Object Recognition using Particle Swarm Optimization on Fourier Descriptors

Size: px
Start display at page:

Download "Object Recognition using Particle Swarm Optimization on Fourier Descriptors"

Transcription

1 Object Recognition using Particle Swarm Optimization on Fourier Descriptors Muhammad Sarfraz Ali Taleb Ali Al-Awami King Fahd University of Petroleum and Minerals KFUPM # 1510, Dhahran 31261, Saudi Arabia sarfraz@kfupm.edu.sa Slide 1

2 Outline Introduction Statement of the Problem Methodology Solution (Algorithm) Experiments & Results Particle Swarm Optimization (PSO) Conclusion Slide 2

3 Introduction Input shape F-16 B-747 M Database of Fourier Descriptors Contour shape Classifier Answer Slide 3

4 Introduction Object recognition is the ultimate goal for many image analysis and computer vision applications. Among the many cues proposed, such as color, texture and others, shape is the most common and dominant feature Many Shape models have been studied whose imaging conditions and object appearance are restricted or well controlled. Slide 4

5 Introduction The main difficulty lies in view variability associated with the images of the given object. The previous work in view of invariant object recognition can be classified into 3 approaches Using invariants Part decomposition Alignment Fourier Descriptors are popular invariants that are invariant to 2D transformations. Slide 5

6 Statement of the problem To Recognize the Objects such as Airplanes which are invariant to translation, rotation and scaling in 2-dimension. To recognize the objects in case of noise and occlusion. Slide 6

7 Methodology Getting Bitmap Image Removing Noise Slide 7

8 Methodology Extracting Outline Slide 8

9 Methodology : Fourier Descriptors Find the boundary of the image using the algorithm Convert the x, y coordinates in the contour to a one-dimensional vector by treating them as a complex pair. That is: U(n) = X(n) + i * Y(n). Perform the Fast Fourier Transform on U and take the absolute value to create a new vector A which is the magnitude of the coefficients. Slide 9

10 Methodology : Fourier Descriptors.. The Fourier transform of a continuous function of a variable u is given by the equation: When dealing with discrete images the Discrete Fourier Transform (DFT) is used: The variable u is complex, so by using the expansion: e[-j A] = cos (A) j. sin (A) where A = 2πu/x and N is the number of equally spaced samples, one can have: j2 ( ) ( ) πux F u = f u e dx For Digital Images 1 = N N 1 ( ) ( ) F u x= 0 f u e Using expansion j2π x N 1 1 F u f x jy Ax j Ax N ( ) = ( + ).cos ) ( ).sin( ) x= 0 N ( ) Slide 10

11 Methodology : Fourier Descriptors The simple geometric transformations of the Fourier transforms -Translation: u(n)+t a(k)+tδ(k) -Rotation : u(n)e jθ a(k)e jθ -Scaling: su(n) sa(k) -Starting point: u(n-t) a(k) e j2 tk/n Slide 11

12 Methodology : Fourier Descriptors The Fourier transform: F 1 N N 1 x= 0 ( u) = f ( u) e j 2πx N The magnitude is independent of the phase, and so unaffected by rotation. The complex coefficients are called Fourier descriptors (FD) of the boundary. The magnitude completely defines the shape (according to Zahn and Roskies). Slide 12

13 Methodology : Fourier Descriptors Throw away A(0) since it is the DC component; that is, it represents only the translation of the contour. Truncate A(>6) since higher frequency components don't add much to the shape. Normalize the remaining magnitudes by dividing each element of A by A(0). Reason: when a shape is scaled by a constant factor (alpha), the magnitude of each of the coefficients in the resulting FFT is also multiplied by alpha. To remove alpha from the equation, we simply divide by a number, A(0), which is known to be a product of alpha. The FD of the test object is compared with each object of the training set The object with the least Euclidean distance in the training set will be the recognized object. Slide 13

14 Methodology : Similarity Measures If two shapes, A and B, produce a set of values represented by a(i) and b(i) then the distance between them can be given as c(i) = a(i) b(i). If a(i) and b(i) are identical then c(i) will be zero. If they are different then the magnitudes of the components in c(i) will give a reasonable measure of the difference. Slide 14

15 Methodology : Similarity Measures Euclidean Distance (ED) n c() i i= 1 2 Percentage Error (PE) n i= 1 c b () i () i Slide 15

16 Solution ALGORITHM Clean up the image of noise by using a median filter and then removing all but the largest of the objects in the scene. Find the boundary of the image. Convert the x, y coordinates in the contour to a one-dimensional vector by treating them as a complex pair. That is: U(n) = X(n) + i * Y(n). Perform the Fast Fourier Transform on U and take the absolute value to create a new vector A which is the magnitude of Slide 16

17 Experiments & Results Fourier Descriptors under different transformations Slide 17

18 Experiments & Results 1a: Euclidean Measure Comparison of results for 100 model objects No. of FDs used 4 Transformations 71.67% Noise 75% Occlusion 5% Base Case % 93.75% 8.33% % 93.75% 20% T: Transformati ons % 93.33% 93.75% 93.75% 18.33% 23.33% N: Noise O: Occlusion 29 95% 93.75% 23.33% 40 95% 93.75% 23.33% Slide 18

