Algebra. Mathematica QuickStart for Calculus 101C. Solving Equations. Factoring. Exact Solutions to single equation:

Size: px
Start display at page:

Download "Algebra. Mathematica QuickStart for Calculus 101C. Solving Equations. Factoring. Exact Solutions to single equation:"

Transcription

1 Mathematica QuickStart for Calculus 101C Algebra Solving Equations Exact Solutions to single equation: In[88]:= + 5 x - 6 ã 0, xd Out[88]= :8x Ø 1<, :x Ø 1 2 I-1 - Â 23 M>, :x Ø 1 2 I-1 + Â 23 M>> Exact Solution to a system of equations: In[89]:= SolveA9x 2 + y 2 ã 4, x y 2 ã 9=, 8x, y<e Out[89]= ::x Ø - 7 3, y Ø >, :x Ø - 7 3, y Ø 5 3 >, :x Ø 7 3, y Ø >, :x Ø 7 3, y Ø 5 3 >> Approximate Solutions to a single equation: In[90]:= NSolve@x^3 + 5 x - 6 ã 0, xd Out[90]= 88x Ø Â<, 8x Ø Â<, 8x Ø 1.<< Factoring In[91]:= FactorAx 2 y x y 2-7 ye Out[91]= y H-1 + x yl H7 + x yl

2 2 mathematica_quickstart_math101c.nb Expansions In[92]:= ExpandAHx + 2 yl 5 E Out[92]= x x 4 y + 40 x 3 y x 2 y x y y 5 Partial Fractions In[93]:= ApartB 4 x - 3 F x 2-7 x + 12 Out[93]= x x Functions Functions in Mathematica use the notation f[x_] when declaring the function. Notice the underscore character after the variable. In[94]:= f@x_d = x^2-5 x Out[94]= -5 x + x 2 When using the function, you do not need the underscore character. In[95]:= fax 2 E Out[95]= -5 x 2 + x 4 In[96]:= f@x + hd - f@xd h Out[96]= 5 x - x 2-5 Hh + xl + Hh + xl 2 h In[97]:= f@x + hd - f@xd ExpandB F h Out[97]= -5 + h + 2 x

3 mathematica_quickstart_math101c.nb 3 Calculus Operations Mathematica has all the standard calculus operations, including left and right side limits. First create a function. In[98]:= f@x_d = Sin@xD x Out[98]= Sin@xD x In[99]:= g@x_d = PiecewiseA99x 2, x > 0=, 94 - x 2, x < 0==E Out[99]= x 2 x > x 2 x < 0 0 True Limits In[100]:= Limit@f@xD, x Ø 0D Out[100]= 1 In[101]:= Limit@g@xD, x Ø 0, Direction Ø 1D H*Note this means heading to the right.*l Out[101]= 4 In[102]:= Limit@g@xD, x Ø 0, Direction Ø -1D H*Note this means heading to the right.*l Out[102]= 0 Derivatives The notation is simple for functions. In[103]:= f'@xd Out[103]= Cos@xD x - Sin@xD x 2

4 4 mathematica_quickstart_math101c.nb In[104]:= f'b p 2 F Out[104]= - 4 p 2 Indefinite Integrals In[105]:= IntegrateAx 3, xe Out[105]= x 4 4 Definite Integrals In[106]:= IntegrateAx 3, 8x, 1, a<e Out[106]= a4 4 Series 5 To find k 2 k=1 In[107]:= SumAx 2, 8x, 1, 5<E Out[107]= 55 To find 5 terms of the Taylor series expansion of x 7 at c = 1, In[108]:= SeriesAx 7, 8x, 1, 5<E Out[108]= Hx - 1L + 21 Hx - 1L Hx - 1L Hx - 1L Hx - 1L 5 + O@x - 1D 6 To eliminate the O notation at the end, use Normal at the end of the command. In[109]:= SeriesAx 7, 8x, 1, 5<E êê Normal Out[109]= H-1 + xl + 21 H-1 + xl H-1 + xl H-1 + xl H-1 + xl 5

5 mathematica_quickstart_math101c.nb 5 Simple Graphing Graphing functions Standard functions are graphed with the Plot function. In[110]:= Plot@3 Sin@tD, 8t, 0, 4 p<d Out[110]= To change the style, use the PlotStyle option. In[111]:= Plot@3 Sin@tD, 8t, 0, 4 p<, PlotStyle Ø 8Red, Thickness@0.01D<D Out[111]= To combine plots, create named plots separately and use the Show command to combine them.

