 Implementing Euler's Method One's understanding of a numerical algorithm is sharpened by considering its implementation in the form of a calculator or computer program. Figure 2.4.13 in

More information

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y.

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y. 2 Second Derivatives As we have seen, a function f (x, y) of two variables has four different partial derivatives: (x, y), (x, y), f yx (x, y), (x, y) It is convenient to gather all four of these into

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

Teaching Complex Analysis as a Lab- Type ( flipped ) Course with a Focus on Geometric Interpretations using Mathematica

Teaching Complex Analysis as a Lab- Type ( flipped ) Course with a Focus on Geometric Interpretations using Mathematica Teaching Complex Analysis as a Lab- Type ( flipped ) Course with a Focus on Geometric Interpretations using Mathematica Bill Kinney, Bethel University, St. Paul, MN 2 KinneyComplexAnalysisLabCourse.nb

More information

Green Globs And Graphing Equations

Green Globs And Graphing Equations Green Globs And Graphing Equations Green Globs and Graphing Equations has four parts to it which serve as a tool, a review or testing device, and two games. The menu choices are: Equation Plotter which

More information

2.9 Linear Approximations and Differentials

2.9 Linear Approximations and Differentials 2.9 Linear Approximations and Differentials 2.9.1 Linear Approximation Consider the following graph, Recall that this is the tangent line at x = a. We had the following definition, f (a) = lim x a f(x)

More information

It Does Algebra. Note we have a list of lists, and the elements inside are expressions: we'll see more explicit functional constructs later

It Does Algebra. Note we have a list of lists, and the elements inside are expressions: we'll see more explicit functional constructs later Mathematica as Lisp Outline of this talk: 1) Show a few "Gee Whiz" features of Mathematica -show some algebraic calcs -show some nice typesetting -show some pretty graphics 2) Is it lisp? - front end /

More information

Examples of Linear Approximation

Examples of Linear Approximation M28Spring07 J. Simon Examples of Linear Approximation Here are several examples of using derivatives to find the "best" linear [I'd rather say "affine", but the text says "linear"] approximation to a given

More information

This notebook "MathematicaDemo.nb" can be downloaded from the course web page.

This notebook MathematicaDemo.nb can be downloaded from the course web page. Mathematica demo http://www.wolfram.com/ This notebook "MathematicaDemo.nb" can be downloaded from the course web page. Basics Evaluate cells by pressing "shift-enter" / shift-return In[]:= + 3 Out[]=

More information

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 3

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 3 07 00 MT.. ttempt NY FIVE of the following : (i) Slope of the line (m) intercept of the line (c) 3 B slope intercept form, The equation of the line is m + c ( ) + 3 + 3 The equation of the given line is

More information

CS 130. Scan Conversion. Raster Graphics

CS 130. Scan Conversion. Raster Graphics CS 130 Scan Conversion Raster Graphics 2 1 Image Formation Computer graphics forms images, generally two dimensional, using processes analogous to physical imaging systems like: - Cameras - Human visual

More information

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable:

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: Euler s Methods ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an initial value/condition (i.e., value

More information

Appendix B: Using Graphical Analysis

Appendix B: Using Graphical Analysis Appendix B: Using Graphical Analysis Graphical Analysis (GA) is a program by Vernier Software. This program is loaded on all of the Physics 170A computers as well as all of the regular Physics 170 computers.

More information

Newton s Method. Example : Find the root of f (x) =

Newton s Method. Example : Find the root of f (x) = Newton s Method Example : Find the root of f (x) = If we draw the graph of f (x), we can see that the root of f (x) = 0 is the x - coordinate of the point where the curve intersects with the x - axis.

