1 The Inverse Problem

Size: px
Start display at page:

Download "1 The Inverse Problem"

Transcription

1 The Inverse Problem We have learned that a general solution of a first-order differential equation y = f H, yl (..) is a one-parameter family of (either eplicit or implicit) solutions. Finding a general solution of (..) can be difficult. However, the inverse problem is, in principle, always straightforward. The inverse problem is this: What differential equation is satisfied by a given general solution? Solving this inverse problem amounts essentially to these two steps:. Take the differential of each side of the equation that describes the general solution.. Use the original equation to eliminate the parameter. (In fact, precisely the same technique can be used to verify a general solution of a given differential equation.) ü Eample.. What differential equation is satisfied by the one-parameter family of curves + c y + y =? Here s a plot that shows the curves corresponding to c =, -.5,,.5, : ContourPlotAEvaluateATableA + c y + y ã, 8c,,,.5<EE, 8,, <, 8y,, <E These are ellipses when c 0 and hyperbolas when c < 0. To find the differential equation, we will compute the differential of each side of + c y + y = and then eliminate the parameter. We first enter the equation: soln = I + c y + y == M + y + c y ã

2 inverseproblem.nb Net we use Dt to take differentials, replacing the differential of the (constant) parameter with 0: Deqn = Dt@solnD ê. Dt@cD Ø 0 Dt@D + Dt@yD + c y Dt@yD ã 0 (Here Dt[] and Dt[y] represent and y.) Now, we don t want the parameter c to appear in the differential equation. To eliminate c, we just need to solve for c in the original equation and substitute the result into our differential equation: Deqn = Deqn ê. Solve@soln, cd êê First I - - ym Dt@yD Dt@D + Dt@yD + ã 0 y That s essentially it, but let s simplify (assuming y ¹ 0) and make it prettier: Simplify@Deqn, Assumptions Ø 8y ¹ 0<D êê TraditionalForm I + y - M y y ü Eample.. Verify that + c + y - y = 0. is an implicit general solution of I - y + y M + I - y M y = 0. To verify the solution, we ll begin by using Dt to compute the differential of each side and replacing the differential of the parameter with zero: soln := + c + y - y ã 0; deqn = Dt@solnD ê. Dt@cD Ø 0 c Dt@D + Dt@D + Dt@yD - y Dt@yD ã 0 Net we need to eliminate the parameter from the equation: Solve@soln, cd êê First deqn = deqn ê. % :c Ø - y + y I- - y + y M Dt@D Dt@D + + Dt@yD - y Dt@yD ã 0 Now let s simplify and make the result prettier by viewing it in TraditionalForm: Simplify@deqn, Assumptions Ø 8 ¹ 0<D êê TraditionalForm I + y - ym + I - y M y 0 Now let s have a look at the solution curves. Solving the implicit general solution for c shows that the solution curves are the contours of the function F@_, y_d = c ê. FirstüSolve@soln, cd - - y + y

3 inverseproblem.nb So we can plot solution curves with ContourPlot as follows: yd, 8,, <, 8y,, <, Contours Ø 5D, ContourShading Ø False, Eclusions Ø 8 ã 0<D Since ContourPlot also plots equations, essentially the same picture can be made this way as well: ContourPlot@Evaluate@Table@soln, 8c, -5, 5<DD, 8,, <, 8y,, <D When an eplicit general solution is given, we can take a slightly different approach to find the associated differential equation. ü Eample.. What differential equation is satisfied by the one-parameter family y = Let s start by defining a function to represent the general solution. In[6]:= := c - c -? Since this general solution is eplicit, all we need to do is to eliminate the parameter c from the following pair of equations: In[7]:= eqns = 8y ã y' == y '@D< Out[7]= :y ã c -, y ã c - + Hc - L Fortunately Mathematica has a function named Eliminate for doing just that. In[8]:= Out[8]//TraditionalForm= y y + y Hdeqn = Eliminate@eqns, 8c<DL êê TraditionalForm Now, if we like, we can solve for y and display the equation in the form y = f H, yl. In[9]:= y' == Hy' ê. FirstüSolve@deqn, y'dl êê TraditionalForm Out[9]//TraditionalForm= y y + y

4 4 inverseproblem.nb Here are a few of the solution curves: 8c, -5, 5<DD, 8, -4, 4<D The technique we ve described here can be etended to n-parameter families and nth-order differential equations. In the net eample we will find the second-order differential whose general solution is a given two-parameter family. ü Eample..4 What differential equation has the general solution y = c + c? Let s start by defining a function to represent the general solution. := c + c Since this general solution is eplicit, all we need to do is to eliminate the parameters c and c from the following three equations: eqns = 8y ã y' == y '@D, y'' == y ''@D< c :y ã, y ã - c + c, c Hc + c L y ã Hc + c L Fortunately Mathematica has a function named Eliminate for doing just that. Eliminate@eqns, 8c, c <D êê TraditionalForm y y Hy L That s the differential equation we re after. Notice that it is nonlinear. ü Eercises In 7, (a) find the differential equation that has the given general solution, and (b) make a plot that shows the graphs of several of the solutions.. + y - y = c