6 6 mathematica_quickstart_math101c.nb In[112]:= SineCurve = Plot@3 Sin@tD, 8t, 0, 4 p<, PlotStyle Ø 8Red, Thickness@0.01D<D; CosineCurve = Plot@5 Cos@tD, 8t, 0, 4 p<, PlotStyle Ø 8Blue, Thickness@0.01D<D; Show@SineCurve, CosineCurve, PlotRange -> AllD 4 2 Out[114]= Fancy Graphing Polar Curves Polar curves can be graphed using the PolarPlot command. For example, to graph r = 3cos 2q, use

7 mathematica_quickstart_math101c.nb 7 In[115]:= PolarPlot@3 Cos@3 thetad, 8theta, 0, 2 p<d 2 1 Out[115]= Parametric Curves To graph a set of parametric functions x(t) = cos 3t and y(t) = sin 2t, use the ParametricPlot command.

8 8 mathematica_quickstart_math101c.nb In[116]:= td, td<, 8t, 0, 2 p<d Out[116]= In three dimensions, use ParametricPlot3D

9 mathematica_quickstart_math101c.nb 9 In[117]:= ParametricPlot3D@8Cos@tD, Sin@tD, Sin@4 td<, 8t, 0, 2 p<d Out[117]= Surfaces To plot the surface f(x, y) = x 3 + y sin HxyL, use the Plot3D command.

10 10 mathematica_quickstart_math101c.nb In[118]:= Plot3DAx3 + y3 + 4 Sin@x yd, 8x, - 2, 2<, 8y, - 2, 2<E Out[118]= Implicit surfaces such as x 2 + y 2 + z2 = 4 are graphed using the ContourPlot3D command. In[119]:= ContourPlot3DAx2 + y2 + z2 ã 4, 8x, - 2, 2<, 8y, - 2, 2<, 8z, - 2, 2<E Out[119]= Parametric surfaces are graphed using the ParametricPlot3D command. For example, given

11 mathematica_quickstart_math101c.nb 11 x Hu, vl = cos u cos v y Hu, vl = cos u sin v z Hu, vl = u In[120]:= ParametricPlot3D@8Cos@uD Cos@vD, Cos@uD Sin@vD, u<, 8u, 0, 3 p<, 8v, 0, 2 p<d Out[120]= To add nice level cures to any of the above, use the MeshFunctions option.

12 12 mathematica_quickstart_math101c.nb In[121]:= Plot3DAx2 + y2, 8x, - 2, 2<, 8y, - 2, 2<, MeshFunctions Ø 8Function@8x, y, z<, zd<e Out[121]= To add nice coloring to any of the above, use the ColorFunction option. In[122]:= Plot3DAx2 + y2, 8x, - 2, 2<, 8y, - 2, 2<, MeshFunctions Ø 8Function@8x, y, z<, zd<, ColorFunction Ø Function@8x, y, z<, Hue@zDDE Out[122]= To eliminate the corners from sticking up, use the RegionFunction option.

13 mathematica_quickstart_math101c.nb 13 In[123]:= Plot3DAx 2 + y 2, 8x, -2, 2<, 8y, -2, 2<, MeshFunctions Ø 8Function@8x, y, z<, zd<, ColorFunction Ø Function@8x, y, z<, Hue@zDD, RegionFunction Ø Function@8x, y, z<, x^2 + y^2 < 4DE Out[123]=

Defining and Plotting a Parametric Curve in 3D a(t)=(x(t),y(t),z(t)) H* clears all previous assingments so we can reuse them *L

Defining and Plotting a Parametric Curve in 3D a(t)=(x(t),y(t),z(t)) H* clears all previous assingments so we can reuse them *L Defining and Plotting a Parametric Curve in 3D a(t)=(x(t),y(t),z(t)) Clear@"Global`*"D H* clears all previous assingments so we can reuse them *L H* Define vector functions in 3D of one variable t, i.e.

More information

H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P. H* Plot a Single Red Point of "Size" 0.05 *L

H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P. H* Plot a Single Red Point of Size 0.05 *L Define and plotting a point and vector H* Define 2 Points in R 3 *L P = 81, 2, 3< Q = 84, 6, 6< PQvec = Q - P H* Plot a Single Red Point of "Size" 0.05 *L Graphics3D@8PointSize@0.05D, Red, Point@PD

More information

REPRESENTATION OF CURVES IN PARAMETRIC FORM

REPRESENTATION OF CURVES IN PARAMETRIC FORM - Representation of curves in parametric form 1 REPRESENTATION OF CURVES IN PARAMETRIC FORM.1. Parametrization of curves in the plane Given a curve in parametric form, its graphical representation in a

More information

Making Holes and Windows in Surfaces

Making Holes and Windows in Surfaces The Mathematica Journal Making Holes and Windows in Surfaces Alan Horwitz In this article, we demonstrate makehole, a program which removes points from any Graphics or Graphics3D picture whose coordinates

More information

GRAPHICAL REPRESENTATION OF SURFACES

GRAPHICAL REPRESENTATION OF SURFACES 9- Graphical representation of surfaces 1 9 GRAPHICAL REPRESENTATION OF SURFACES 9.1. Figures defined in Mathematica ô Graphics3D[ ] ø Spheres Sphere of centre 1, 1, 1 and radius 2 Clear "Global` " Graphics3D

