Advances in Multiobjective Optimization Dealing with computational cost

Size: px
Start display at page:

Download "Advances in Multiobjective Optimization Dealing with computational cost"

Transcription

1 Advances in Multiobjective Optimization Dealing with computational cost Jussi Hakanen

2 Contents Motivation: why approximation? An example of approximation: Pareto Navigator Software demo

3 Computational cost Typically, optimization requires high number of function evaluations especially multiobjective optimization Key issue: how long does simulating the problem take? Examples no computational cost: functions having analytical expressions probably high computational cost: e.g. numerical simulation of PDEs, experiments, simulators

4 Illustrative figures 1 simulation 1 ms 1000 simulations = 1second 1 simulation 1 s 1000 simulations 17 minutes 1 simulation 1 minute 1000 simulations 17 hours 1 simulation 1 hour 1000 simulations 42 days What can be done?

5 Surrogate models Simple models for approximating a given data Low computational cost Requires training data that is generated by using the original high accuracy model Surrogate model is trained with the training data (find parameters) need for validation! Many different surrogate models Polynomials Radial basis functions Artificial neural networks Kriging Support vector regression

6 Surrogate models in single objective optimization Used to approximate the objective function Two main approaches: One shot: optimize with approximated objective function, evaluate original model in the optimal solution, stop Adaptive: optimize with approximated objective function, evaluate original model in the optimal solution, update the surrogate model and repeat until solution good enough

7 Question How could surrogate models be used to reduce computational cost in MO? Ideas? Approximate objective functions Approximate PO set in the objective space Approximate PO set in the decision space Approximate fitness function evaluation in EMO

8 Pareto Navigator: An example of utilizing approximation P. Eskelinen, K. Miettinen, K. Klamroth, J. Hakanen, Pareto Navigator for Interactive Nonlinear Multiobjective Optimization, OR Spectrum, 32, 2010

9 Motivation for Pareto Navigator Assume that evaluation of the objective functions is time consuming Idea is to enable fast navigation in the PO set in the objective space through approximation Interactive method for nonlinear, convex multiobjective optimization problems Has been influenced by the Pareto Race (Korhonen & Wallenius, 1988)

10 Decision Making Decision process can often be divided into two phases Learning phase: DM learns about the possibilities and limitations of the problem as well as his/her own preferences Decision phase: making the final decision based on information obtained from the learning phase Pareto Navigator concentrates on the learning phase

11 Multiobjective Optimization Methods (reminder) MOO methods can be classified according to the role of the DM into No-preference methods A posteriori methods (e.g. approximation algorithms, EMO methods) A priori methods (e.g. lexicographic ordering, goal programming) Interactive methods

12 Interactive Methods (reminder) Iterative interaction between the DM and the method During the solution process the DM expresses preferences on how the current solution should be improved DM s preferences are taken into account when new compromise solution(s) are computed Well suited for solving real-world problems because DM learns about the behaviour of the problem and from his/her preferences DM can utilize his/her experiences in the solution procedure only the solutions of interest to the DM are computed

13 Pareto Navigator (PN) Idea: to enable convenient examination of tradeoffs between the objectives using an approximation of the PO set, that is, to navigate in an approximation of the PO set Approximation allows real-time generation and consideration of desirable PO solutions. Consists of an initialization phase and a navigation phase During navigation, the DM can learn about the interdependencies between the conflicting objectives Interesting solutions found during navigation can be projected into the actual PO set

14 Pareto Navigator Algorithm

15 PN: Initialization phase An approximation of the PO set is formed based on a small set of PO solutions in the objective space computed with some other MO method if EMO used, then the set described by the final population is approximated (not necessarily PO set) can be computed before the DM is involved and may take long time Polyhedral approximation (convex problem) e.g. convex hull of PO solutions Az b Approximate ideal and nadir objective vectors Select a starting point (DM involved), e.g. one of the solutions used to build the approximation

16 PN: Navigation phase The DM can navigate around the approximation and direct the search for the most promising regions Approximated PO solutions are feasible for convex problems Preferences of the DM are used to define a search direction in the approximation from the starting solution e.g. based on a reference point z R k given by the DM search direction d = z z c where z c is the current solution

17 Polyhedral approximation for two objectives

18 PN: Navigation phase Progress towards the specified search direction approximated solutions can be computed e.g. by using the reference point method α is a step length parameter moving the reference point z α to the specified search direction and w i are the weights Nondifferentiable due to min-max term can be smoothened

19 Smooth formulation Problem linear w.r.t. z!

20 PN: Navigation phase Approximated solutions can be obtained by solving linear problems (minimization w.r.t. z ) good for computationally demanding problems Parametric linear programming produces approximated solutions real-time for any problem Drawback: connection to the decision variables is lost Approximated solutions can be projected into the PO set original model used, may be time consuming

21 Illustration PO set and initial PO solutions (7) Polyhedral approximation and a navigation path from solution A to D

22 Implementation of Pareto Navigator IND-NIMBUS multiobjective optimization framework (developed in JyU) Contains several interactive methods in the same platform an implementation of the NIMBUS method for solving complex (industrial) problems Pareto Navigator Pareto Front Interpolation (PAINT)