19 Experiments & Results 1a: Euclidean Measure Using Euclidean distance Recognition Rate for Different Number of FDs Recognition Rateg Xmation Noise Occlusion No. of FDs Slide 19

20 Experiments & Results 1b: Percentage of Error Measure Comparison of results for 100 model objects No. of FDs used Transformations Noise Occlusion 4 70% 87.5% 8.33% Base Case 6 80% 81.25% 11.67% % 81.25% 13.33% T: Transformations N: Noise 16 75% 81.25% 8.33% O: Occlusion % 81.25% 6.67% % 81.25% 11.67% % 81.25% 11.33% Slide 20

21 Experiments & Results1b: Percentage of Error Measure Using Percentage of Errors Recognition Rate for Different Number of FDs Recognition Rate Xmation Noise Occlusion No. of FDs Slide 21

22 Particle Swarm Optimization (PSO) J= - H + α sum(d) vid = w*vid + c1*rand( )*(pid-xid) + c2*rand( )*(pgd-xid) xid = xid + vid pid = pbest pgd = gbest Slide 22

23 Particle Swarm Optimization (PSO) The PSO algorithm is described as follows: Define the problem space and set the boundaries, i.e. equality and inequality constraints. Initialize an array of particles with random positions and their associated velocities inside the problem space. Check if the current position is inside the problem space or not. If not, adjust the positions so as to be inside the problem space. Evaluate the fitness value of each particle. Compare the current fitness value with the particles previous best value (pbest[]). If the current fitness value is better, then assign the current fitness value to pbest[] and assign the current coordinates to pbestx[][d] coordinates. Determine the current global minimum among particle s best position. If the current global minimum is better than gbest, then assign the current global minimum to gbest[] and assign the current coordinates to gbestx[][d] coordinates. Change the velocities according to Eqns. (4) or (6). Move each particle to the new position according to Eqn. (5) and return to Step 3. Repeat Step 3- Step 9 until a stopping criteria is satisfied. Slide 23

24 Particle Swarm Optimization (PSO) Experiment No Training set * X X X O X, O, N No. of FDs Consider ed Optimized Weights obtained *X = transformed objects, O = occluded objects, N = noisy objects Slide 24

25 Particle Swarm Optimization (PSO) Experiment No Training set * X X X O X, O, N No. of FDs Conside red No. of FDs Used Recog nit io n Ra te X N O 93.33% 93.75% 25% 95% 93.75% % % 90% 87.5% 20% 98.33% 87.5% 25% *X = transformed objects, O = occluded objects, N = noisy objects Slide 25

26 Conclusion Fourier descriptors were found to be able to recognize at a higher rate if we use nine or more Fourier descriptors. This trend is seen to continue when the size of the database is increased from 15 to 45 to 60. Most cumulative combinations of Fourier descriptors are able to recognize most of the images correctly for samples without noise or occlusion. It is noted that if an image is recognized, it is recognized by most cumulative combinations of Fourier descriptors, and if it is not recognized, then it is not recognized by almost all cumulative combinations of Fourier descriptors. Noise (salt and pepper) with density of ten percent has a minimal effect on the recognition ability of Fourier descriptors. When we use eight or more Fourier descriptors, the accuracy level does not drop if we add ten percent salt and pepper noise to the images. Occlusion brings down the recognition rate of Fourier descriptors from percent to around 20%. The Fourier descriptors show a steady increase in accuracy level as the number of Fourier descriptors used increases. It then stabilizes at same level for nine to eleven descriptors. Using PSO to find the most suitable descriptors and to assign weights for these descriptors improves dramatically the recognition rate using the least number of descriptors. Slide 26

27 Slide 27

Object Recognition using Particle Swarm Optimization on Fourier Descriptors

Object Recognition using Particle Swarm Optimization on Fourier Descriptors Object Recognition using Particle Swarm Optimization on Fourier Descriptors Muhammad Sarfraz 1 and Ali Taleb Ali Al-Awami 2 1 Department of Information and Computer Science, King Fahd University of Petroleum

More information

OBJECT RECOGNITION USING PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM

OBJECT RECOGNITION USING PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM www.ijcsi.org 55 OBJECT RECOGNITION USING PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM Mahmood ul Hassan 1, M. Sarfraz 2, Abdelrahman osman 3 and Muteb Alruwaili 4 1, 3, 4 Department of Computer Science,

More information

Digital Image Processing. Image Enhancement in the Frequency Domain

Digital Image Processing. Image Enhancement in the Frequency Domain Digital Image Processing Image Enhancement in the Frequency Domain Topics Frequency Domain Enhancements Fourier Transform Convolution High Pass Filtering in Frequency Domain Low Pass Filtering in Frequency

More information

Towards Automatic Recognition of Fonts using Genetic Approach

Towards Automatic Recognition of Fonts using Genetic Approach Towards Automatic Recognition of Fonts using Genetic Approach M. SARFRAZ Department of Information and Computer Science King Fahd University of Petroleum and Minerals KFUPM # 1510, Dhahran 31261, Saudi

More information

Image features. Image Features

Image features. Image Features Image features Image features, such as edges and interest points, provide rich information on the image content. They correspond to local regions in the image and are fundamental in many applications in