More information

Mathematica Primer.nb 1

Mathematica Primer.nb 1 Mathematica Primer.nb (* Mathematica is a powerful mathematics software pacage that can perform numerical calculations and SYMBOIC manipulations. To enter the program from either a Mac or Windows environment,

More information

Integrating Equations of Motion in Mathematica

Integrating Equations of Motion in Mathematica MmaGuide-GLG.nb Integrating Equations of Motion in Mathematica Gary L. Gray Assistant Professor Engineering Science and Mechanics The Pennsylvania State University 227 Hammond Building University Park,

More information

Lesson 5: Perpendicular Lines

Lesson 5: Perpendicular Lines : Perpendicular Lines Learning Target I can generalize the criterion for perpendicularity of two segments that meet at a point I can determine if two segments are perpendicular and write the equation of

More information

Functions of Several Variables

Functions of Several Variables Jim Lambers MAT 280 Spring Semester 2009-10 Lecture 2 Notes These notes correspond to Section 11.1 in Stewart and Section 2.1 in Marsden and Tromba. Functions of Several Variables Multi-variable calculus

More information

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 5

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 5 07 00 MT MT - GEOMETRY - SEMI PRELIM - I : Time : Hours Model nswer Paper Max. Marks : 40.. ttempt NY FIVE of the following : (i) Slope of the line (m) 0 y intercept of the line (c) By slope intercept

More information

Overview: The original Mathematica was a computer algebra system (CAS) released by Stephen Wolfram in 1988.

Overview: The original Mathematica was a computer algebra system (CAS) released by Stephen Wolfram in 1988. Mathematica 7.0.1 Overview: The original Mathematica was a computer algebra system (CAS) released by Stephen Wolfram in 1988. Modern releases have augmented the CAS with powerful numerical and graphical

More information

HOW CAN I USE MAPLE TO HELP MY STUDENTS LEARN MULTIVARIATE CALCULUS?

HOW CAN I USE MAPLE TO HELP MY STUDENTS LEARN MULTIVARIATE CALCULUS? HOW CAN I USE MAPLE TO HELP MY STUDENTS LEARN MULTIVARIATE CALCULUS? Thomas G. Wangler Benedictine University 5700 College Road, Lisle, IL 6053-0900 twangler@ben.edu Introduction Maple is a powerful software

More information

Four Types of Slope Positive Slope Negative Slope Zero Slope Undefined Slope Slope Dude will help us understand the 4 types of slope

Four Types of Slope Positive Slope Negative Slope Zero Slope Undefined Slope Slope Dude will help us understand the 4 types of slope Four Types of Slope Positive Slope Negative Slope Zero Slope Undefined Slope Slope Dude will help us understand the 4 types of slope https://www.youtube.com/watch?v=avs6c6_kvxm Direct Variation

More information

Test # 1 Review. to the line x y 5. y 64x x 3. y ( x 5) 4 x 2. y x2 2 x. Á 3, 4 ˆ 2x 5y 9. x y 2 3 y x 1. Á 6,4ˆ and is perpendicular. x 9. g(t) t 10.

Test # 1 Review. to the line x y 5. y 64x x 3. y ( x 5) 4 x 2. y x2 2 x. Á 3, 4 ˆ 2x 5y 9. x y 2 3 y x 1. Á 6,4ˆ and is perpendicular. x 9. g(t) t 10. Name: Class: Date: ID: A Test # 1 Review Short Answer 1. Find all intercepts: y 64x x 3 2. Find all intercepts: y ( x 5) 4 x 2 3. Test for symmetry with respect to each axis and to the origin. y x2 2 x

More information

Linear optimization. Linear programming using the Simplex method. Maximize M = 40 x x2. subject to: 2 x1 + x2 70 x1 + x2 40 x1 + 3 x2 90.

Linear optimization. Linear programming using the Simplex method. Maximize M = 40 x x2. subject to: 2 x1 + x2 70 x1 + x2 40 x1 + 3 x2 90. Linear optimization Linear programming using the Simplex method Maximize M = 40 x + 60 x2 subject to: 2 x + x2 70 x + x2 40 x + 3 x2 90 x 0 Here are the constraints 2 simplexnotes.nb constraints = Plot@870-2

More information

(1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives.