23 Pareto Navigator Demo with an example

24 PhD thesis related to approximation in our group Markus Hartikainen (2011): Approximation through interpolation in nonconvex multiobjective optimization, 05 Tomi Haanpää (2012): Approximation method for computationally expensive nonconvex multiobjective optimization problems, 01

25 Acknowledgements Dr. Petri Eskelinen, Kela The Social Insurance Institution of Finland (previously University of Jyväskylä) PhD Tomi Haanpää, PhD Markus Hartikainen, Prof. Kaisa Miettinen and MSc Suvi Tarkkanen, University of Jyväskylä Prof. Kathrin Klamroth, University of Wuppertal, Germany

26 Thank You! PhD Jussi Hakanen Industrial Optimization Group Department of Mathematical Information Technology P.O. Box 35 (Agora) FI University of Jyväskylä, Finland

TIES598 Nonlinear Multiobjective Optimization Methods to handle computationally expensive problems in multiobjective optimization

TIES598 Nonlinear Multiobjective Optimization Methods to handle computationally expensive problems in multiobjective optimization TIES598 Nonlinear Multiobjective Optimization Methods to hle computationally expensive problems in multiobjective optimization Spring 2015 Jussi Hakanen Markus Hartikainen firstname.lastname@jyu.fi Outline

More information

New Mutation Operator for Multiobjective Optimization with Differential Evolution

New Mutation Operator for Multiobjective Optimization with Differential Evolution TIEJ601, Postgraduate Seminar in Information Technology New Mutation Operator for Multiobjective Optimization with Differential Evolution by Karthik Sindhya Doctoral Student Industrial Optimization Group

More information

Introduction to Multiobjective Optimization

Introduction to Multiobjective Optimization Introduction to Multiobjective Optimization Jussi Hakanen jussi.hakanen@jyu.fi Contents Multiple Criteria Decision Making (MCDM) Formulation of a multiobjective problem On solving multiobjective problems

More information

IND-NIMBUS Software for Multiobjective Optimization

IND-NIMBUS Software for Multiobjective Optimization Proceedings of the 6th WSEAS International Conference on Simulation, Modelling and Optimization, Lisbon, Portugal, September 22-24, 2006 654 IND-NIMBUS Software for Multiobjective Optimization VESA OJALEHTO

More information

Recent Developments in Model-based Derivative-free Optimization

Recent Developments in Model-based Derivative-free Optimization Recent Developments in Model-based Derivative-free Optimization Seppo Pulkkinen April 23, 2010 Introduction Problem definition The problem we are considering is a nonlinear optimization problem with constraints:

More information

NEW HEURISTIC APPROACH TO MULTIOBJECTIVE SCHEDULING

NEW HEURISTIC APPROACH TO MULTIOBJECTIVE SCHEDULING European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004 P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, J. Périaux, and D. Knörzer (eds.) Jyväskylä, 24 28 July 2004

More information

An Improved Progressively Interactive Evolutionary Multi-objective Optimization Algorithm with a Fixed Budget of Decision Maker Calls

An Improved Progressively Interactive Evolutionary Multi-objective Optimization Algorithm with a Fixed Budget of Decision Maker Calls An Improved Progressively Interactive Evolutionary Multi-objective Optimization Algorithm with a Fixed Budget of Decision Maker Calls Ankur Sinha, Pekka Korhonen, Jyrki Wallenius Firstname.Secondname@aalto.fi,

More information

Discussions on Normalization and Other Topics in Multi-Objective Optimization

Discussions on Normalization and Other Topics in Multi-Objective Optimization Discussions on Normalization and Other Topics in Multi-Objective Optimization Algorithmics Group, Fields Industrial Problem Solving Workshop Yichuan Ding, Sandra Gregov, Oleg Grodzevich, Itamar Halevy,

More information

A Surrogate-assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-objective Optimization

A Surrogate-assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-objective Optimization A Surrogate-assisted Reference Vector Guided Evolutionary Algorithm for Computationally Expensive Many-objective Optimization Tinkle Chugh, Yaochu Jin, Fellow, IEEE, Kaisa Miettinen, Jussi Hakanen, Karthik

More information

NEW DECISION MAKER MODEL FOR MULTIOBJECTIVE OPTIMIZATION INTERACTIVE METHODS

NEW DECISION MAKER MODEL FOR MULTIOBJECTIVE OPTIMIZATION INTERACTIVE METHODS NEW DECISION MAKER MODEL FOR MULTIOBJECTIVE OPTIMIZATION INTERACTIVE METHODS Andrejs Zujevs 1, Janis Eiduks 2 1 Latvia University of Agriculture, Department of Computer Systems, Liela street 2, Jelgava,

More information

Towards an Estimation of Nadir Objective Vector Using Hybrid Evolutionary and Local Search Approaches

Towards an Estimation of Nadir Objective Vector Using Hybrid Evolutionary and Local Search Approaches Towards an Estimation of Nadir Objective Vector Using Hybrid Evolutionary and Local Search Approaches Kalyanmoy Deb, Kaisa Miettinen, and Shamik Chaudhuri KanGAL Report Number 279 Abstract Nadir objective

More information

Computational Intelligence

Computational Intelligence Computational Intelligence Winter Term 2016/17 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund Slides prepared by Dr. Nicola Beume (2012) Multiobjective

More information

Introduction to optimization methods and line search

Introduction to optimization methods and line search Introduction to optimization methods and line search Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi How to find optimal solutions? Trial and error widely used in practice, not efficient and

More information

Design optimization and design exploration using an open source framework on HPC facilities Presented by: Joel GUERRERO

Design optimization and design exploration using an open source framework on HPC facilities Presented by: Joel GUERRERO Workshop HPC Methods for Engineering CINECA (Milan, Italy). June 17th-19th, 2015. Design optimization and design exploration using an open source framework on HPC facilities Presented by: Joel GUERRERO

More information

Optimization. Industrial AI Lab.