5 inverseproblem.nb 5. + y - c y =. + c y - y = 4. c + y - y = 5. y = H - cl 6. y = cosh - cl 7. y = tan - H - cl In 8 0, find the second-order differential equation that has the given general solution. 8. y = c + c 9. y = c + c 0. y = - Hc + c L

Using Mathematica to solve ODEs (part 1)

Using Mathematica to solve ODEs (part 1) Using Mathematica to solve ODEs (part ) Basic tool is DSolve Note that in DSolve the dependent variable (usually y below) must be written y[x] or y [x] (for the derivative) or y [x] (for the second derivative)

More information

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i.

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i. HdPlot.nb In[]:=? Plot Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f, f,, x, x min, x max plots several functions f i. In[]:= Plot Sin 7 x Exp x ^, x,, 4.5

More information

PARAMETERIZATIONS OF PLANE CURVES

PARAMETERIZATIONS OF PLANE CURVES PARAMETERIZATIONS OF PLANE CURVES Suppose we want to plot the path of a particle moving in a plane. This path looks like a curve, but we cannot plot it like we would plot any other type of curve in the

More information

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i.

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i. HdPlot.nb? Plot Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f, f,, x, x min, x max plots several functions f i. Plot Sin 7 x Exp x ^, x,, 4.5 3 4.5 Plot Sin

More information

Example 1: Give the coordinates of the points on the graph.

Example 1: Give the coordinates of the points on the graph. Ordered Pairs Often, to get an idea of the behavior of an equation, we will make a picture that represents the solutions to the equation. A graph gives us that picture. The rectangular coordinate plane,

More information

Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R 2 and R 3 Robert L.Foote, Fall 2007

Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R 2 and R 3 Robert L.Foote, Fall 2007 CurvesAndSurfaces.nb Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R and R 3 Robert L.Foote, Fall 007 Curves and Surfaces Graphs ü The graph of f : Æ is a curve

More information

Making Holes and Windows in Surfaces

Making Holes and Windows in Surfaces The Mathematica Journal Making Holes and Windows in Surfaces Alan Horwitz In this article, we demonstrate makehole, a program which removes points from any Graphics or Graphics3D picture whose coordinates

More information

We can set up the integral over this elliptical region as a y-simple region: This integral can be evaluated as follows. The inner integral is

We can set up the integral over this elliptical region as a y-simple region: This integral can be evaluated as follows. The inner integral is Volume using Double Integrals Eample : Find the volume of the region in R that is under the paraboloid z = + y, above the y plane and below z =. Solution: The region is shown below. The planes z = and

More information

H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P. H* Plot a Single Red Point of "Size" 0.05 *L

H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P. H* Plot a Single Red Point of Size 0.05 *L Define and plotting a point and vector H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P H* Plot a Single Red Point of "Size" 0.05 *L Graphics3D@8PointSize@0.05D, Red, Point@PD

More information

To Select a Tool: Persistence of Tools. Tools. New Graphic Tool. Do one of the following: Click a tool icon on the palette.

To Select a Tool: Persistence of Tools. Tools. New Graphic Tool. Do one of the following: Click a tool icon on the palette. Visualization and Graphics 119 To Select a Tool: Do one of the following: Click a tool icon on the palette. With a graphic selected, type one of these letters: o, p, f, l, s, a, g, c, q, m, t Persistence

More information

Quickstart: Mathematica for Calculus I (Version 9.0) C. G. Melles Mathematics Department United States Naval Academy September 2, 2013

Quickstart: Mathematica for Calculus I (Version 9.0) C. G. Melles Mathematics Department United States Naval Academy September 2, 2013 Quickstart: Mathematica for Calculus I (Version 9.0) C. G. Melles Mathematics Department United States Naval Academy September, 0 Contents. Getting Started. Basic plotting. Solving equations, approximating

More information

Implicit differentiation

Implicit differentiation Roberto s Notes on Differential Calculus Chapter 4: Basic differentiation rules Section 5 Implicit differentiation What ou need to know alread: Basic rules of differentiation, including the chain rule.

More information

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions

3.6 Graphing Piecewise-Defined Functions and Shifting and Reflecting Graphs of Functions 76 CHAPTER Graphs and Functions Find the equation of each line. Write the equation in the form = a, = b, or = m + b. For Eercises through 7, write the equation in the form f = m + b.. Through (, 6) and

More information

GRAPHICS OUTPUT PRIMITIVES

GRAPHICS OUTPUT PRIMITIVES CHAPTER 3 GRAPHICS OUTPUT PRIMITIVES LINE DRAWING ALGORITHMS DDA Line Algorithm Bresenham Line Algorithm Midpoint Circle Algorithm Midpoint Ellipse Algorithm CG - Chapter-3 LINE DRAWING Line drawing is

More information

A model for an intramuscular injection of a medication.