More information

Practical Image and Video Processing Using MATLAB

Practical Image and Video Processing Using MATLAB Practical Image and Video Processing Using MATLAB Chapter 18 Feature extraction and representation What will we learn? What is feature extraction and why is it a critical step in most computer vision and

More information

Feature description. IE PŁ M. Strzelecki, P. Strumiłło

Feature description. IE PŁ M. Strzelecki, P. Strumiłło Feature description After an image has been segmented the detected region needs to be described (represented) in a form more suitable for further processing. Representation of an image region can be carried

More information

Detection and recognition of moving objects using statistical motion detection and Fourier descriptors

Detection and recognition of moving objects using statistical motion detection and Fourier descriptors Detection and recognition of moving objects using statistical motion detection and Fourier descriptors Daniel Toth and Til Aach Institute for Signal Processing, University of Luebeck, Germany toth@isip.uni-luebeck.de

More information

MORPHOLOGICAL BOUNDARY BASED SHAPE REPRESENTATION SCHEMES ON MOMENT INVARIANTS FOR CLASSIFICATION OF TEXTURES

MORPHOLOGICAL BOUNDARY BASED SHAPE REPRESENTATION SCHEMES ON MOMENT INVARIANTS FOR CLASSIFICATION OF TEXTURES International Journal of Computer Science and Communication Vol. 3, No. 1, January-June 2012, pp. 125-130 MORPHOLOGICAL BOUNDARY BASED SHAPE REPRESENTATION SCHEMES ON MOMENT INVARIANTS FOR CLASSIFICATION

More information

An Approach to Polygonal Approximation of Digital CurvesBasedonDiscreteParticleSwarmAlgorithm

An Approach to Polygonal Approximation of Digital CurvesBasedonDiscreteParticleSwarmAlgorithm Journal of Universal Computer Science, vol. 13, no. 10 (2007), 1449-1461 submitted: 12/6/06, accepted: 24/10/06, appeared: 28/10/07 J.UCS An Approach to Polygonal Approximation of Digital CurvesBasedonDiscreteParticleSwarmAlgorithm

More information

Chapter 4 Face Recognition Using Orthogonal Transforms

Chapter 4 Face Recognition Using Orthogonal Transforms Chapter 4 Face Recognition Using Orthogonal Transforms Face recognition as a means of identification and authentication is becoming more reasonable with frequent research contributions in the area. In

More information

Filtering. -If we denote the original image as f(x,y), then the noisy image can be denoted as f(x,y)+n(x,y) where n(x,y) is a cosine function.

Filtering. -If we denote the original image as f(x,y), then the noisy image can be denoted as f(x,y)+n(x,y) where n(x,y) is a cosine function. Filtering -The image shown below has been generated by adding some noise in the form of a cosine function. -If we denote the original image as f(x,y), then the noisy image can be denoted as f(x,y)+n(x,y)

More information

Image Processing. Application area chosen because it has very good parallelism and interesting output.

Image Processing. Application area chosen because it has very good parallelism and interesting output. Chapter 11 Slide 517 Image Processing Application area chosen because it has very good parallelism and interesting output. Low-level Image Processing Operates directly on stored image to improve/enhance

More information

RGB Intensity Based Variable- Bits Image Steganography

RGB Intensity Based Variable- Bits Image Steganography RGB Intensity Based Variable- Bits Image Steganography 2008 IEEE Asia-Pacific Services Computing Conference (APSCC 2008) 1 st International Workshop on Multimedia, Information Privacy & Intelligent Computing

More information

Web Database Connectivity

Web Database Connectivity Web Database Connectivity MUHAMMAD ATIF TAHIR atif@ccse.kfupm.edu.sa Computer Engineering Department King Fahd University of Petroleum and Minerals Dhahran-31261, SAUDI ARABIA Lets get started... The purpose

More information

Vehicular shape-based objects classification using Fourier descriptor technique

Vehicular shape-based objects classification using Fourier descriptor technique Journal of Scientific & Industrial Research 484 Vol. 68, June 2009, pp. 484-495 J SCI IND RES VOL 68 JUNE 2009 Vehicular shape-based objects classification using Fourier descriptor technique Raj Bahadur

More information

Fingerprint Recognition using Texture Features

Fingerprint Recognition using Texture Features Fingerprint Recognition using Texture Features Manidipa Saha, Jyotismita Chaki, Ranjan Parekh,, School of Education Technology, Jadavpur University, Kolkata, India Abstract: This paper proposes an efficient

More information

Firm Object Classification using Butterworth Filters and Multiscale Fourier Descriptors Saravanakumar M

Firm Object Classification using Butterworth Filters and Multiscale Fourier Descriptors Saravanakumar M Firm Object Classification using Butterworth Filters and Multiscale Fourier Descriptors Saravanakumar M Department of Information Bannari Amman Institute of Sathyamangalam, Tamilnadu, India VinothSarun

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 9: Representation and Description AASS Learning Systems Lab, Dep. Teknik Room T1209 (Fr, 11-12 o'clock) achim.lilienthal@oru.se Course Book Chapter 11 2011-05-17 Contents

More information

Scene segmentation and pedestrian classification from 3-D range and intensity images