Optimization. Industrial AI Lab. Optimization Industrial AI Lab. Optimization An important tool in 1) Engineering problem solving and 2) Decision science People optimize Nature optimizes 2 Optimization People optimize (source: http://nautil.us/blog/to-save-drowning-people-ask-yourself-what-would-light-do)

More information

Optimization. 1. Optimization. by Prof. Seungchul Lee Industrial AI Lab POSTECH. Table of Contents

Optimization. 1. Optimization. by Prof. Seungchul Lee Industrial AI Lab  POSTECH. Table of Contents Optimization by Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH Table of Contents I. 1. Optimization II. 2. Solving Optimization Problems III. 3. How do we Find x f(x) = 0 IV.

More information

Introduction to unconstrained optimization - derivative-free methods

Introduction to unconstrained optimization - derivative-free methods Introduction to unconstrained optimization - derivative-free methods Jussi Hakanen Post-doctoral researcher Office: AgC426.3 jussi.hakanen@jyu.fi Learning outcomes To understand the basic principles of

More information

Recent advances in Metamodel of Optimal Prognosis. Lectures. Thomas Most & Johannes Will

Recent advances in Metamodel of Optimal Prognosis. Lectures. Thomas Most & Johannes Will Lectures Recent advances in Metamodel of Optimal Prognosis Thomas Most & Johannes Will presented at the Weimar Optimization and Stochastic Days 2010 Source: www.dynardo.de/en/library Recent advances in

More information

CHAPTER 2 MULTI-OBJECTIVE REACTIVE POWER OPTIMIZATION

CHAPTER 2 MULTI-OBJECTIVE REACTIVE POWER OPTIMIZATION 19 CHAPTER 2 MULTI-OBJECTIE REACTIE POWER OPTIMIZATION 2.1 INTRODUCTION In this chapter, a fundamental knowledge of the Multi-Objective Optimization (MOO) problem and the methods to solve are presented.

More information

ADAPTIVE FINITE ELEMENT

ADAPTIVE FINITE ELEMENT Finite Element Methods In Linear Structural Mechanics Univ. Prof. Dr. Techn. G. MESCHKE SHORT PRESENTATION IN ADAPTIVE FINITE ELEMENT Abdullah ALSAHLY By Shorash MIRO Computational Engineering Ruhr Universität

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Introduction to ANSYS DesignXplorer

Introduction to ANSYS DesignXplorer Lecture 4 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 s are functions of different nature where the output parameters are described in terms of the input parameters

More information

Mathematical Optimization in Radiotherapy Treatment Planning

Mathematical Optimization in Radiotherapy Treatment Planning 1 / 35 Mathematical Optimization in Radiotherapy Treatment Planning Ehsan Salari Department of Radiation Oncology Massachusetts General Hospital and Harvard Medical School HST S14 May 13, 2013 2 / 35 Outline

More information

Webinar. Machine Tool Optimization with ANSYS optislang

Webinar. Machine Tool Optimization with ANSYS optislang Webinar Machine Tool Optimization with ANSYS optislang 1 Outline Introduction Process Integration Design of Experiments & Sensitivity Analysis Multi-objective Optimization Single-objective Optimization

More information

A Two-Stage Stochastic Programming Approach for Location-Allocation Models in Uncertain Environments

A Two-Stage Stochastic Programming Approach for Location-Allocation Models in Uncertain Environments A Two-Stage Stochastic Programming Approach for Location-Allocation in Uncertain Environments Markus Kaiser, Kathrin Klamroth Optimization & Approximation Department of Mathematics University of Wuppertal

More information

Multiobjective Optimisation. Why? Panorama. General Formulation. Decision Space and Objective Space. 1 of 7 02/03/15 09:49.

Multiobjective Optimisation. Why? Panorama. General Formulation. Decision Space and Objective Space. 1 of 7 02/03/15 09:49. ITNPD8/CSCU9YO Multiobjective Optimisation An Overview Nadarajen Veerapen (nve@cs.stir.ac.uk) University of Stirling Why? Classic optimisation: 1 objective Example: Minimise cost Reality is often more

More information

Delaunay-based Derivative-free Optimization via Global Surrogate. Pooriya Beyhaghi, Daniele Cavaglieri and Thomas Bewley

Delaunay-based Derivative-free Optimization via Global Surrogate. Pooriya Beyhaghi, Daniele Cavaglieri and Thomas Bewley Delaunay-based Derivative-free Optimization via Global Surrogate Pooriya Beyhaghi, Daniele Cavaglieri and Thomas Bewley May 23, 2014 Delaunay-based Derivative-free Optimization via Global Surrogate Pooriya