More information

Quickstart: Mathematica for Calculus I (Version 9.0) C. G. Melles Mathematics Department United States Naval Academy September 2, 2013

Quickstart: Mathematica for Calculus I (Version 9.0) C. G. Melles Mathematics Department United States Naval Academy September 2, 2013 Quickstart: Mathematica for Calculus I (Version 9.0) C. G. Melles Mathematics Department United States Naval Academy September, 0 Contents. Getting Started. Basic plotting. Solving equations, approximating

More information

Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R 2 and R 3 Robert L.Foote, Fall 2007

Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R 2 and R 3 Robert L.Foote, Fall 2007 CurvesAndSurfaces.nb Representations of Curves and Surfaces, and of their Tangent Lines, and Tangent Planes in R and R 3 Robert L.Foote, Fall 007 Curves and Surfaces Graphs ü The graph of f : Æ is a curve

More information

Basic Exercises about Mathematica

Basic Exercises about Mathematica Basic Exercises about Mathematica 1. Calculate with four decimal places. NB F. 2.23607 2.23607 Ë We can evaluate a cell by placing the cursor on it and pressing Shift+Enter (or Enter on the numeric key

More information

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i.

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i. HdPlot.nb? Plot Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f, f,, x, x min, x max plots several functions f i. Plot Sin 7 x Exp x ^, x,, 4.5 3 4.5 Plot Sin

More information

Graphing on the Riemann Sphere

Graphing on the Riemann Sphere The Mathematica Journal Graphing on the Riemann Sphere Djilali Benayat We give a procedure to plot parametric curves on the sphere whose advantages over classical graphs in the Cartesian plane are obvious

More information

Parametric Curves, Polar Plots and 2D Graphics

Parametric Curves, Polar Plots and 2D Graphics Parametric Curves, Polar Plots and 2D Graphics Fall 2016 In[213]:= Clear "Global`*" 2 2450notes2_fall2016.nb Parametric Equations In chapter 9, we introduced parametric equations so that we could easily

More information

Introduction to Mathematica and Graphing in 3-Space

Introduction to Mathematica and Graphing in 3-Space 1 Mathematica is a powerful tool that can be used to carry out computations and construct graphs and images to help deepen our understanding of mathematical concepts. This document will serve as a living

More information

Using Mathematica to solve ODEs (part 1)

Using Mathematica to solve ODEs (part 1) Using Mathematica to solve ODEs (part ) Basic tool is DSolve Note that in DSolve the dependent variable (usually y below) must be written y[x] or y [x] (for the derivative) or y [x] (for the second derivative)

More information

You can drag the graphs using your mouse to rotate the surface.

You can drag the graphs using your mouse to rotate the surface. The following are some notes for relative maxima and mimima using surfaces plotted in Mathematica. The way to run the code is: Select Menu bar -- Evaluation -- Evaluate Notebook You can drag the graphs

More information

CurvesGraphics. A free package for Advanced Calculus illustrations. Gianluca Gorni. Arrows on 2D curves. Motivation

CurvesGraphics. A free package for Advanced Calculus illustrations. Gianluca Gorni. Arrows on 2D curves. Motivation CurvesGraphics A free package for Advanced Calculus illustrations. Gianluca Gorni Motivation As a teacher of Calculus and Mathematical Analysis at college and university level, I feel that Mathematica

More information

Plots & Animations. Simple 2d plots x

Plots & Animations. Simple 2d plots x Plots & Animations Simple 2d plots Physical processes and corresponding mathematical formulas can be visualized by plots. The simplest plot of a single function f[x] can be created as follows f@x_d :=

More information

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i.

Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f 1, f 2,, x, x min, x max plots several functions f i. HdPlot.nb In[]:=? Plot Plot f, x, x min, x max generates a plot of f as a function of x from x min to x max. Plot f, f,, x, x min, x max plots several functions f i. In[]:= Plot Sin 7 x Exp x ^, x,, 4.5

More information

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota Questions to:

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota   Questions to: Lab_B.nb Lab B Parametrizing Surfaces Math 37 University of Minnesota http://www.math.umn.edu/math37 Questions to: rogness@math.umn.edu Introduction As in last week s lab, there is no calculus in this

More information

Mathematica Basics. Exponential Functions Exp[expression] Natural Logarithms (ln) Log[expression]

Mathematica Basics. Exponential Functions Exp[expression] Natural Logarithms (ln) Log[expression] Mathematica Basics To evaluate a Mathematica command, press [Shift]+[Enter]. Pay attention to spaces! Mathematica interprets some of them as multiplication. Syntax, capitalization and punctuation are meaningful.