Scene segmentation and pedestrian classification from 3-D range and intensity images University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2012 Scene segmentation and pedestrian classification

More information

Lecture 10: Image Descriptors and Representation

Lecture 10: Image Descriptors and Representation I2200: Digital Image processing Lecture 10: Image Descriptors and Representation Prof. YingLi Tian Nov. 15, 2017 Department of Electrical Engineering The City College of New York The City University of

More information

Digital Signal Processing. Soma Biswas

Digital Signal Processing. Soma Biswas Digital Signal Processing Soma Biswas 2017 Partial credit for slides: Dr. Manojit Pramanik Outline What is FFT? Types of FFT covered in this lecture Decimation in Time (DIT) Decimation in Frequency (DIF)

More information

Lecture 8 Object Descriptors

Lecture 8 Object Descriptors Lecture 8 Object Descriptors Azadeh Fakhrzadeh Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapter 11.1 11.4 in G-W Azadeh Fakhrzadeh

More information

Image Processing. Image Features

Image Processing. Image Features Image Processing Image Features Preliminaries 2 What are Image Features? Anything. What they are used for? Some statements about image fragments (patches) recognition Search for similar patches matching

More information

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS

SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS SUMMARY: DISTINCTIVE IMAGE FEATURES FROM SCALE- INVARIANT KEYPOINTS Cognitive Robotics Original: David G. Lowe, 004 Summary: Coen van Leeuwen, s1460919 Abstract: This article presents a method to extract

More information

Algorithms for Recognition of Low Quality Iris Images. Li Peng Xie University of Ottawa

Algorithms for Recognition of Low Quality Iris Images. Li Peng Xie University of Ottawa Algorithms for Recognition of Low Quality Iris Images Li Peng Xie University of Ottawa Overview Iris Recognition Eyelash detection Accurate circular localization Covariance feature with LDA Fourier magnitude

More information

242 KHEDR & AWAD, Mat. Sci. Res. India, Vol. 8(2), (2011), y 2

242 KHEDR & AWAD, Mat. Sci. Res. India, Vol. 8(2), (2011), y 2 Material Science Research India Vol. 8(), 4-45 () Study of Fourier Descriptors and it s Laplace Transform for Image Recognition WAEL M. KHEDR and QAMAR A. AWAD Department of Mathematical, Faculty of Science,

More information

Mutual Information with PSO for Feature Selection

Mutual Information with PSO for Feature Selection Mutual Information with PSO for Feature Selection S. Sivakumar #1, Dr.C.Chandrasekar *2 #* Department of Computer Science, Periyar University Salem-11, Tamilnadu, India 1 ssivakkumarr@yahoo.com 2 ccsekar@gmail.com

More information

Invariant Recognition of Hand-Drawn Pictograms Using HMMs with a Rotating Feature Extraction

Invariant Recognition of Hand-Drawn Pictograms Using HMMs with a Rotating Feature Extraction Invariant Recognition of Hand-Drawn Pictograms Using HMMs with a Rotating Feature Extraction Stefan Müller, Gerhard Rigoll, Andreas Kosmala and Denis Mazurenok Department of Computer Science, Faculty of

More information

Types of Edges. Why Edge Detection? Types of Edges. Edge Detection. Gradient. Edge Detection

Types of Edges. Why Edge Detection? Types of Edges. Edge Detection. Gradient. Edge Detection Why Edge Detection? How can an algorithm extract relevant information from an image that is enables the algorithm to recognize objects? The most important information for the interpretation of an image

More information

Image and Multidimensional Signal Processing

Image and Multidimensional Signal Processing Image and Multidimensional Signal Processing Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ Representation and Description 2 Representation and

More information

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1 Last update: May 4, 200 Vision CMSC 42: Chapter 24 CMSC 42: Chapter 24 Outline Perception generally Image formation Early vision 2D D Object recognition CMSC 42: Chapter 24 2 Perception generally Stimulus

More information

Denoising Method for Removal of Impulse Noise Present in Images

Denoising Method for Removal of Impulse Noise Present in Images ISSN 2278 0211 (Online) Denoising Method for Removal of Impulse Noise Present in Images D. Devasena AP (Sr.G), Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India A.Yuvaraj Student, Sri

More information

Digital Image Processing. Lecture 6

Digital Image Processing. Lecture 6 Digital Image Processing Lecture 6 (Enhancement in the Frequency domain) Bu-Ali Sina University Computer Engineering Dep. Fall 2016 Image Enhancement In The Frequency Domain Outline Jean Baptiste Joseph

More information

EE663 Image Processing Histogram Equalization I

EE663 Image Processing Histogram Equalization I EE663 Image Processing Histogram Equalization I Dr. Samir H. Abdul-Jauwad Electrical Engineering Department College of Engineering Sciences King Fahd University of Petroleum & Minerals Dhahran Saudi Arabia

More information

Lecture 14 Shape. ch. 9, sec. 1-8, of Machine Vision by Wesley E. Snyder & Hairong Qi. Spring (CMU RI) : BioE 2630 (Pitt)

Lecture 14 Shape. ch. 9, sec. 1-8, of Machine Vision by Wesley E. Snyder & Hairong Qi. Spring (CMU RI) : BioE 2630 (Pitt) Lecture 14 Shape ch. 9, sec. 1-8, 12-14 of Machine Vision by Wesley E. Snyder & Hairong Qi Spring 2018 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these slides by John Galeotti,

More information

Shape Descriptor using Polar Plot for Shape Recognition.