More information

Support Vector Machines

Support Vector Machines Support Vector Machines SVM Discussion Overview. Importance of SVMs. Overview of Mathematical Techniques Employed 3. Margin Geometry 4. SVM Training Methodology 5. Overlapping Distributions 6. Dealing

More information

Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach

Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach Hisao Ishibuchi Graduate School of Engineering Osaka Prefecture University Sakai, Osaka 599-853,

More information

COMS 4771 Support Vector Machines. Nakul Verma

COMS 4771 Support Vector Machines. Nakul Verma COMS 4771 Support Vector Machines Nakul Verma Last time Decision boundaries for classification Linear decision boundary (linear classification) The Perceptron algorithm Mistake bound for the perceptron

More information

Multi-Objective Optimization Techniques for VLSI Circuits

Multi-Objective Optimization Techniques for VLSI Circuits Multi-Objective Techniques for VLSI Circuits Fatemeh Kashfi, Safar Hatami, Massoud Pedram University of Southern California 374 McClintock Ave, Los Angeles CA 989 E-mail: fkashfi@usc.edu Abstract The EDA

More information

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Simplest

More information

Finding Knees in Multi-objective Optimization

Finding Knees in Multi-objective Optimization Finding Knees in Multi-objective Optimization Jürgen Branke 1, Kalyanmoy Deb 2, Henning Dierolf 1, and Matthias Osswald 1 1 Institute AIFB, University of Karlsruhe, Germany branke@aifb.uni-karlsruhe.de

More information

COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions

COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16. Lecture 2: Linear Regression Gradient Descent Non-linear basis functions COMPUTATIONAL INTELLIGENCE (CS) (INTRODUCTION TO MACHINE LEARNING) SS16 Lecture 2: Linear Regression Gradient Descent Non-linear basis functions LINEAR REGRESSION MOTIVATION Why Linear Regression? Regression

More information

Optimization. Using Analytic Solver Platform REVIEW BASED ON MANAGEMENT SCIENCE

Optimization. Using Analytic Solver Platform REVIEW BASED ON MANAGEMENT SCIENCE Optimization Using Analytic Solver Platform REVIEW BASED ON MANAGEMENT SCIENCE What We ll Cover Today Introduction Frontline Systems Session Ι beta training program goals Overview of Analytic Solver Platform

More information

Artificial Neural Networks MLP, RBF & GMDH

Artificial Neural Networks MLP, RBF & GMDH Artificial Neural Networks MLP, RBF & GMDH Jan Drchal drchajan@fel.cvut.cz Computational Intelligence Group Department of Computer Science and Engineering Faculty of Electrical Engineering Czech Technical

More information

CT79 SOFT COMPUTING ALCCS-FEB 2014

CT79 SOFT COMPUTING ALCCS-FEB 2014 Q.1 a. Define Union, Intersection and complement operations of Fuzzy sets. For fuzzy sets A and B Figure Fuzzy sets A & B The union of two fuzzy sets A and B is a fuzzy set C, written as C=AUB or C=A OR

More information

Support Vector Machines.

Support Vector Machines. Support Vector Machines srihari@buffalo.edu SVM Discussion Overview. Importance of SVMs. Overview of Mathematical Techniques Employed 3. Margin Geometry 4. SVM Training Methodology 5. Overlapping Distributions

More information

Optimization System for Solving Problems of Nonlinear Multiobjective Programming

Optimization System for Solving Problems of Nonlinear Multiobjective Programming БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ. BULGARIAN ACADEMY OF SCIENCES ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 52 PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 52 София. 2001. Sofia Optimization System

More information

Light Beam Search Based Multi-objective Optimization using Evolutionary Algorithms

Light Beam Search Based Multi-objective Optimization using Evolutionary Algorithms Light Beam Search Based Multi-objective Optimization using Evolutionary Algorithms Kalyanmoy Deb and Abhay Kumar KanGAL Report Number 275 Abstract For the past decade or so, evolutionary multiobjective

More information

Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 1. Module 8 Lecture Notes 2. Multi-objective Optimization

Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 1. Module 8 Lecture Notes 2. Multi-objective Optimization Optimization Methods: Advanced Topics in Optimization - Multi-objective Optimization 1 Module 8 Lecture Notes 2 Multi-objective Optimization Introduction In a real world problem it is very unlikely that

More information

Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems

Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems Tony Maciejewski, Kyle Tarplee, Ryan Friese, and Howard Jay Siegel Department of Electrical and Computer Engineering Colorado

More information

THE LINEAR MULTIPLE CHOICE KNAPSACK PROBLEM WITH TWO CRITERIA: PROFIT AND EQUITY

THE LINEAR MULTIPLE CHOICE KNAPSACK PROBLEM WITH TWO CRITERIA: PROFIT AND EQUITY MCDM 2006, Chania, Greece, June 19-23, 2006 THE LINEAR MULTIPLE CHOICE KNAPSACK PROBLEM WITH TWO CRITERIA: PROFIT AND EQUITY George Kozanidis Systems Optimization Laboratory Dept. of Mechanical & Industrial