More information

Wolfram Mathematica Tutorial Collection. Visualization and Graphics

Wolfram Mathematica Tutorial Collection. Visualization and Graphics Wolfram Mathematica Tutorial Collection Visualization and Graphics For use with Wolfram Mathematica 7.0 and later. For the latest updates and corrections to this manual: visit reference.wolfram.com For

More information

A Mathematica Tutorial

A Mathematica Tutorial A Mathematica Tutorial -3-8 This is a brief introduction to Mathematica, the symbolic mathematics program. This tutorial is generic, in the sense that you can use it no matter what kind of computer you

More information

NUMBERS VECTORS. (essentially) infinite precision is available

NUMBERS VECTORS. (essentially) infinite precision is available NUMBERS In[]:= Out[]= In[]:= Out[]= In[3]:= Out[3]= N@Exp@D, D.790330773977770937000 N@Log@D, D 0.937099309737070330 N@Pi, D 3.93979333337997939937 (essentially) infinite precision is available In[]:=

More information

Dynamical Systems - Math 3280 Mathematica: From Algebra to Dynamical Systems c

Dynamical Systems - Math 3280 Mathematica: From Algebra to Dynamical Systems c Dynamical Systems - Math 3280 Mathematica: From Algebra to Dynamical Systems c Edit your document (remove extras and errors, ensure the rest works correctly). If needed, add comments. It is not necessary

More information

Teaching Complex Analysis as a Lab- Type ( flipped ) Course with a Focus on Geometric Interpretations using Mathematica

Teaching Complex Analysis as a Lab- Type ( flipped ) Course with a Focus on Geometric Interpretations using Mathematica Teaching Complex Analysis as a Lab- Type ( flipped ) Course with a Focus on Geometric Interpretations using Mathematica Bill Kinney, Bethel University, St. Paul, MN 2 KinneyComplexAnalysisLabCourse.nb

More information

1 Basic Plotting. Radii Speeds Offsets 1, 1, 1 2, 5, 19 0, 0, 0 1, 0.8, 0.4, 0.2, 0.4, 0.2 1, 10, 17, 26, 28, 37 0, Π, Π, 0, 0, Π

1 Basic Plotting. Radii Speeds Offsets 1, 1, 1 2, 5, 19 0, 0, 0 1, 0.8, 0.4, 0.2, 0.4, 0.2 1, 10, 17, 26, 28, 37 0, Π, Π, 0, 0, Π 1 Basic Plotting Placing wheels on wheels on wheels and giving them different rates of spin leads to some interesting parametric plots. The images show four examples. They arise from the values below,

More information

Mathematica for Dirac delta functions and Green functions

Mathematica for Dirac delta functions and Green functions Mathematica for Dirac delta functions and Green functions DiracDelta function Mathematic has Dirac s delta function built in for use in integrals and solving differential equations. If you evaluate it

More information

Calculus II - Math 1220 Mathematica Commands: From Basics To Calculus II - Version 11 c

Calculus II - Math 1220 Mathematica Commands: From Basics To Calculus II - Version 11 c Calculus II - Math 1220 Mathematica Commands: From Basics To Calculus II - Version 11 c Edit your document (remove extras and errors, ensure the rest works correctly) and turn-in your print-out. If needed,

More information

MATH 162 Calculus II Computer Laboratory Topic: Introduction to Mathematica & Parametrizations

MATH 162 Calculus II Computer Laboratory Topic: Introduction to Mathematica & Parametrizations MATH 162 Calculus II Computer Laboratory Topic: Introduction to Mathematica & Goals of the lab: To learn some basic operations in Mathematica, such as how to define a function, and how to produce various

More information

Math 126 Final Examination Autumn CHECK that your exam contains 9 problems on 10 pages.

Math 126 Final Examination Autumn CHECK that your exam contains 9 problems on 10 pages. Math 126 Final Examination Autumn 2016 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name CHECK that your exam contains 9 problems on 10 pages. This exam is closed book. You

More information

CAS Exercise Examples for Chapter 15: Multiple Integrals

CAS Exercise Examples for Chapter 15: Multiple Integrals CAS Exercise Examples for Chapter 5: Multiple Integrals à Section 5. Double Integrals 3 x Example: Integrate Ÿ Ÿ ÅÅÅÅÅÅ d dx using Mathematica. x The easiest wa to compute double integrals is to open the

More information

Graphs of Functions, Limits, and

Graphs of Functions, Limits, and Chapter Continuity Graphs of Functions, Limits, and ü. Plotting Graphs Students should read Chapter of Rogawski's Calculus [] for a detailed discussion of the material presented in this section. ü.. Basic

More information

Some Examples to Show That Objects Be Presented by Mathematical Equations

Some Examples to Show That Objects Be Presented by Mathematical Equations American Journal of Computational Mathematics, 01,, 199-06 http://dx.doi.org/10.436/ajcm.01.305 Published Online September 01 (http://www.scirp.org/journal/ajcm) Some Examples to Show That Objects Be Presented

More information

Monte Carlo Method for Definite Integration

Monte Carlo Method for Definite Integration Monte Carlo Method for Definite Integration http://www.mathcs.emory.edu/ccs/ccs215/monte/node13.htm Numerical integration techniques, such as the Trapezoidal rule and Simpson's rule, are commonly utilized

More information

Explore 3D Figures. Dr. Jing Wang (517) , Lansing Community College, Michigan, USA

Explore 3D Figures. Dr. Jing Wang (517) , Lansing Community College, Michigan, USA Explore 3D Figures Dr. Jing Wang (517)2675965, wangj@lcc.edu Lansing Community College, Michigan, USA Part I. 3D Modeling In this part, we create 3D models using Mathematica for various solids in 3D space,

More information

Zajecia 1. Krotkie wprowadzenie do srodowiska Mathematica 4^ D D 1. ?