Shape Descriptor using Polar Plot for Shape Recognition. Shape Descriptor using Polar Plot for Shape Recognition. Brijesh Pillai ECE Graduate Student, Clemson University bpillai@clemson.edu Abstract : This paper presents my work on computing shape models that

More information

Planar Symmetry Detection by Random Sampling and Voting Process

Planar Symmetry Detection by Random Sampling and Voting Process Planar Symmetry Detection by Random Sampling and Voting Process Atsushi Imiya, Tomoki Ueno, and Iris Fermin Dept. of IIS, Chiba University, 1-33, Yayo-cho, Inage-ku, Chiba, 263-8522, Japan imiya@ics.tj.chiba-u.ac.jp

More information

Review for the Final

Review for the Final Review for the Final CS 635 Review (Topics Covered) Image Compression Lossless Coding Compression Huffman Interpixel RLE Lossy Quantization Discrete Cosine Transform JPEG CS 635 Review (Topics Covered)

More information

Lecture 18 Representation and description I. 2. Boundary descriptors

Lecture 18 Representation and description I. 2. Boundary descriptors Lecture 18 Representation and description I 1. Boundary representation 2. Boundary descriptors What is representation What is representation After segmentation, we obtain binary image with interested regions

More information

PEER Report Addendum.

PEER Report Addendum. PEER Report 2017-03 Addendum. The authors recommend the replacement of Section 3.5.1 and Table 3.15 with the content of this Addendum. Consequently, the recommendation is to replace the 13 models and their

More information

Digital Image Processing Fundamentals

Digital Image Processing Fundamentals Ioannis Pitas Digital Image Processing Fundamentals Chapter 7 Shape Description Answers to the Chapter Questions Thessaloniki 1998 Chapter 7: Shape description 7.1 Introduction 1. Why is invariance to

More information

Representing Moving Images with Layers. J. Y. Wang and E. H. Adelson MIT Media Lab

Representing Moving Images with Layers. J. Y. Wang and E. H. Adelson MIT Media Lab Representing Moving Images with Layers J. Y. Wang and E. H. Adelson MIT Media Lab Goal Represent moving images with sets of overlapping layers Layers are ordered in depth and occlude each other Velocity

More information

3D Perception. CS 4495 Computer Vision K. Hawkins. CS 4495 Computer Vision. 3D Perception. Kelsey Hawkins Robotics

3D Perception. CS 4495 Computer Vision K. Hawkins. CS 4495 Computer Vision. 3D Perception. Kelsey Hawkins Robotics CS 4495 Computer Vision Kelsey Hawkins Robotics Motivation What do animals, people, and robots want to do with vision? Detect and recognize objects/landmarks Find location of objects with respect to themselves

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who 1 in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

Relationship between Fourier Space and Image Space. Academic Resource Center

Relationship between Fourier Space and Image Space. Academic Resource Center Relationship between Fourier Space and Image Space Academic Resource Center Presentation Outline What is an image? Noise Why do we transform images? What is the Fourier Transform? Examples of images in

More information

Chapter 11 Image Processing

Chapter 11 Image Processing Chapter Image Processing Low-level Image Processing Operates directly on a stored image to improve or enhance it. Stored image consists of a two-dimensional array of pixels (picture elements): Origin (0,

More information

CHAPTER 5 MOTION DETECTION AND ANALYSIS

CHAPTER 5 MOTION DETECTION AND ANALYSIS CHAPTER 5 MOTION DETECTION AND ANALYSIS 5.1. Introduction: Motion processing is gaining an intense attention from the researchers with the progress in motion studies and processing competence. A series

More information

Multiple-Choice Questionnaire Group C

Multiple-Choice Questionnaire Group C Family name: Vision and Machine-Learning Given name: 1/28/2011 Multiple-Choice naire Group C No documents authorized. There can be several right answers to a question. Marking-scheme: 2 points if all right

More information

EECS490: Digital Image Processing. Lecture #23

EECS490: Digital Image Processing. Lecture #23 Lecture #23 Motion segmentation & motion tracking Boundary tracking Chain codes Minimum perimeter polygons Signatures Motion Segmentation P k Accumulative Difference Image Positive ADI Negative ADI (ADI)

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

Robust Optical Character Recognition under Geometrical Transformations

Robust Optical Character Recognition under Geometrical Transformations www.ijocit.org & www.ijocit.ir ISSN = 2345-3877 Robust Optical Character Recognition under Geometrical Transformations Mohammad Sadegh Aliakbarian 1, Fatemeh Sadat Saleh 2, Fahimeh Sadat Saleh 3, Fatemeh

More information

Practice Exam Sample Solutions

Practice Exam Sample Solutions CS 675 Computer Vision Instructor: Marc Pomplun Practice Exam Sample Solutions Note that in the actual exam, no calculators, no books, and no notes allowed. Question 1: out of points Question 2: out of

More information

Road-Sign Detection and Recognition Based on Support Vector Machines. Maldonado-Bascon et al. et al. Presented by Dara Nyknahad ECG 789

Road-Sign Detection and Recognition Based on Support Vector Machines. Maldonado-Bascon et al. et al. Presented by Dara Nyknahad ECG 789 Road-Sign Detection and Recognition Based on Support Vector Machines Maldonado-Bascon et al. et al. Presented by Dara Nyknahad ECG 789 Outline Introduction Support Vector Machine (SVM) Algorithm Results

More information

Equation to LaTeX. Abhinav Rastogi, Sevy Harris. I. Introduction. Segmentation.