More information

Introduction to ANSYS DesignXplorer

Introduction to ANSYS DesignXplorer Lecture 5 Goal Driven Optimization 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 Goal Driven Optimization (GDO) Goal Driven Optimization (GDO) is a multi objective

More information

AN INTRODUCTION TO MULTIOBJECTIVE OPTIMIZATION TECHNIQUES

AN INTRODUCTION TO MULTIOBJECTIVE OPTIMIZATION TECHNIQUES In: Book Title Editor: Editor Name, pp. 1-26 ISBN 0000000000 c 2009 Nova Science Publishers, Inc. Chapter 1 AN INTRODUCTION TO MULTIOBJECTIVE OPTIMIZATION TECHNIQUES Antonio López Jaimes, Saúl Zapotecas

More information

Optimization with Multiple Objectives

Optimization with Multiple Objectives Optimization with Multiple Objectives Eva K. Lee, Ph.D. eva.lee@isye.gatech.edu Industrial & Systems Engineering, Georgia Institute of Technology Computational Research & Informatics, Radiation Oncology,

More information

Approximation Model Guided Selection for Evolutionary Multiobjective Optimization

Approximation Model Guided Selection for Evolutionary Multiobjective Optimization Approximation Model Guided Selection for Evolutionary Multiobjective Optimization Aimin Zhou 1, Qingfu Zhang 2, and Guixu Zhang 1 1 Each China Normal University, Shanghai, China 2 University of Essex,

More information

Preferences in Evolutionary Multi-Objective Optimisation with Noisy Fitness Functions: Hardware in the Loop Study

Preferences in Evolutionary Multi-Objective Optimisation with Noisy Fitness Functions: Hardware in the Loop Study Proceedings of the International Multiconference on ISSN 1896-7094 Computer Science and Information Technology, pp. 337 346 2007 PIPS Preferences in Evolutionary Multi-Objective Optimisation with Noisy

More information

DEVELOPMENT OF NEURAL NETWORK TRAINING METHODOLOGY FOR MODELING NONLINEAR SYSTEMS WITH APPLICATION TO THE PREDICTION OF THE REFRACTIVE INDEX

DEVELOPMENT OF NEURAL NETWORK TRAINING METHODOLOGY FOR MODELING NONLINEAR SYSTEMS WITH APPLICATION TO THE PREDICTION OF THE REFRACTIVE INDEX DEVELOPMENT OF NEURAL NETWORK TRAINING METHODOLOGY FOR MODELING NONLINEAR SYSTEMS WITH APPLICATION TO THE PREDICTION OF THE REFRACTIVE INDEX THESIS CHONDRODIMA EVANGELIA Supervisor: Dr. Alex Alexandridis,

More information

LOESS curve fitted to a population sampled from a sine wave with uniform noise added. The LOESS curve approximates the original sine wave.

LOESS curve fitted to a population sampled from a sine wave with uniform noise added. The LOESS curve approximates the original sine wave. LOESS curve fitted to a population sampled from a sine wave with uniform noise added. The LOESS curve approximates the original sine wave. http://en.wikipedia.org/wiki/local_regression Local regression

More information

A Distance Metric for Evolutionary Many-Objective Optimization Algorithms Using User-Preferences

A Distance Metric for Evolutionary Many-Objective Optimization Algorithms Using User-Preferences A Distance Metric for Evolutionary Many-Objective Optimization Algorithms Using User-Preferences Upali K. Wickramasinghe and Xiaodong Li School of Computer Science and Information Technology, RMIT University,

More information

Martin Luther Universität Halle Wittenberg Institut für Mathematik

Martin Luther Universität Halle Wittenberg Institut für Mathematik Martin Luther Universität Halle Wittenberg Institut für Mathematik Algorithms for Multicriteria Location Problems S. Alzorba and Chr. Günther Report No. 02 (2012) Editors: Professors of the Institute for

More information

COMPENDIOUS LEXICOGRAPHIC METHOD FOR MULTI-OBJECTIVE OPTIMIZATION. Ivan P. Stanimirović. 1. Introduction

COMPENDIOUS LEXICOGRAPHIC METHOD FOR MULTI-OBJECTIVE OPTIMIZATION. Ivan P. Stanimirović. 1. Introduction FACTA UNIVERSITATIS (NIŠ) Ser. Math. Inform. Vol. 27, No 1 (2012), 55 66 COMPENDIOUS LEXICOGRAPHIC METHOD FOR MULTI-OBJECTIVE OPTIMIZATION Ivan P. Stanimirović Abstract. A modification of the standard

More information

Rational Bezier Curves

Rational Bezier Curves Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

More information

Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm

Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm Ankur Sinha and Kalyanmoy Deb Helsinki School of Economics, PO Box, FIN-, Helsinki, Finland (e-mail: ankur.sinha@hse.fi,

More information

Evolutionary multi-objective algorithm design issues

Evolutionary multi-objective algorithm design issues Evolutionary multi-objective algorithm design issues Karthik Sindhya, PhD Postdoctoral Researcher Industrial Optimization Group Department of Mathematical Information Technology Karthik.sindhya@jyu.fi

More information

A Comparative Study on Optimization Techniques for Solving Multi-objective Geometric Programming Problems