Zajecia 1. Krotkie wprowadzenie do srodowiska Mathematica 4^ D D 1. ? Zajecia Krotkie wprowadzenie do srodowiska Mathematica In[]:= Out[]= In[]:= Out[]= In[]:= Out[]= In[7]:= Out[7]= In[8]:= Out[8]= In[9]:= Out[9]= + ^ Sqrt@D Log@0, 00D Sin@Pi D In[0]:=! Out[0]= In[]:= Out[]=

More information

A plane. Or, with more details, NotebookDirectory. C:\Dropbox\Work\myweb\Courses\Math_pages\Math_225\

A plane. Or, with more details, NotebookDirectory. C:\Dropbox\Work\myweb\Courses\Math_pages\Math_225\ In[1]:= NotebookDirectory Out[1]= C:\Dropbox\Work\myweb\Courses\Math_pages\Math_5\ A plane Given a point in R 3 (below it is vr) and two non-collinear vectors (below uu and vv) the parametric equation

More information

Maple Commands for Surfaces and Partial Derivatives

Maple Commands for Surfaces and Partial Derivatives Math 235 Lab 2 Intro Maple Commands for Surfaces and Partial Derivatives We ve seen that a curve can be written as y = f(x), or more generally in parametric form using one parameter (usually t), and the

More information

TIME 2014 Technology in Mathematics Education July 1 st -5 th 2014, Krems, Austria

TIME 2014 Technology in Mathematics Education July 1 st -5 th 2014, Krems, Austria TIME 2014 Technology in Mathematics Education July 1 st -5 th 2014, Krems, Austria Overview Introduction Using a 2D Plot Window in a CAS Perspective Plotting a circle and implicit differentiation Helping

More information

Computation of slant specified by cues

Computation of slant specified by cues Computation of slant specified by cues Slant from perspective convergence, part 1: Construction of the projection (x1, y1) on the screen (blue) of point (x0, y0) of the rectangle (red) that is slanted

More information

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information

Math Exam III Review

Math Exam III Review Math 213 - Exam III Review Peter A. Perry University of Kentucky April 10, 2019 Homework Exam III is tonight at 5 PM Exam III will cover 15.1 15.3, 15.6 15.9, 16.1 16.2, and identifying conservative vector

More information

Functions f and g are called a funny cosine and a funny sine if they satisfy the following properties:

Functions f and g are called a funny cosine and a funny sine if they satisfy the following properties: Assignment problems by Branko Ćurgus posted on 2070720 Problem. Funny trigonometry and its beauty ü Few Mathematica comments There are several standard Mathematica functions that can be useful here. For

More information

Mathematics Computer Laboratory - Math Version 11 Lab 7 - Graphics c

Mathematics Computer Laboratory - Math Version 11 Lab 7 - Graphics c Mathematics Computer Laboratory - Math 1200 - Version 11 Lab 7 - Graphics c Due You should only turn in exercises in this lab with its title and your name in Title and Subtitle font, respectively. Edit

More information

Mathematica Assignment 1

Mathematica Assignment 1 Math 21a: Multivariable Calculus, Fall 2000 Mathematica Assignment 1 Support Welcome to this Mathematica computer assignment! In case of technical problems with this assignment please consult first the

More information

This notebook "MathematicaDemo.nb" can be downloaded from the course web page.

This notebook MathematicaDemo.nb can be downloaded from the course web page. Mathematica demo http://www.wolfram.com/ This notebook "MathematicaDemo.nb" can be downloaded from the course web page. Basics Evaluate cells by pressing "shift-enter" / shift-return In[]:= + 3 Out[]=

More information

Integrating Equations of Motion in Mathematica

Integrating Equations of Motion in Mathematica MmaGuide-GLG.nb Integrating Equations of Motion in Mathematica Gary L. Gray Assistant Professor Engineering Science and Mechanics The Pennsylvania State University 227 Hammond Building University Park,

More information

Assignment 1. Prolog to Problem 1. Two cylinders. ü Visualization. Problems by Branko Curgus

Assignment 1. Prolog to Problem 1. Two cylinders. ü Visualization. Problems by Branko Curgus Assignment In[]:= Problems by Branko Curgus SetOptions $FrontEndSession, Magnification Prolog to Problem. Two cylinders In[]:= This is a tribute to a problem that I was assigned as an undergraduate student