Equation to LaTeX. Abhinav Rastogi, Sevy Harris. I. Introduction. Segmentation. Equation to LaTeX Abhinav Rastogi, Sevy Harris {arastogi,sharris5}@stanford.edu I. Introduction Copying equations from a pdf file to a LaTeX document can be time consuming because there is no easy way

More information

Issues with Curve Detection Grouping (e.g., the Canny hysteresis thresholding procedure) Model tting They can be performed sequentially or simultaneou

Issues with Curve Detection Grouping (e.g., the Canny hysteresis thresholding procedure) Model tting They can be performed sequentially or simultaneou an edge image, nd line or curve segments present Given the image. in Line and Curves Detection 1 Issues with Curve Detection Grouping (e.g., the Canny hysteresis thresholding procedure) Model tting They

More information

A Quantitative Approach for Textural Image Segmentation with Median Filter

A Quantitative Approach for Textural Image Segmentation with Median Filter International Journal of Advancements in Research & Technology, Volume 2, Issue 4, April-2013 1 179 A Quantitative Approach for Textural Image Segmentation with Median Filter Dr. D. Pugazhenthi 1, Priya

More information

Image retrieval based on region shape similarity

Image retrieval based on region shape similarity Image retrieval based on region shape similarity Cheng Chang Liu Wenyin Hongjiang Zhang Microsoft Research China, 49 Zhichun Road, Beijing 8, China {wyliu, hjzhang}@microsoft.com ABSTRACT This paper presents

More information

9 length of contour = no. of horizontal and vertical components + ( 2 no. of diagonal components) diameter of boundary B

9 length of contour = no. of horizontal and vertical components + ( 2 no. of diagonal components) diameter of boundary B 8. Boundary Descriptor 8.. Some Simple Descriptors length of contour : simplest descriptor - chain-coded curve 9 length of contour no. of horiontal and vertical components ( no. of diagonal components

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

Multidimensional Image Registered Scanner using MDPSO (Multi-objective Discrete Particle Swarm Optimization)

Multidimensional Image Registered Scanner using MDPSO (Multi-objective Discrete Particle Swarm Optimization) Multidimensional Image Registered Scanner using MDPSO (Multi-objective Discrete Particle Swarm Optimization) Rishiganesh V 1, Swaruba P 2 PG Scholar M.Tech-Multimedia Technology, Department of CSE, K.S.R.

More information

A Novel Logo Detection and Recognition Framework for Separated Part Logos in Document Images

A Novel Logo Detection and Recognition Framework for Separated Part Logos in Document Images Australian Journal of Basic and Applied Sciences, 5(9): 936-946, 2011 ISSN 1991-8178 A Novel Logo Detection and Recognition Framework for Separated Part Logos in Document Images Sina Hassanzadeh, Hossein

More information

Shape Classification Using Regional Descriptors and Tangent Function

Shape Classification Using Regional Descriptors and Tangent Function Shape Classification Using Regional Descriptors and Tangent Function Meetal Kalantri meetalkalantri4@gmail.com Rahul Dhuture Amit Fulsunge Abstract In this paper three novel hybrid regional descriptor

More information

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface

Feature Extraction and Image Processing, 2 nd Edition. Contents. Preface , 2 nd Edition Preface ix 1 Introduction 1 1.1 Overview 1 1.2 Human and Computer Vision 1 1.3 The Human Vision System 3 1.3.1 The Eye 4 1.3.2 The Neural System 7 1.3.3 Processing 7 1.4 Computer Vision

More information

Updated Sections 3.5 and 3.6

Updated Sections 3.5 and 3.6 Addendum The authors recommend the replacement of Sections 3.5 3.6 and Table 3.15 with the content of this addendum. Consequently, the recommendation is to replace the 13 models and their weights with

More information

VIRTUAL SHAPE RECOGNITION USING LEAP MOTION. David Lavy and Dung Pham

VIRTUAL SHAPE RECOGNITION USING LEAP MOTION. David Lavy and Dung Pham VIRTUAL SHAPE RECOGNITION USING LEAP MOTION David Lavy and Dung Pham Boston University Department of Electrical and Computer Engineering 8 Saint Mary s Street Boston, MA 02215 www.bu.edu/ece May. 03, 2015

More information

Su et al. Shape Descriptors - III

Su et al. Shape Descriptors - III Su et al. Shape Descriptors - III Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 Funkhouser; Feng, Liu, Gong Recap Global A shape descriptor is a set of numbers that describes a shape in a way that