A Comparative Study on Optimization Techniques for Solving Multi-objective Geometric Programming Problems Applied Mathematical Sciences, Vol. 9, 205, no. 22, 077-085 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/ams.205.42029 A Comparative Study on Optimization Techniques for Solving Multi-objective

More information

Multicriterial Optimization Using Genetic Algorithm

Multicriterial Optimization Using Genetic Algorithm Multicriterial Optimization Using Genetic Algorithm 180 175 170 165 Fitness 160 155 150 145 140 Best Fitness Mean Fitness 135 130 0 Page 1 100 200 300 Generations 400 500 600 Contents Optimization, Local

More information

Surrogate-model based method and software for practical design optimization problems

Surrogate-model based method and software for practical design optimization problems Rakenteiden Mekaniikka (Journal of Structural Mechanics) Vol. 49, No 3, 2016, pp. 100-118 rmseura.tkk.fi/rmlehti/ The Authors 2016. Open access under CC BY-SA 4.0 license. Surrogate-model based method

More information

BRAIN-COMPUTER EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION (BC-EMO): A GENETIC ALGORITHM ADAPTING TO THE DECISION MAKER

BRAIN-COMPUTER EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION (BC-EMO): A GENETIC ALGORITHM ADAPTING TO THE DECISION MAKER DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL INFORMAZIONE 38100 Povo Trento (Italy), Via Sommarive 14 http://disi.unitn.it/ BRAIN-COMPUTER EVOLUTIONARY MULTI-OBJECTIVE OPTIMIZATION (BC-EMO): A GENETIC ALGORITHM

More information

Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls

Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls Florian Siegmund, Amos H.C. Ng Virtual Systems Research Center University of Skövde P.O. 408, 541 48 Skövde,

More information

Mathematical modelling for optimization of truck tyres selection

Mathematical modelling for optimization of truck tyres selection THESIS FOR THE DEGREE OF LICENTIATE OF TECHNOLOGY Mathematical modelling for optimization of truck tyres selection ZUZANA ŠABARTOVÁ Department of Mathematical Sciences, Chalmers University of Technology

More information

Bootstrapping Method for 14 June 2016 R. Russell Rhinehart. Bootstrapping

Bootstrapping Method for  14 June 2016 R. Russell Rhinehart. Bootstrapping Bootstrapping Method for www.r3eda.com 14 June 2016 R. Russell Rhinehart Bootstrapping This is extracted from the book, Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation,

More information

Mobile Robot Motion Planning and Multi Objective Optimization Using Improved Approach

Mobile Robot Motion Planning and Multi Objective Optimization Using Improved Approach Mobile Robot Motion Planning and Multi Objective Optimization Using Improved Approach Bashra K. O. ChaborAlwawi and Hubert Roth Automatic Control Engineering, Siegen University, Siegen, Germany Email:

More information

Tutorial on Convex Optimization for Engineers

Tutorial on Convex Optimization for Engineers Tutorial on Convex Optimization for Engineers M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

Proposal of Research Activity. PhD Course in Space Sciences, Technologies and Measurements (STMS)

Proposal of Research Activity. PhD Course in Space Sciences, Technologies and Measurements (STMS) Proposal of Research Activity PhD Course in Space Sciences, Technologies and Measurements (STMS) Curriculum: Sciences and Technologies for Aeronautics and Satellite Applications (STASA) XXXIV Cycle PhD

More information

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Kernels + K-Means Matt Gormley Lecture 29 April 25, 2018 1 Reminders Homework 8:

More information

With data-based models and design of experiments towards successful products - Concept of the product design workbench

With data-based models and design of experiments towards successful products - Concept of the product design workbench European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. With data-based models and design of experiments towards

More information

Ensemble methods in machine learning. Example. Neural networks. Neural networks

Ensemble methods in machine learning. Example. Neural networks. Neural networks Ensemble methods in machine learning Bootstrap aggregating (bagging) train an ensemble of models based on randomly resampled versions of the training set, then take a majority vote Example What if you

More information

An Interactive Evolutionary Multi-Objective Optimization Method Based on Progressively Approximated Value Functions

An Interactive Evolutionary Multi-Objective Optimization Method Based on Progressively Approximated Value Functions An Interactive Evolutionary Multi-Objective Optimization Method Based on Progressively Approximated Value Functions Kalyanmoy Deb, Ankur Sinha, Pekka Korhonen, and Jyrki Wallenius KanGAL Report Number

More information

IZAR THE CONCEPT OF UNIVERSAL MULTICRITERIA DECISION SUPPORT SYSTEM

IZAR THE CONCEPT OF UNIVERSAL MULTICRITERIA DECISION SUPPORT SYSTEM Jana Kalčevová Petr Fiala IZAR THE CONCEPT OF UNIVERSAL MULTICRITERIA DECISION SUPPORT SYSTEM Abstract Many real decision making problems are evaluated by multiple criteria. To apply appropriate multicriteria

More information

A Nonlinear Presolve Algorithm in AIMMS

A Nonlinear Presolve Algorithm in AIMMS A Nonlinear Presolve Algorithm in AIMMS By Marcel Hunting marcel.hunting@aimms.com November 2011 This paper describes the AIMMS presolve algorithm for nonlinear problems. This presolve algorithm uses standard