More information

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π M408D (54690/95/00), Midterm #2 Solutions Multiple choice questions (20 points) See last two pages. Question #1 (25 points) Dene the vector-valued function r(t) = he t ; 2; 3e t i: a) At what point P (x

More information

Problem #130 Ant On Cylinders

Problem #130 Ant On Cylinders Problem #130 Ant On Cyliners The Distance The Ant Travels Along The Surface John Snyer November, 009 Problem Consier the soli boune by the three right circular cyliners x y (greenish-yellow), x z (re),

More information

Curves Dr Richard Kenderdine

Curves Dr Richard Kenderdine Curves Dr Richard Kenderdine Kenderdine Maths Tutoring 1 December 01 This note shows some interesting curves not usually encountered. Most of the examples exist as families that can be altered by changing

More information

Travelling fronts in stochastic Stokes' drifts H1 ê 3L Adrien Blanchet, Jean Dolbeault, and Michal Kowalczyk

Travelling fronts in stochastic Stokes' drifts H1 ê 3L Adrien Blanchet, Jean Dolbeault, and Michal Kowalczyk 85-.nb Travelling fronts in stochastic Stokes' drifts H ê 3L Adrien Blanchet, Jean Dolbeault, and Michal Kowalczyk Off@NIntegrate::"slwcon"D Off@General::"spell"D Off@NIntegrate::"ncvb"D Off@NIntegrate::"ploss"D

More information

A model for an intramuscular injection of a medication.

A model for an intramuscular injection of a medication. injection_model.nb 1 A model for an intramuscular injection of a medication. Needs@"Graphics`Colors`"D; Intravenous injection of a medication: Injected drug in blood decays exponentially due to metabolic

More information

Parametric Curves, Lines in Space

Parametric Curves, Lines in Space Parametric Curves, Lines in Space Calculus III Josh Engwer TTU 02 September 2014 Josh Engwer (TTU) Parametric Curves, Lines in Space 02 September 2014 1 / 37 PART I PART I: 2D PARAMETRIC CURVES Josh Engwer

More information

How to prepare interactive Mathematica demonstrations for classroom

How to prepare interactive Mathematica demonstrations for classroom How to prepare interactive Mathematica demonstrations for classroom János Karsai University of Szeged http://silver.szote.u-szeged.hu/~karsai karsai@dmi.u-szeged.hu 2 workshop.nb Some examples from the

More information

Classes 7-8 (4 hours). Graphics in Matlab.

Classes 7-8 (4 hours). Graphics in Matlab. Classes 7-8 (4 hours). Graphics in Matlab. Graphics objects are displayed in a special window that opens with the command figure. At the same time, multiple windows can be opened, each one assigned a number.

More information

Overview of Basic Graphics Commands

Overview of Basic Graphics Commands Overview of Basic Graphics Commands In[]:=

More information

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y.

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y. 2 Second Derivatives As we have seen, a function f (x, y) of two variables has four different partial derivatives: (x, y), (x, y), f yx (x, y), (x, y) It is convenient to gather all four of these into

More information

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES A. HAVENS These problems are for extra-credit, which is counted against lost points on quizzes or WebAssign. You do not

More information

14.6 Directional Derivatives and the Gradient Vector

14.6 Directional Derivatives and the Gradient Vector 14 Partial Derivatives 14.6 and the Gradient Vector Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and the Gradient Vector In this section we introduce

More information

Calculus III. 1 Getting started - the basics

Calculus III. 1 Getting started - the basics Calculus III Spring 2011 Introduction to Maple The purpose of this document is to help you become familiar with some of the tools the Maple software package offers for visualizing curves and surfaces in

More information

It Does Algebra. Note we have a list of lists, and the elements inside are expressions: we'll see more explicit functional constructs later

It Does Algebra. Note we have a list of lists, and the elements inside are expressions: we'll see more explicit functional constructs later Mathematica as Lisp Outline of this talk: 1) Show a few "Gee Whiz" features of Mathematica -show some algebraic calcs -show some nice typesetting -show some pretty graphics 2) Is it lisp? - front end /

More information

1. How Mathematica works

1. How Mathematica works Departments of Civil Engineering and Mathematics CE 109: Computing for Engineering Mathematica Session 1: Introduction to the system Mathematica is a piece of software described by its manufacturers as

More information

Math 32, August 20: Review & Parametric Equations

Math 32, August 20: Review & Parametric Equations Math 3, August 0: Review & Parametric Equations Section 1: Review This course will continue the development of the Calculus tools started in Math 30 and Math 31. The primary difference between this course

More information

OffPlot::"plnr"; OffGraphics::"gptn"; OffParametricPlot3D::"plld" Needs"Graphics`Arrow`" Needs"VisualLA`"