A model for an intramuscular injection of a medication. injection_model.nb 1 A model for an intramuscular injection of a medication. Needs@"Graphics`Colors`"D; Intravenous injection of a medication: Injected drug in blood decays exponentially due to metabolic

More information

Mathematica for Dirac delta functions and Green functions

Mathematica for Dirac delta functions and Green functions Mathematica for Dirac delta functions and Green functions DiracDelta function Mathematic has Dirac s delta function built in for use in integrals and solving differential equations. If you evaluate it

More information

In this chapter, we will investigate what have become the standard applications of the integral:

In this chapter, we will investigate what have become the standard applications of the integral: Chapter 8 Overview: Applications of Integrals Calculus, like most mathematical fields, began with trying to solve everyday problems. The theory and operations were formalized later. As early as 70 BC,

More information

CS 450: COMPUTER GRAPHICS RASTERIZING LINES SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS RASTERIZING LINES SPRING 2016 DR. MICHAEL J. REALE CS 45: COMPUTER GRAPHICS RASTERIZING LINES SPRING 6 DR. MICHAEL J. REALE OBJECT-ORDER RENDERING We going to start on how we will perform object-order rendering Object-order rendering Go through each OBJECT

More information

Functions. Name. Use an XY Coordinate Pegboard to graph each line. Make a table of ordered pairs for each line. y = x + 5 x y.

Functions. Name. Use an XY Coordinate Pegboard to graph each line. Make a table of ordered pairs for each line. y = x + 5 x y. Lesson 1 Functions Name Use an XY Coordinate Pegboard to graph each line. Make a table of ordered pairs for each line. 1. = + = + = 2 3 = 2 3 Using an XY Coordinate Pegboard, graph the line on a coordinate

More information

Graphing on the Riemann Sphere

Graphing on the Riemann Sphere The Mathematica Journal Graphing on the Riemann Sphere Djilali Benayat We give a procedure to plot parametric curves on the sphere whose advantages over classical graphs in the Cartesian plane are obvious

More information

Advanced Functions Unit 4

Advanced Functions Unit 4 Advanced Functions Unit 4 Absolute Value Functions Absolute Value is defined by:, 0, if if 0 0 - (), if 0 The graph of this piecewise function consists of rays, is V-shaped and opens up. To the left of

More information

POLYMATH Example for the Numerical Solution of ODEs

POLYMATH Example for the Numerical Solution of ODEs for the Numerical Solution of ODEs Differential Equations... 1 POLYMATH 5.0... 2 POLYMATH 6.0... 15 The equations & methods outlined here provide a framework with which one could create programs or spreadsheets

More information

Math 21a Homework 22 Solutions Spring, 2014

Math 21a Homework 22 Solutions Spring, 2014 Math 1a Homework Solutions Spring, 014 1. Based on Stewart 11.8 #6 ) Consider the function fx, y) = e xy, and the constraint x 3 + y 3 = 16. a) Use Lagrange multipliers to find the coordinates x, y) of

More information

Lesson 1 Introduction to Algebraic Geometry

Lesson 1 Introduction to Algebraic Geometry Lesson 1 Introduction to Algebraic Geometry I. What is Algebraic Geometry? Algebraic Geometry can be thought of as a (vast) generalization of linear algebra and algebra. Recall that, in linear algebra,

More information

Math 814 HW 2. September 29, p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ),

Math 814 HW 2. September 29, p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ), Math 814 HW 2 September 29, 2007 p. 43: 1,4,6,13,15, p. 54 1, 3 (cos z only). u(x, y) = x 3 3xy 2, u(x, y) = x/(x 2 + y 2 ), p.43, Exercise 1. Show that the function f(z) = z 2 = x 2 + y 2 has a derivative

More information

LIGHT: Two-slit Interference

LIGHT: Two-slit Interference LIGHT: Two-slit Interference Objective: To study interference of light waves and verify the wave nature of light. Apparatus: Two red lasers (wavelength, λ = 633 nm); two orange lasers (λ = 612 nm); two

More information

9. f(x) = x f(x) = x g(x) = 2x g(x) = 5 2x. 13. h(x) = 1 3x. 14. h(x) = 2x f(x) = x x. 16.