More information

Multi-Objective Design Optimization of a Hybrid Electric Vehicle

Multi-Objective Design Optimization of a Hybrid Electric Vehicle Multi-Objective Design Optimization of a Hybrid Electric Vehicle Christine Schwarz, ISKO engineers Dr. Johannes Friebe, MapleSoft Dr. Sam Dao, MapleSoft Optimus World Conference, Paris 14. - 15. Oktober

More information

Simultaneous Perturbation Stochastic Approximation Algorithm Combined with Neural Network and Fuzzy Simulation

Simultaneous Perturbation Stochastic Approximation Algorithm Combined with Neural Network and Fuzzy Simulation .--- Simultaneous Perturbation Stochastic Approximation Algorithm Combined with Neural Networ and Fuzzy Simulation Abstract - - - - Keywords: Many optimization problems contain fuzzy information. Possibility

More information

Quality assessment of data-based metamodels for multi-objective aeronautic design optimisation

Quality assessment of data-based metamodels for multi-objective aeronautic design optimisation Quality assessment of data-based metamodels for multi-objective aeronautic design optimisation Timur Topuz November 7 B W I vrije Universiteit Faculteit der Exacte Wetenschappen Studierichting Bedrijfswiskunde

More information

MINLP applications, part II: Water Network Design and some applications of black-box optimization

MINLP applications, part II: Water Network Design and some applications of black-box optimization MINLP applications, part II: Water Network Design and some applications of black-box optimization Claudia D Ambrosio CNRS & LIX, École Polytechnique dambrosio@lix.polytechnique.fr 5th Porto Meeting on

More information

) on threshold image, yield contour lines in raster format

) on threshold image, yield contour lines in raster format CONTOURLINES FROM DEM-GRID USING IMAGE PROCESSING TECHNIQUES HAkan Malmstrom Swedish Space Corporation P.O. Box 4207, S-7 04 Solna Sweden Commission III Digial Elevation Models (DEM) are often stored and

More information

Partially Observable Markov Decision Processes. Silvia Cruciani João Carvalho

Partially Observable Markov Decision Processes. Silvia Cruciani João Carvalho Partially Observable Markov Decision Processes Silvia Cruciani João Carvalho MDP A reminder: is a set of states is a set of actions is the state transition function. is the probability of ending in state

More information

Optimization Methods for Machine Learning (OMML)

Optimization Methods for Machine Learning (OMML) Optimization Methods for Machine Learning (OMML) 2nd lecture Prof. L. Palagi References: 1. Bishop Pattern Recognition and Machine Learning, Springer, 2006 (Chap 1) 2. V. Cherlassky, F. Mulier - Learning

More information

GOAL GEOMETRIC PROGRAMMING PROBLEM (G 2 P 2 ) WITH CRISP AND IMPRECISE TARGETS

GOAL GEOMETRIC PROGRAMMING PROBLEM (G 2 P 2 ) WITH CRISP AND IMPRECISE TARGETS Volume 4, No. 8, August 2013 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info GOAL GEOMETRIC PROGRAMMING PROBLEM (G 2 P 2 ) WITH CRISP AND IMPRECISE TARGETS

More information

Bezier curves for metamodeling of simulation output

Bezier curves for metamodeling of simulation output Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2004 Bezier curves for metamodeling of simulation output Harish J. Kingre Louisiana State University and Agricultural

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

non-deterministic variable, i.e. only the value range of the variable is given during the initialization, instead of the value itself. As we can obser

non-deterministic variable, i.e. only the value range of the variable is given during the initialization, instead of the value itself. As we can obser Piecewise Regression Learning in CoReJava Framework Juan Luo and Alexander Brodsky Abstract CoReJava (Constraint Optimization Regression in Java) is a framework which extends the programming language Java

More information

Multi-objective optimization of transonic airfoils using variable-fidelity models, co-kriging surrogates, and design space reduction

Multi-objective optimization of transonic airfoils using variable-fidelity models, co-kriging surrogates, and design space reduction Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2016 Multi-objective optimization of transonic airfoils using variable-fidelity models, co-kriging surrogates,

More information

Computational Intelligence

Computational Intelligence Computational Intelligence Winter Term 2017/18 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund Slides prepared by Dr. Nicola Beume (2012) enriched

More information

Parallel constraint optimization algorithms for higher-order discrete graphical models: applications in hyperspectral imaging

Parallel constraint optimization algorithms for higher-order discrete graphical models: applications in hyperspectral imaging Parallel constraint optimization algorithms for higher-order discrete graphical models: applications in hyperspectral imaging MSc Billy Braithwaite Supervisors: Prof. Pekka Neittaanmäki and Phd Ilkka Pölönen

More information

Computational Physics PHYS 420

Computational Physics PHYS 420 Computational Physics PHYS 420 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Transportation Policy Formulation as a Multi-objective Bilevel Optimization Problem

Transportation Policy Formulation as a Multi-objective Bilevel Optimization Problem Transportation Policy Formulation as a Multi-objective Bi Optimization Problem Ankur Sinha 1, Pekka Malo, and Kalyanmoy Deb 3 1 Productivity and Quantitative Methods Indian Institute of Management Ahmedabad,