OffPlot::plnr; OffGraphics::gptn; OffParametricPlot3D::plld NeedsGraphics`Arrow` NeedsVisualLA` Printed from the Mathematica Help Browser of.: Transformation of Functions In this section, we will explore three types of transformations:.) Shifting.) Reflections (or flips).) Stretches and compressions

More information

INTRODUCTION TO DERIVE - by M. Yahdi

INTRODUCTION TO DERIVE - by M. Yahdi Math 111/112-Calculus I & II- Ursinus College INTRODUCTION TO DERIVE - by M. Yahdi This is a tutorial to introduce main commands of the Computer Algebra System DERIVE. You should do (outside of class)

More information

1 The Inverse Problem

1 The Inverse Problem The Inverse Problem We have learned that a general solution of a first-order differential equation y = f H, yl (..) is a one-parameter family of (either eplicit or implicit) solutions. Finding a general

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

TI-89 Calculator Workshop #1 The Basics

TI-89 Calculator Workshop #1 The Basics page 1 TI-89 Calculator Workshop #1 The Basics After completing this workshop, students will be able to: 1. find, understand, and manipulate keys on the calculator keyboard 2. perform basic computations

More information

P-Set 1 Solution Set. Solutions created by Melissa Diskin. Part 1 (3 points) Part 2 (4 points) ê H1 ê 2 + xl^hx ê 2L, xdd

P-Set 1 Solution Set. Solutions created by Melissa Diskin. Part 1 (3 points) Part 2 (4 points) ê H1 ê 2 + xl^hx ê 2L, xdd PSet Solution Set Solutions created by Melissa Diskin I (Handworked, 5 points) Simplified version of the derivative with respect to x. In[80]:= Simplify@D@ ê H ê + xl^hx ê L, xdd Out[80]= + x xê x + x

More information

The notebook interface is the usual one and is quite sophisticated. (It was used to create these notes, for instance.)

The notebook interface is the usual one and is quite sophisticated. (It was used to create these notes, for instance.) 4. Mathematica 4. Introduction Mathematica is a general purpose computer algebra system. That means it can do algebraic manipulations (including calculus and matrix manipulation) and it can also be used

More information

Lecture 34: Curves defined by Parametric equations

Lecture 34: Curves defined by Parametric equations Curves defined by Parametric equations When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x

More information

Overview: The original Mathematica was a computer algebra system (CAS) released by Stephen Wolfram in 1988.

Overview: The original Mathematica was a computer algebra system (CAS) released by Stephen Wolfram in 1988. Mathematica 7.0.1 Overview: The original Mathematica was a computer algebra system (CAS) released by Stephen Wolfram in 1988. Modern releases have augmented the CAS with powerful numerical and graphical

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations CHAPTER 10. PARAMETRIC AND POLAR 99 10.1 Curves Defined by Parametric Equations Example 1. Let x and y be given parametric equations below: x(t) =t cos(t) y(t) =t sin(t) (a) Calculate x and y for 11 values

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

Examples of Fourier series

Examples of Fourier series Examples of Fourier series Preliminaries In[]:= Below is the definition of a periodic extension of a function defined on L, L. This definition takes a function as a variable. The function has to be inputted

More information

10.4 Areas in Polar Coordinates

10.4 Areas in Polar Coordinates CHAPTER 0. PARAMETRIC AND POLAR 9 0.4 Areas in Polar Coordinates Example. Find the area of the circle defined by r.5sin( ) (seeexample ). Solution. A Z 0.5 (.5sin( )) d sin( )cos( ).5 (.5/) (r where r.5/)

More information

A Mathematica Tutorial - 1. Basic Operations

A Mathematica Tutorial - 1. Basic Operations A Mathematica Tutorial -. Basic Operations This Tutorial was created usig Mathematica 6.0. Some of the cells described below can only be performed in version 6.0. Note that Mathematica can be used as a

More information

Lecture 2. Dr John Armstrong

Lecture 2. Dr John Armstrong Computing for Geometry and Number Theory Lecture 2 Dr John Armstrong King's College London December 6, 2018 Last week we used Mathematica as a calculator Using the workbook, for example to type SHIFT +

More information

Mathematica Proficiency and motivation for 6.1 and 6.2

Mathematica Proficiency and motivation for 6.1 and 6.2 Calculus Page 1 Master Lab Friday, August 19, 2011 2:13 PM Mathematica Proficiency and motivation for 6.1 and 6.2 This lab is designed to test some of your Mathematica background, to be useful as a reference,

More information

Quickstart for Web and Tablet App

Quickstart for Web and Tablet App Quickstart for Web and Tablet App What is GeoGebra? Dynamic Mathematic Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,

More information

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane.