(1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives. Section 11.3 Partial Derivatives (1) Tangent Lines on Surfaces, (2) Partial Derivatives, (3) Notation and Higher Order Derivatives. MATH 127 (Section 11.3) Partial Derivatives The University of Kansas

More information

Transformations Review

Transformations Review Transformations Review 1. Plot the original figure then graph the image of Rotate 90 counterclockwise about the origin. 2. Plot the original figure then graph the image of Translate 3 units left and 4

More information

Getting a New Perspective

Getting a New Perspective Section 6.3 Polar Coordinates Getting a New Perspective We have worked etensively in the Cartesian coordinate system, plotting points, graphing equations, and using the properties of the Cartesian plane

More information

Partial Derivatives (Online)

Partial Derivatives (Online) 7in x 10in Felder c04_online.tex V3 - January 21, 2015 9:44 A.M. Page 1 CHAPTER 4 Partial Derivatives (Online) 4.7 Tangent Plane Approximations and Power Series It is often helpful to use a linear approximation

More information

A Constant Rate of Change Name Part 1

A Constant Rate of Change Name Part 1 A Constant Rate of Change Name Part 1 Consider the function table below. Complete this page by solving the problems at the bottom. Use a separate sheet of paper for your descriptions and explanations.

More information

Starting Matlab. MATLAB Laboratory 09/09/10 Lecture. Command Window. Drives/Directories. Go to.

Starting Matlab. MATLAB Laboratory 09/09/10 Lecture. Command Window. Drives/Directories. Go to. Starting Matlab Go to MATLAB Laboratory 09/09/10 Lecture Lisa A. Oberbroeckling Loyola University Maryland loberbroeckling@loyola.edu http://ctx.loyola.edu and login with your Loyola name and password...

More information

Linear First-Order PDEs

Linear First-Order PDEs MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 9 Lecture 2 Linear First-Orer PDEs The most general first-orer linear PDE has the form a(x, y)z x + b(x, y)z y + c(x, y)z = (x, y), (1) where a, b,

More information

Cost Functions in Machine Learning

Cost Functions in Machine Learning Cost Functions in Machine Learning Kevin Swingler Motivation Given some data that reflects measurements from the environment We want to build a model that reflects certain statistics about that data Something

More information

Numerical Solution to the Brachistochrone Problem

Numerical Solution to the Brachistochrone Problem Numerical Solution to the Brachistochrone Problem Aditya Mittal * Stanford University Abstract This paper presents the numerical solution to the brachistochrone problem. The brachistochrone problem is

More information

SOLVING SIMULTANEOUS EQUATIONS. EXAMPLE e4.1 Solve Corresponding augmented matrix 2x 4y 2 a 242 x 3y 3

SOLVING SIMULTANEOUS EQUATIONS. EXAMPLE e4.1 Solve Corresponding augmented matrix 2x 4y 2 a 242 x 3y 3 190 Lecture 5 equations graphs integrals Open MATH 190 in a browser; select Lecture 5 Double-click the SciLab icon. See Chapter 3, 10 of text for details. SOLVING SIMULTANEOUS EQUATIONS. EXAMPLE e4.1 Solve

More information

Week 5: Geometry and Applications

Week 5: Geometry and Applications Week 5: Geometry and Applications Introduction Now that we have some tools from differentiation, we can study geometry, motion, and few other issues associated with functions of several variables. Much

More information

AMS 27L LAB #1 Winter 2009

AMS 27L LAB #1 Winter 2009 AMS 27L LAB #1 Winter 2009 Introduction to MATLAB Objectives: 1. To introduce the use of the MATLAB software package 2. To learn elementary mathematics in MATLAB Getting Started: Log onto your machine

More information

Chapter 1: Interval computation

Chapter 1: Interval computation Chapter 1: Interval computation July 8, 2017 Problem. Given f : R n R and a box [x] R n, prove that x [x],f (x) 0. Interval arithmetic can solve efficiently this problem. Example. Is the function f (x)

More information

1 0 3 y 2. In SciNotes, enter the augmented matrix, then rref(a).

1 0 3 y 2. In SciNotes, enter the augmented matrix, then rref(a). 190 Lecture 5 equations graphs integrals Open MATH 190 in a browser; select Lecture 5 Double-click the SciLab icon. See Chapter 3, 10 of text for details. SOLVING SIMULTANEOUS EQUATIONS. EXAMPLE e4.1 Solve

More information