9. f(x) = x f(x) = x g(x) = 2x g(x) = 5 2x. 13. h(x) = 1 3x. 14. h(x) = 2x f(x) = x x. 16. Section 4.2 Absolute Value 367 4.2 Eercises For each of the functions in Eercises 1-8, as in Eamples 7 and 8 in the narrative, mark the critical value on a number line, then mark the sign of the epression

More information

ME 406 A Graphical View of the Transition from Local to Global

ME 406 A Graphical View of the Transition from Local to Global locglob.nb 1 ME 406 A Graphical View of the Transition from Local to Global sysid Mathematica 6.0.3, DynPac 11.01, 1ê13ê2009 intreset; plotreset; imsize = 250; ü INTRODUCTION In this notebook, we study

More information

Differentiation. J. Gerlach November 2010

Differentiation. J. Gerlach November 2010 Differentiation J. Gerlach November 200 D and diff The limit definition of the derivative is covered in the Limit tutorial. Here we look for direct ways to calculate derivatives. Maple has two commands

More information

Lesson 8.1 Exercises, pages

Lesson 8.1 Exercises, pages Lesson 8.1 Eercises, pages 1 9 A. Complete each table of values. a) -3 - -1 1 3 3 11 8 5-1 - -7 3 11 8 5 1 7 To complete the table for 3, take the absolute value of each value of 3. b) - -3 - -1 1 3 3

More information

Try It. Implicit and Explicit Functions. Video. Exploration A. Differentiating with Respect to x

Try It. Implicit and Explicit Functions. Video. Exploration A. Differentiating with Respect to x SECTION 5 Implicit Differentiation Section 5 Implicit Differentiation Distinguish between functions written in implicit form an eplicit form Use implicit ifferentiation to fin the erivative of a function

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

Geometric Modeling of Curves

Geometric Modeling of Curves Curves Locus of a point moving with one degree of freedom Locus of a one-dimensional parameter family of point Mathematically defined using: Explicit equations Implicit equations Parametric equations (Hermite,

More information

3.7 Graphing Linear Inequalities

3.7 Graphing Linear Inequalities 8 CHAPTER Graphs and Functions.7 Graphing Linear Inequalities S Graph Linear Inequalities. Graph the Intersection or Union of Two Linear Inequalities. Graphing Linear Inequalities Recall that the graph

More information

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values.

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values. Module 10 lesson 6 Parametric Equations. When modeling the path of an object, it is useful to use equations called Parametric equations. Instead of using one equation with two variables, we will use two

More information

Implicit and Explicit Functions

Implicit and Explicit Functions 60_005.q //0 :5 PM Page SECTION.5 Implicit Differentiation Section.5 EXPLORATION Graphing an Implicit Equation How coul ou use a graphing utilit to sketch the graph of the equation? Here are two possible

More information

Basic Exercises about Mathematica

Basic Exercises about Mathematica Basic Exercises about Mathematica 1. Calculate with four decimal places. NB F. 2.23607 2.23607 Ë We can evaluate a cell by placing the cursor on it and pressing Shift+Enter (or Enter on the numeric key

More information

MTH 122 Calculus II Essex County College Division of Mathematics and Physics 1 Lecture Notes #11 Sakai Web Project Material

MTH 122 Calculus II Essex County College Division of Mathematics and Physics 1 Lecture Notes #11 Sakai Web Project Material MTH Calculus II Essex County College Division of Mathematics and Physics Lecture Notes # Sakai Web Project Material Introduction - - 0 - Figure : Graph of y sin ( x y ) = x cos (x + y) with red tangent

More information

Graphs of Functions, Limits, and

Graphs of Functions, Limits, and Chapter Continuity Graphs of Functions, Limits, and ü. Plotting Graphs Students should read Chapter of Rogawski's Calculus [] for a detailed discussion of the material presented in this section. ü.. Basic

More information

Clipping Polygons. A routine for clipping polygons has a variety of graphics applications.

Clipping Polygons. A routine for clipping polygons has a variety of graphics applications. The Mathematica Journal Clipping Polygons Garry Helzer Department of Mathematics University of Maryland College Park, MD 20742 gah@math.umd.edu A routine for clipping polygons has a variety of graphics

More information

Defining and Plotting a Parametric Curve in 3D a(t)=(x(t),y(t),z(t)) H* clears all previous assingments so we can reuse them *L

Defining and Plotting a Parametric Curve in 3D a(t)=(x(t),y(t),z(t)) H* clears all previous assingments so we can reuse them *L Defining and Plotting a Parametric Curve in 3D a(t)=(x(t),y(t),z(t)) Clear@"Global`*"D H* clears all previous assingments so we can reuse them *L H* Define vector functions in 3D of one variable t, i.e.

More information

Chapter 10 Test Review

Chapter 10 Test Review Name: Class: Date: Chapter 10 Test Review Short Answer 1. Write an equation of a parabola with a vertex at the origin and a focus at ( 2, 0). 2. Write an equation of a parabola with a vertex at the origin

More information

REPRESENTATION OF CURVES IN PARAMETRIC FORM

REPRESENTATION OF CURVES IN PARAMETRIC FORM - Representation of curves in parametric form 1 REPRESENTATION OF CURVES IN PARAMETRIC FORM.1. Parametrization of curves in the plane Given a curve in parametric form, its graphical representation in a

More information

8.5 Graph and Write Equations of Hyperbolas p.518 What are the parts of a hyperbola? What are the standard form equations of a hyperbola?