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane. Math 21a Tangent Lines and Planes Fall, 2016 What do we know about the gradient f? Tangent Lines to Curves in the Plane. 1. For each of the following curves, find the tangent line to the curve at the point

More information

Lab#1: INTRODUCTION TO DERIVE

Lab#1: INTRODUCTION TO DERIVE Math 111-Calculus I- Fall 2004 - Dr. Yahdi Lab#1: INTRODUCTION TO DERIVE This is a tutorial to learn some commands of the Computer Algebra System DERIVE. Chapter 1 of the Online Calclab-book (see my webpage)

More information

A Mathematica Primer

A Mathematica Primer A Mathematica Primer For Students of Physics 218: Oscillatory and Wave Phenomena Brooks Thomas Lafayette College Second Edition 2017 Chapter 1 Basic Syntax Getting started After you double-clicking on

More information

10.2 Calculus with Parametric Curves

10.2 Calculus with Parametric Curves CHAPTER 1. PARAMETRIC AND POLAR 1 1.2 Calculus with Parametric Curves Example 1. Return to the parametric equations in Example 2 from the previous section: x t +sin() y t + cos() (a) Find the cartesian

More information

Graphing Calculator Tutorial

Graphing Calculator Tutorial Graphing Calculator Tutorial This tutorial is designed as an interactive activity. The best way to learn the calculator functions will be to work the examples on your own calculator as you read the tutorial.

More information

Dynamics and Vibrations Mupad tutorial

Dynamics and Vibrations Mupad tutorial Dynamics and Vibrations Mupad tutorial School of Engineering Brown University ENGN40 will be using Matlab Live Scripts instead of Mupad. You can find information about Live Scripts in the ENGN40 MATLAB

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

Mysterious or unsupported answers will not receive full credit. Your work should be mathematically correct and carefully and legibly written.

Mysterious or unsupported answers will not receive full credit. Your work should be mathematically correct and carefully and legibly written. Math 2374 Spring 2006 Final May 8, 2006 Time Limit: 1 Hour Name (Print): Student ID: Section Number: Teaching Assistant: Signature: This exams contains 11 pages (including this cover page) and 10 problems.

More information

Objectives. Materials

Objectives. Materials Activity 6 Local Linearity, Differentiability, and Limits of Difference Quotients Objectives Connect the concept of local linearity to differentiability through numerical explorations of limits of difference

More information

Core Mathematics 3 Functions

Core Mathematics 3 Functions http://kumarmaths.weebly.com/ Core Mathematics 3 Functions Core Maths 3 Functions Page 1 Functions C3 The specifications suggest that you should be able to do the following: Understand the definition of

More information

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section.

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section. Chapter 12 Vector Geometry Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible to view 3-D plots generated by Mathematica

More information

Mathematical Experiments with Mathematica

Mathematical Experiments with Mathematica Mathematical Experiments with Mathematica Instructor: Valentina Kiritchenko Classes: F 12:00-1:20 pm E-mail : vkiritchenko@yahoo.ca, vkiritch@hse.ru Office hours : Th 5:00-6:20 pm, F 3:30-5:00 pm 1. Syllabus

More information

CALCULUS - PRACTICAL II - ELEMENTARY CALCULUS

CALCULUS - PRACTICAL II - ELEMENTARY CALCULUS CALCULUS - PRACTICAL II - ELEMENTARY CALCULUS PEDRO FORTUNY AYUSO The students will have already received the lessons about its, continuity and derivation although these concepts should not be new for

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

Chapter 1: Function Sense Activity 1.2 & 3

Chapter 1: Function Sense Activity 1.2 & 3 Name Chapter 1: Function Sense Activity 1.2 & 3 Learning Objectives 1. Determine the equation (symbolic representation) that defines a function. 2. Determine the domain and range of a function. 3. Identify

More information

Problem Possible Points Points Earned Problem Possible Points Points Earned Test Total 100

Problem Possible Points Points Earned Problem Possible Points Points Earned Test Total 100 MATH 1080 Test 2-Version A Fall 2015 Student s Printed Name: Instructor: Section # : You are not allowed to use any textbook, notes, cell phone, laptop, PDA, or any technology on any portion of this test.

More information

Santiago AP Calculus AB/BC Summer Assignment 2018 AB: complete problems 1 64, BC: complete problems 1 73

Santiago AP Calculus AB/BC Summer Assignment 2018 AB: complete problems 1 64, BC: complete problems 1 73 Santiago AP Calculus AB/BC Summer Assignment 2018 AB: complete problems 1 64, BC: complete problems 1 73 AP Calculus is a rigorous college level math course. It will be necessary to do some preparatory

More information

ü 1.1 Getting Started

ü 1.1 Getting Started Chapter 1 Introduction Welcome to Mathematica! This tutorial manual is intended as a supplement to Rogawski's Calculus textbook and aimed at students looking to quickly learn Mathematica through examples.

More information

Quickstart for Desktop Version

Quickstart for Desktop Version Quickstart for Desktop Version What is GeoGebra? Dynamic Mathematics Software in one easy-to-use package For learning and teaching at all levels of education Joins interactive 2D and 3D geometry, algebra,

More information