More information

Support Vector Machines

Support Vector Machines Support Vector Machines . Importance of SVM SVM is a discriminative method that brings together:. computational learning theory. previously known methods in linear discriminant functions 3. optimization

More information

DEVELOPMENT OF NEW MATHEMATICAL METHODS FOR POST-PARETO OPTIMALITY. Program in Computational Science

DEVELOPMENT OF NEW MATHEMATICAL METHODS FOR POST-PARETO OPTIMALITY. Program in Computational Science DEVELOPMENT OF NEW MATHEMATICAL METHODS FOR POST-PARETO OPTIMALITY VICTOR M. CARRILLO Program in Computational Science APPROVED: Heidi Taboada, Ph.D., Chair Jose F. Espiritu, Ph.D., Ph.D. Salvador Hernandez.,

More information

Evolutionary Algorithm for Embedded System Topology Optimization. Supervisor: Prof. Dr. Martin Radetzki Author: Haowei Wang

Evolutionary Algorithm for Embedded System Topology Optimization. Supervisor: Prof. Dr. Martin Radetzki Author: Haowei Wang Evolutionary Algorithm for Embedded System Topology Optimization Supervisor: Prof. Dr. Martin Radetzki Author: Haowei Wang Agenda Introduction to the problem Principle of evolutionary algorithm Model specification

More information

Approximation-Guided Evolutionary Multi-Objective Optimization

Approximation-Guided Evolutionary Multi-Objective Optimization Approximation-Guided Evolutionary Multi-Objective Optimization Karl Bringmann 1, Tobias Friedrich 1, Frank Neumann 2, Markus Wagner 2 1 Max-Planck-Institut für Informatik, Campus E1.4, 66123 Saarbrücken,

More information

THE objective of the redundancy allocation problem is to

THE objective of the redundancy allocation problem is to IEEE TRANSACTIONS ON RELIABILITY, VOL. 55, NO. 3, SEPTEMBER 2006 551 Multiple Weighted Objectives Heuristic for the Redundancy Allocation Problem David W. Coit and Abdullah Konak Abstract A new heuristic

More information

Integrating Surrogate Modeling to Improve DIRECT, DE and BA Global Optimization Algorithms for Computationally Intensive Problems

Integrating Surrogate Modeling to Improve DIRECT, DE and BA Global Optimization Algorithms for Computationally Intensive Problems Integrating Surrogate Modeling to Improve DIRECT, DE and BA Global Optimization Algorithms for Computationally Intensive Problems by Abdulbaset Elhadi Saad G. Diploma. Coventry University 2003 M.Sc. Derby

More information

Recent Design Optimization Methods for Energy- Efficient Electric Motors and Derived Requirements for a New Improved Method Part 3

Recent Design Optimization Methods for Energy- Efficient Electric Motors and Derived Requirements for a New Improved Method Part 3 Proceedings Recent Design Optimization Methods for Energy- Efficient Electric Motors and Derived Requirements for a New Improved Method Part 3 Johannes Schmelcher 1, *, Max Kleine Büning 2, Kai Kreisköther

More information

Parallel Universes: Multi-Criteria Optimization

Parallel Universes: Multi-Criteria Optimization Parallel Universes: Multi-Criteria Optimization Claus Weihs 1, Heike Trautmann 2 1 Dortmund University, Department of Computational Statistics 44221 Dortmund, Germany weihs@statistik.uni-dortmund.de 2

More information

Generating Uniformly Distributed Pareto Optimal Points for Constrained and Unconstrained Multicriteria Optimization

Generating Uniformly Distributed Pareto Optimal Points for Constrained and Unconstrained Multicriteria Optimization Generating Uniformly Distributed Pareto Optimal Points for Constrained and Unconstrained Multicriteria Optimization Crina Grosan Department of Computer Science Babes-Bolyai University Cluj-Napoca, Romania

More information

Algorithms for convex optimization

Algorithms for convex optimization Algorithms for convex optimization Michal Kočvara Institute of Information Theory and Automation Academy of Sciences of the Czech Republic and Czech Technical University kocvara@utia.cas.cz http://www.utia.cas.cz/kocvara

More information

Multi-Objective Meta Heuristic Optimization Algorithm with Multi Criteria Decision Making Strategy for Aero-Engine Controller Design

Multi-Objective Meta Heuristic Optimization Algorithm with Multi Criteria Decision Making Strategy for Aero-Engine Controller Design International Journal of Aerospace Sciences 204, 3(): 6-7 DOI: 0.5923/j.aerospace.2030.02 Multi-Objective Meta Heuristic Optimization Algorithm with Multi Criteria Decision Making Strategy for Aero-Engine

More information

Lamarckian Repair and Darwinian Repair in EMO Algorithms for Multiobjective 0/1 Knapsack Problems

Lamarckian Repair and Darwinian Repair in EMO Algorithms for Multiobjective 0/1 Knapsack Problems Repair and Repair in EMO Algorithms for Multiobjective 0/ Knapsack Problems Shiori Kaige, Kaname Narukawa, and Hisao Ishibuchi Department of Industrial Engineering, Osaka Prefecture University, - Gakuen-cho,

More information