8.5 Graph and Write Equations of Hyperbolas p.518 What are the parts of a hyperbola? What are the standard form equations of a hyperbola? 8.5 Graph and Write Equations of Hyperbolas p.518 What are the parts of a hyperbola? What are the standard form equations of a hyperbola? How do you know which way it opens? Given a & b, how do you find

More information

Transformation of curve. a. reflect the portion of the curve that is below the x-axis about the x-axis

Transformation of curve. a. reflect the portion of the curve that is below the x-axis about the x-axis Given graph of y f = and sketch:. Linear Transformation cf ( b + a) + d a. translate a along the -ais. f b. scale b along the -ais c. scale c along the y-ais d. translate d along the y-ais Transformation

More information

Find the Relationship: An Exercise in Graphical Analysis

Find the Relationship: An Exercise in Graphical Analysis Find the Relationship: An Eercise in Graphical Analsis In several laborator investigations ou do this ear, a primar purpose will be to find the mathematical relationship between two variables. For eample,

More information

Assignment 1. Prolog to Problem 1. Two cylinders. ü Visualization. Problems by Branko Curgus

Assignment 1. Prolog to Problem 1. Two cylinders. ü Visualization. Problems by Branko Curgus Assignment In[]:= Problems by Branko Curgus SetOptions $FrontEndSession, Magnification Prolog to Problem. Two cylinders In[]:= This is a tribute to a problem that I was assigned as an undergraduate student

More information

Multi-step transformations

Multi-step transformations October 6, 2016 Transformations (section 1.6) Day 4 page 1 Multi-step transformations Objective: Apply transformations involving multiple steps or multiple substitutions. Upcoming: We will have a test

More information

B. Examples Set up the integral(s) needed to find the area of the region bounded by

B. Examples Set up the integral(s) needed to find the area of the region bounded by Math 176 Calculus Sec. 6.1: Area Between Curves I. Area between the Curve and the x Axis A. Let f(x) 0 be continuous on [a,b]. The area of the region between the graph of f and the x-axis is A = f ( x)

More information

4.2.1 directional derivatives and the gradient in R 2

4.2.1 directional derivatives and the gradient in R 2 4.2. PARTIAL DIFFERENTIATION IN R 2 161 4.2.1 directional derivatives and the gradient in R 2 Now that we have a little experience in partial differentiation let s return to the problem of the directional

More information

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES A. HAVENS These problems are for extra-credit, which is counted against lost points on quizzes or WebAssign. You do not

More information

Maple Commands for Surfaces and Partial Derivatives

Maple Commands for Surfaces and Partial Derivatives Math 235 Lab 2 Intro Maple Commands for Surfaces and Partial Derivatives We ve seen that a curve can be written as y = f(x), or more generally in parametric form using one parameter (usually t), and the

More information

Technology Assignment: Limits at Infinity

Technology Assignment: Limits at Infinity The goal of this technology assignment is to find the location of the horizontal asymptote for your model from Technology Assignment: Rational Model. You will produce a graph similar to the one below.

More information

Chapter Seventeen. Gauss and Green. We shall do this by computing the surface integral over each of the six sides of B and adding the results.

Chapter Seventeen. Gauss and Green. We shall do this by computing the surface integral over each of the six sides of B and adding the results. Chapter Seventeen Gauss and Green 7 Gauss's Theorem Let B be the bo, or rectangular parallelepiped, given by B {(, y, z):, y y y, z z z } 0 0 0 ; and let S be the surface of B with the orientation that

More information

DAY 28 - ARITHMETIC SEQUENCES

DAY 28 - ARITHMETIC SEQUENCES DAY 28 - ARITHMETIC SEQUENCES ARITHMETIC SEQUENCE An ARITHMETIC SEQUENCE is where the rule of the pattern is always ADDED. The rule is called the COMMON DIFFERENCE ARITHMETIC SEQUENCE You can use the following

More information

Algebra. Mathematica QuickStart for Calculus 101C. Solving Equations. Factoring. Exact Solutions to single equation:

Algebra. Mathematica QuickStart for Calculus 101C. Solving Equations. Factoring. Exact Solutions to single equation: Mathematica QuickStart for Calculus 101C Algebra Solving Equations Exact Solutions to single equation: In[88]:= Solve@x^3 + 5 x - 6 ã 0, xd Out[88]= :8x Ø 1, :x Ø 1 2 I-1 + Â 23

More information

Name: Class: Date: Conics Multiple Choice Pre-Test. Multiple Choice Identify the choice that best completes the statement or answers the question.