More information

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37

CHAPTER 1 Introduction 1. CHAPTER 2 Images, Sampling and Frequency Domain Processing 37 Extended Contents List Preface... xi About the authors... xvii CHAPTER 1 Introduction 1 1.1 Overview... 1 1.2 Human and Computer Vision... 2 1.3 The Human Vision System... 4 1.3.1 The Eye... 5 1.3.2 The

More information

Gesture Feature Extraction for Static Gesture Recognition

Gesture Feature Extraction for Static Gesture Recognition Arab J Sci Eng (2013) 38:3349 3366 DOI 10.1007/s13369-013-0654-6 RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE Gesture Feature Extraction for Static Gesture Recognition Haitham Sabah Hasan

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

HAND-GESTURE BASED FILM RESTORATION

HAND-GESTURE BASED FILM RESTORATION HAND-GESTURE BASED FILM RESTORATION Attila Licsár University of Veszprém, Department of Image Processing and Neurocomputing,H-8200 Veszprém, Egyetem u. 0, Hungary Email: licsara@freemail.hu Tamás Szirányi

More information

Computer Vision. Image Segmentation. 10. Segmentation. Computer Engineering, Sejong University. Dongil Han

Computer Vision. Image Segmentation. 10. Segmentation. Computer Engineering, Sejong University. Dongil Han Computer Vision 10. Segmentation Computer Engineering, Sejong University Dongil Han Image Segmentation Image segmentation Subdivides an image into its constituent regions or objects - After an image has

More information

HOUGH TRANSFORM CS 6350 C V

HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM The problem: Given a set of points in 2-D, find if a sub-set of these points, fall on a LINE. Hough Transform One powerful global method for detecting edges

More information

Chapter 3 Image Registration. Chapter 3 Image Registration

Chapter 3 Image Registration. Chapter 3 Image Registration Chapter 3 Image Registration Distributed Algorithms for Introduction (1) Definition: Image Registration Input: 2 images of the same scene but taken from different perspectives Goal: Identify transformation

More information

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13.

Computer Vision I. Announcements. Fourier Tansform. Efficient Implementation. Edge and Corner Detection. CSE252A Lecture 13. Announcements Edge and Corner Detection HW3 assigned CSE252A Lecture 13 Efficient Implementation Both, the Box filter and the Gaussian filter are separable: First convolve each row of input image I with

More information

MetroPro Surface Texture Parameters

MetroPro Surface Texture Parameters MetroPro Surface Texture Parameters Contents ROUGHNESS PARAMETERS...1 R a, R q, R y, R t, R p, R v, R tm, R z, H, R ku, R 3z, SR z, SR z X, SR z Y, ISO Flatness WAVINESS PARAMETERS...4 W a, W q, W y HYBRID

More information

Lecture 5: Frequency Domain Transformations

Lecture 5: Frequency Domain Transformations #1 Lecture 5: Frequency Domain Transformations Saad J Bedros sbedros@umn.edu From Last Lecture Spatial Domain Transformation Point Processing for Enhancement Area/Mask Processing Transformations Image

More information

Fundamentals of Digital Image Processing

Fundamentals of Digital Image Processing \L\.6 Gw.i Fundamentals of Digital Image Processing A Practical Approach with Examples in Matlab Chris Solomon School of Physical Sciences, University of Kent, Canterbury, UK Toby Breckon School of Engineering,

More information

A Novel Algorithm for Color Image matching using Wavelet-SIFT

A Novel Algorithm for Color Image matching using Wavelet-SIFT International Journal of Scientific and Research Publications, Volume 5, Issue 1, January 2015 1 A Novel Algorithm for Color Image matching using Wavelet-SIFT Mupuri Prasanth Babu *, P. Ravi Shankar **

More information

Review for Mastery Using Graphs and Tables to Solve Linear Systems

Review for Mastery Using Graphs and Tables to Solve Linear Systems 3-1 Using Graphs and Tables to Solve Linear Systems A linear system of equations is a set of two or more linear equations. To solve a linear system, find all the ordered pairs (x, y) that make both equations

More information

FFTs in Graphics and Vision. Invariance of Shape Descriptors

FFTs in Graphics and Vision. Invariance of Shape Descriptors FFTs in Graphics and Vision Invariance of Shape Descriptors 1 Outline Math Overview Translation and Rotation Invariance The 0 th Order Frequency Component Shape Descriptors Invariance 2 Translation Invariance

More information

Towards Efficient and Effective Smart Grid Control

Towards Efficient and Effective Smart Grid Control I-SENSE REU Final Presentation 08/04/17 Towards Efficient and Effective Smart Grid Control Michael Aiudi Ocean Engineering Student University of Rhode Island Rising Senior Less CO2 emissions and a more

More information

CLASSIFICATION OF BOUNDARY AND REGION SHAPES USING HU-MOMENT INVARIANTS

CLASSIFICATION OF BOUNDARY AND REGION SHAPES USING HU-MOMENT INVARIANTS CLASSIFICATION OF BOUNDARY AND REGION SHAPES USING HU-MOMENT INVARIANTS B.Vanajakshi Department of Electronics & Communications Engg. Assoc.prof. Sri Viveka Institute of Technology Vijayawada, India E-mail:

More information

Part 3: Image Processing

Part 3: Image Processing Part 3: Image Processing Moving Window Transform Georgy Gimel farb COMPSCI 373 Computer Graphics and Image Processing 1 / 62 1 Examples of linear / non-linear filtering 2 Moving window transform 3 Gaussian

More information

Designing Applications that See Lecture 7: Object Recognition

Designing Applications that See Lecture 7: Object Recognition stanford hci group / cs377s Designing Applications that See Lecture 7: Object Recognition Dan Maynes-Aminzade 29 January 2008 Designing Applications that See http://cs377s.stanford.edu Reminders Pick up

More information

A New Algorithm for Shape Detection

A New Algorithm for Shape Detection IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 19, Issue 3, Ver. I (May.-June. 2017), PP 71-76 www.iosrjournals.org A New Algorithm for Shape Detection Hewa

More information

Detecting and Identifying Moving Objects in Real-Time

Detecting and Identifying Moving Objects in Real-Time Chapter 9 Detecting and Identifying Moving Objects in Real-Time For surveillance applications or for human-computer interaction, the automated real-time tracking of moving objects in images from a stationary

More information

Digital Image Processing. Prof. P. K. Biswas. Department of Electronic & Electrical Communication Engineering

Digital Image Processing. Prof. P. K. Biswas. Department of Electronic & Electrical Communication Engineering Digital Image Processing Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Image Enhancement Frequency Domain Processing

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 04 130131 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Histogram Equalization Image Filtering Linear

More information

A Fast Personal Palm print Authentication based on 3D-Multi Wavelet Transformation

A Fast Personal Palm print Authentication based on 3D-Multi Wavelet Transformation A Fast Personal Palm print Authentication based on 3D-Multi Wavelet Transformation * A. H. M. Al-Helali, * W. A. Mahmmoud, and * H. A. Ali * Al- Isra Private University Email: adnan_hadi@yahoo.com Abstract:

More information

CS4733 Class Notes, Computer Vision

CS4733 Class Notes, Computer Vision CS4733 Class Notes, Computer Vision Sources for online computer vision tutorials and demos - http://www.dai.ed.ac.uk/hipr and Computer Vision resources online - http://www.dai.ed.ac.uk/cvonline Vision

More information

ENHANCED GENERIC FOURIER DESCRIPTORS FOR OBJECT-BASED IMAGE RETRIEVAL

ENHANCED GENERIC FOURIER DESCRIPTORS FOR OBJECT-BASED IMAGE RETRIEVAL ENHANCED GENERIC FOURIER DESCRIPTORS FOR OBJECT-BASED IMAGE RETRIEVAL Dengsheng Zhang and Guojun Lu Gippsland School of Computing and Info Tech Monash University Churchill, Victoria 3842 dengsheng.zhang,

More information

Image Processing Techniques Applied to Problems of Industrial Automation

Image Processing Techniques Applied to Problems of Industrial Automation Image Processing Techniques Applied to Problems of Industrial Automation Sérgio Oliveira Instituto Superior Técnico Abstract This work focuses on the development of applications of image processing for

More information

An Efficient QBIR system using Adaptive segmentation and multiple features

An Efficient QBIR system using Adaptive segmentation and multiple features Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 87 (2016 ) 134 139 2016 International Conference on Computational Science An Efficient QBIR system using Adaptive segmentation

More information

Edge Histogram Descriptor, Geometric Moment and Sobel Edge Detector Combined Features Based Object Recognition and Retrieval System

Edge Histogram Descriptor, Geometric Moment and Sobel Edge Detector Combined Features Based Object Recognition and Retrieval System Edge Histogram Descriptor, Geometric Moment and Sobel Edge Detector Combined Features Based Object Recognition and Retrieval System Neetesh Prajapati M. Tech Scholar VNS college,bhopal Amit Kumar Nandanwar

More information

Evaluation of Moving Object Tracking Techniques for Video Surveillance Applications

Evaluation of Moving Object Tracking Techniques for Video Surveillance Applications International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Evaluation

More information

Does everyone have an override code?

Does everyone have an override code? Does everyone have an override code? Project 1 due Friday 9pm Review of Filtering Filtering in frequency domain Can be faster than filtering in spatial domain (for large filters) Can help understand effect

More information

5. Feature Extraction from Images

5. Feature Extraction from Images 5. Feature Extraction from Images Aim of this Chapter: Learn the Basic Feature Extraction Methods for Images Main features: Color Texture Edges Wie funktioniert ein Mustererkennungssystem Test Data x i

More information

2: Image Display and Digital Images. EE547 Computer Vision: Lecture Slides. 2: Digital Images. 1. Introduction: EE547 Computer Vision

2: Image Display and Digital Images. EE547 Computer Vision: Lecture Slides. 2: Digital Images. 1. Introduction: EE547 Computer Vision EE547 Computer Vision: Lecture Slides Anthony P. Reeves November 24, 1998 Lecture 2: Image Display and Digital Images 2: Image Display and Digital Images Image Display: - True Color, Grey, Pseudo Color,

More information

Image Compression System on an FPGA

Image Compression System on an FPGA Image Compression System on an FPGA Group 1 Megan Fuller, Ezzeldin Hamed 6.375 Contents 1 Objective 2 2 Background 2 2.1 The DFT........................................ 3 2.2 The DCT........................................

More information