Name: Class: Date: Conics Multiple Choice Pre-Test. Multiple Choice Identify the choice that best completes the statement or answers the question. Name: Class: Date: Conics Multiple Choice Pre-Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1 Graph the equation x 2 + y 2 = 36. Then describe the

More information

4.2 Implicit Differentiation

4.2 Implicit Differentiation 6 Chapter 4 More Derivatives 4. Implicit Differentiation What ou will learn about... Implicitl Define Functions Lenses, Tangents, an Normal Lines Derivatives of Higher Orer Rational Powers of Differentiable

More information

Machine Learning for Signal Processing Lecture 4: Optimization

Machine Learning for Signal Processing Lecture 4: Optimization Machine Learning for Signal Processing Lecture 4: Optimization 13 Sep 2015 Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU) 11-755/18-797 1 Index 1. The problem of optimization 2. Direct optimization

More information

TANGENTS AND NORMALS

TANGENTS AND NORMALS Mathematics Revision Guides Tangents and Normals Page 1 of 8 MK HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C1 Edecel: C OCR: C1 OCR MEI: C TANGENTS AND NORMALS Version : 1 Date:

More information

We will be sketching 3-dimensional functions. You will be responsible for doing this both by hand and with Mathematica.

We will be sketching 3-dimensional functions. You will be responsible for doing this both by hand and with Mathematica. Review polar coordinates before 9.7. Section 9.6 Functions and Surfaces We will be sketching 3-dimensional functions. You will be responsible for doing this both b hand and with Mathematica. Remember:

More information

Functions of Several Variables

Functions of Several Variables Chapter 3 Functions of Several Variables 3.1 Definitions and Examples of Functions of two or More Variables In this section, we extend the definition of a function of one variable to functions of two or

More information

SI232 Set #20: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Chapter 6 ADMIN. Reading for Chapter 6: 6.1,

SI232 Set #20: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life. Chapter 6 ADMIN. Reading for Chapter 6: 6.1, SI232 Set #20: Laundry, Co-dependency, and other Hazards of Modern (Architecture) Life Chapter 6 ADMIN ing for Chapter 6: 6., 6.9-6.2 2 Midnight Laundry Task order A 6 PM 7 8 9 0 2 2 AM B C D 3 Smarty

More information

MA FINAL EXAM INSTRUCTIONS VERSION 01 DECEMBER 9, Section # and recitation time

MA FINAL EXAM INSTRUCTIONS VERSION 01 DECEMBER 9, Section # and recitation time MA 6500 FINAL EXAM INSTRUCTIONS VERSION 0 DECEMBER 9, 03 Your name Student ID # Your TA s name Section # and recitation time. You must use a # pencil on the scantron sheet (answer sheet).. Check that the

More information

CK 12 Algebra II with Trigonometry Concepts 1

CK 12 Algebra II with Trigonometry Concepts 1 10.1 Parabolas with Vertex at the Origin Answers 1. up 2. left 3. down 4.focus: (0, 0.5), directrix: y = 0.5 5.focus: (0.0625, 0), directrix: x = 0.0625 6.focus: ( 1.25, 0), directrix: x = 1.25 7.focus:

More information

Computer Lab 2: Implicit Finite-Difference Schemes for the Diffusion Equation with Smooth Initial Conditions

Computer Lab 2: Implicit Finite-Difference Schemes for the Diffusion Equation with Smooth Initial Conditions Computer Lab 2: Implicit Finite-Difference Schemes for the Diffusion Equation with Smooth Initial Conditions Schemes Investigated In this session we continue a comparsion the accuracy of various difference

More information

f(x) lim does not exist.

f(x) lim does not exist. Indeterminate Forms and L Hopital s Rule When we computed its of quotients, i.e. its of the form f() a g(), we came across several different things that could happen: f(). a g() = f(a) g(a) when g(). a

More information

This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version 3.0.

This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version 3.0. Range: This file contains an excerpt from the character code tables and list of character names for The Unicode Standard, Version.. isclaimer The shapes of the reference glyphs used in these code charts

More information

Further Differentiation

Further Differentiation Worksheet 39 Further Differentiation Section Discriminant Recall that the epression a + b + c is called a quadratic, or a polnomial of degree The graph of a quadratic is called a parabola, and looks like

More information

1. Fill in the right hand side of the following equation by taking the derivative: (x sin x) =

1. Fill in the right hand side of the following equation by taking the derivative: (x sin x) = 7.1 What is x cos x? 1. Fill in the right hand side of the following equation by taking the derivative: (x sin x = 2. Integrate both sides of the equation. Instructor: When instructing students to integrate

More information

Lagrange multipliers October 2013

Lagrange multipliers October 2013 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 1 1 3/2 Example: Optimization

More information

Section 4.2 Graphing Lines

Section 4.2 Graphing Lines Section. Graphing Lines Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif collinear points. The order of operations (1.) Graph the line

More information

) $ G}] }O H~U. G yhpgxl. Cong

) $ G}] }O H~U. G yhpgxl. Cong » Þ åî ïî á ë ïý þý ÿ þ ë ú ú F \ Œ Œ Ÿ Ÿ F D D D\ \ F F D F F F D D F D D D F D D D D FD D D D F D D FD F F F F F F F D D F D F F F D D D D F Ÿ Ÿ F D D Œ Ÿ D Ÿ Ÿ FŸ D c ³ ² í ë óô ò ð ¹ í ê ë Œ â ä ã

More information

: = Curves Defined by Parametric Equations. Ex: Consider the unit circle from Trigonometry. What is the equation of that circle?

: = Curves Defined by Parametric Equations. Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? of 8* * # 2+-12=1 There are 2 ways to describe it: x 2 + y 2 = 1 x = cos!

More information

Again the estimation of an Epicenter, this time using Monte Carlo methods.

Again the estimation of an Epicenter, this time using Monte Carlo methods. EpicenterMonteCarlo.nb EpicenterMonteCarlo.nb Again the etimation of an Epicenter, thi time uing Monte Carlo method. A priori information We ue the a priori information that the epicenter belong to a fault

More information

Graded Assignment 2 Maple plots

Graded Assignment 2 Maple plots Graded Assignment 2 Maple plots The Maple part of the assignment is to plot the graphs corresponding to the following problems. I ll note some syntax here to get you started see tutorials for more. Problem

More information

The equation to any straight line can be expressed in the form:

The equation to any straight line can be expressed in the form: Student Activity 7 8 9 10 11 12 TI-Nspire Investigation Student 45 min Aims Determine a series of equations of straight lines to form a pattern similar to that formed by the cables on the Jerusalem Chords

More information

Calculus 234. Problems. May 15, 2003

Calculus 234. Problems. May 15, 2003 alculus 234 Problems May 15, 23 A book reference marked [TF] indicates this semester s official text; a book reference marked [VPR] indicates the official text for next semester. These are [TF] Thomas

More information

The TK Solver Library

The TK Solver Library The TK Solver Library The TK Library is accessed via the Applications Menu. It is a collection of TK files. Some of the files contain a single user-defined function. Some contain just unit conversions.

More information

MATH STUDENT BOOK. 12th Grade Unit 7

MATH STUDENT BOOK. 12th Grade Unit 7 MATH STUDENT BOOK 1th Grade Unit 7 Unit 7 POLAR COORDINATES MATH 107 POLAR COORDINATES INTRODUCTION 1. POLAR EQUATIONS 5 INTRODUCTION TO POLAR COORDINATES 5 POLAR EQUATIONS 1 POLAR CURVES 19 POLAR FORMS

More information

STRAND G: Relations, Functions and Graphs

STRAND G: Relations, Functions and Graphs UNIT G Using Graphs to Solve Equations: Tet STRAND G: Relations, Functions and Graphs G Using Graphs to Solve Equations Tet Contents * * Section G. Solution of Simultaneous Equations b Graphs G. Graphs

More information

Linear optimization. Linear programming using the Simplex method. Maximize M = 40 x x2. subject to: 2 x1 + x2 70 x1 + x2 40 x1 + 3 x2 90.

Linear optimization. Linear programming using the Simplex method. Maximize M = 40 x x2. subject to: 2 x1 + x2 70 x1 + x2 40 x1 + 3 x2 90. Linear optimization Linear programming using the Simplex method Maximize M = 40 x + 60 x2 subject to: 2 x + x2 70 x + x2 40 x + 3 x2 90 x 0 Here are the constraints 2 simplexnotes.nb constraints = Plot@870-2

More information

Lagrange multipliers 14.8

Lagrange multipliers 14.8 Lagrange multipliers 14.8 14 October 2013 Example: Optimization with constraint. Example: Find the extreme values of f (x, y) = x + 2y on the ellipse 3x 2 + 4y 2 = 3. 3/2 Maximum? 1 1 Minimum? 3/2 Idea:

More information

: = Curves Defined by Parametric Equations. Ex: Consider the unit circle from Trigonometry. What is the equation of that circle?

: = Curves Defined by Parametric Equations. Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? of 8* * # 2+-121 There are 2 ways to describe it: x 2 + y 2 1 x cos! : 9

More information

ORTHOGONAL FAMILIES OF CURVES

ORTHOGONAL FAMILIES OF CURVES 8 ORTHOGONAL CURVES Spring her winning the car is the probability of her initially choosing a door with a goat behind it, that is 66%! There is a very nice, complete discussion of this topic, and the controversy

More information

hp calculators HP 9g Statistics Non-Linear Regression Non-Linear Regression Practice Solving Non-Linear Regression Problems

hp calculators HP 9g Statistics Non-Linear Regression Non-Linear Regression Practice Solving Non-Linear Regression Problems HP 9g Statistics Non-Linear Regression Non-Linear Regression Practice Solving Non-Linear Regression Problems Non-linear regression In addition to the linear regression (described in the HP 9g learning

More information

Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves (Part 2) Overview of Area Between Two Curves

Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves (Part 2) Overview of Area Between Two Curves Math 1206 Calculus Sec. 5.6: Substitution and Area Between Curves (Part 2) III. Overview of Area Between Two Curves With a few modifications the area under a curve represented by a definite integral can

More information

Euler s Method for Approximating Solution Curves

Euler s Method for Approximating Solution Curves Euler s Method for Approximating Solution Curves As you may have begun to suspect at this point, time constraints will allow us to learn only a few of the many known methods for solving differential equations.

More information

Some Examples to Show That Objects Be Presented by Mathematical Equations

Some Examples to Show That Objects Be Presented by Mathematical Equations American Journal of Computational Mathematics, 01,, 199-06 http://dx.doi.org/10.436/ajcm.01.305 Published Online September 01 (http://www.scirp.org/journal/ajcm) Some Examples to Show That Objects Be Presented

More information

surface length L = 1 4 Mathematica Code for streamfunction vorticity CFD

surface length L = 1 4 Mathematica Code for streamfunction vorticity CFD inflow y H i,n y outflow i,1 i,0 starting length Xs surface length L = 1 Figure 1: Eternal boundary layer control volume. 4 Mathematica Code for streamfunction vorticity CFD Listed below is a Mathematica

More information

Without fully opening the exam, check that you have pages 1 through 11.

Without fully opening the exam, check that you have pages 1 through 11. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 11. Show all your work on the standard

More information

An Analytic Solution for Ellipse and Line Intersection. Andy Giese

An Analytic Solution for Ellipse and Line Intersection. Andy Giese n nalytic Solution for Ellipse and Line Intersection ndy Giese July 18, 2013 Introduction If you have a line and an ellipse, how can you tell where they intersect? This is a relatively simple problem that

More information

Worksheet 2.2: Partial Derivatives

Worksheet 2.2: Partial Derivatives Boise State Math 275 (Ultman) Worksheet 2.2: Partial Derivatives From the Toolbox (what you need from previous classes) Be familiar with the definition of a derivative as the slope of a tangent line (the

More information

Check Skills You ll Need (For help, go to Lesson 1-2.) Evaluate each expression for the given value of x.

Check Skills You ll Need (For help, go to Lesson 1-2.) Evaluate each expression for the given value of x. A_3eSE_00X 0/6/005 :3 AM Page - Eploring Eponential Models Lesson Preview What You ll Learn To model eponential growth To model eponential deca... And Wh To model a car s depreciation, as in Eample 6 Check

More information

2.3. One-to-One and Inverse Functions. Introduction. Prerequisites. Learning Outcomes

2.3. One-to-One and Inverse Functions. Introduction. Prerequisites. Learning Outcomes One-to-One and Inverse Functions 2. Introduction In this Section we eamine more terminolog associated with functions. We eplain one-to-one and man-to-one functions and show how the rule associated with

More information

Sections 1.3 Computation of Limits

Sections 1.3 Computation of Limits 1 Sections 1.3 Computation of Limits We will shortly introduce the it laws. Limit laws allows us to evaluate the it of more complicated functions using the it of simpler ones. Theorem Suppose that c is

More information

Euler s Methods (a family of Runge- Ku9a methods)

Euler s Methods (a family of Runge- Ku9a methods) Euler s Methods (a family of Runge- Ku9a methods) ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an

More information

The directional derivative of f x, y in the direction of at x, y u. f x sa y sb f x y (, ) (, ) 0 0 y 0 0

The directional derivative of f x, y in the direction of at x, y u. f x sa y sb f x y (, ) (, ) 0 0 y 0 0 Review: 0, lim D f u 0 0 0 0 u The directional derivative of f, in the direction of at, is denoted b D f, : u a, b must a unit vector u f sa sb f s 0 (, ) (, ) s f (, ) a f (, ) b 0 0 0 0 0 0 D f, f u

More information

Functions and Graphs. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.

Functions and Graphs. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Functions and Graphs The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Launch Mathematica. Type

More information

( ) ( ) Completing the Square. Alg 3 1 Rational Roots Solving Polynomial Equations. A Perfect Square Trinomials

( ) ( ) Completing the Square. Alg 3 1 Rational Roots Solving Polynomial Equations. A Perfect Square Trinomials Alg Completing the Square A Perfect Square Trinomials (± ) ± (± ) ± 4 4 (± ) ± 6 9 (± 4) ± 8 6 (± 5) ± 5 What is the relationship between the red term and the blue term? B. Creating perfect squares.. 6

More information