Composite Optimisation of an F1 Front Wing

Size: px
Start display at page:

Download "Composite Optimisation of an F1 Front Wing"

Transcription

1 Composite Optimisation of an F1 Front Wing Jonathan Heal Senior Stress Engineer, McLaren Racing Ltd McLaren Technology Centre, Chertsey Rd, Woking. GU21 4YH Abstract Formula one is a fast paced sport where a small advantage can mean the difference between winning and losing. There is a desire to get models from Aerodynamics to the track as quick as possible, which makes optimisation tools essential to generate tailored structural solutions in compressed timescales. Since 2003 we have found that composite optimisation tools are essential in this process and without them it would be much more time consuming to tailor the performance of composite structures. This paper looks at the optimisation process involved in developing a composite laminate for the front wing of a Formula One car. For this work OptiStruct 11.0 is used along with and a newly developed HyperMesh Composite Optimisation Setup tool, developed in close association between McLaren and Altair, to reduce the burden of setting up composite optimisation studies. This study uses Free Sizing optimisation to identify potentially efficient ply shapes. The detailed sizing section uses a PCOMPG(P) definition of a laminate, which includes material draping. The optimisation process is performed with both thickness and orientation as design variables. Keywords: Composite Optimisation, Free Sizing, Detailed Sizing, OptiStruct 1.0 Introduction Formula One is a fasted paced industry where performance will be measured at 19 circuits around the world in The first battle is to design the fastest car through the winter period. In order to win races throughout the season it is necessary to increase the performance of the initial car by more than 3 seconds a lap by the end of the season. This means that the battle in the factory is as important as the battles on the track. Parts need to be delivered from the wind tunnel to the track in as short a time scale as possible. Weight is one of the key drivers in the performance of the car so it is important that an optimal lightweight structure can be developed within a very tight project schedules. Since 2003 composite optimisation has played an essential role in delivering solutions to the track that meet all of the key design drivers of the applications that it is used in. This paper uses the example of a 2008 Formula One Front Wing to demonstrate the process involved in the design of an optimal composite structure using OptiStruct Two separate composite optimisation studies have been performed in this paper. The first optimisation approach uses free sizing optimisation to identify areas of efficient composite material usage. The second is a detailed sizing optimisation, which uses a newly codeveloped interface for setting up pre and post processing aspects of this type of composite optimisation. This interface has been influenced by the processes that have been used at McLaren Racing since This paper looks at some of the features of detailed sizing optimisation that need to be considered so that an optimal solution is obtained. Altair Engineering

2 Figure 1: FE Model of the Front Wing Used in this Study 2.0 Common Model Settings 2.1 Load cases Two load cases are used in this study. The first requirement of the wing is to pass the allowable deflection test prescribed by the FiA. This regulation can be found in Article of the FiA Formula 1 technical regulations [1] and states that the front wing must deflect less than 5mm when loaded at the prescribed position. The second case is an aerodynamic loading case of the structure calculated at the maximum achievable speed of the car. This pressure mapping of the structure is obtained from CFD runs on the wing. This case is used to assess the overall strength of the structure. A deflection characteristic under loading can also be targeted using this case in order to obtain an optimal aerodynamic bending characteristic. The FiA deflection test and the Aerodynamic loading cases are applied symmetrically about the centre of the wing so only half the model is run and a symmetry condition is applied at the centre of the wing. 2.2 Optimisation Objective Lightweight design is the objective of all of the structure on a Formula One car. This front wing is no exception so this is the objective used in these studies. 2.3 Optimisation Constraints In order to maintain consistency between the optimisation studies performed in this paper the constraints are identical. In this case the deflection for the FiA was set to be between 4.75mm and 5.0mm for these runs. The rotation of the wing is also constrained for the Aerodynamic loading case in order to produce the desired aerodynamic performance for this wing as the wing deforms. Altair Engineering 2011 Composite Optimisation of an F1 Front Wing 2

3 3.0 Free Size Optimisation 3.1 Overview This section of the optimisation is mainly aimed at identifying areas of efficient material usage. In this case UD material will be preferred over Woven material of a similar fibre type. In reality the final desired structure will be a mix of UD and Woven materials however the designable plies used in this section of the study are limited to UD material. This part of the optimisation is aimed at obtaining a better understanding of the structure. As the geometry and the loading of a front wing are constantly changing it is not always possible to use the previous design ply shapes as a guide to optimal ply shapes. 3.2 Basic Laminate Setup This study was set up with an array of designable UD material at -30º to 30º in 10º increments. Using Laser projection technology it is possible to use a smaller increment than this, although using incremental angles as small as 1º is likely to make interpretation of the results difficult. Previous experience has shown that this array of UD angles is sufficient to capture the overall shape of an optimal ply. Previous work on this type of front wing showed that the first three main elements of the wing were influential on the overall bending performance of the wing. The End Fence and the 4 th element have a very small effect on the bending of the wing so prescribed laminates are used on these two elements. 3.3 Free Sizing Results The results of the Free sizing optimisation (Figure 2) indicate that the second element is the most efficient element, which can be seen in the thickest areas below. This is consistent with previous work on this generation of front wing. This data is used to develop ply shapes for the detailed sizing section of the study. Figure 2: Optimal thickness distribution of material for the Free Sizing section of the optimisation Altair Engineering 2011 Composite Optimisation of an F1 Front Wing 3

4 4.0 Detailed Sizing Optimisation 4.1 Laminate Definition and Setup This section of the optimisation is set up with identical constraints as the Free Sizing optimisation. The objective is still to minimise the weight of the structure in order to produce the optimal structure. This section of the optimisation is aimed at obtaining a laminate that meets the overall stiffness and weight targets, strength targets can be added. Using the information from this stage of the optimisation it is possible to go straight into manufacturing of the laminates obtained in this section without any further work. In order to speed up the process for setting up optimisation studies, particularly when there is a large number of prescribed plies that are driven by other requirements, McLaren and Altair worked together to develop a setup tool that allows PCOMPG(P) models to be used and automatically creates all of the DDVAL, DESVAR, DLINK and DVPREL1 cards for the chosen designable plies. This was an essential step so that we could use OptiStruct for all of our composite optimisation. In this example draping of each of the ply patch shapes has been included thus increasing the overall accuracy of the solution and removing any potential need for recreating the model at a later stage in order to determine the effect of draping on the final solution. This solution uses a.layup file definition of the starting model. The process of setting up the optimisation has been streamlined so that any laminated structure defined with a.layup file can easily be turned into an optimisation study. This process starts with the definition of the limits of the material thickness and orientation. To speed up the setup process this is performed at the ply material level at the beginning of the optimisation setup although this can be changed for individual designable plies (Figure 3). This data is automatically passed through the process and is assigned to all of the designable plies of a specific material, which speeds up the setup process. It was important to have a setup tool that was quick enough to set up a complicated model but was flexible enough as to not be too restrictive. Figure 3: Material Setup page of the composite optimisation setup tool The designable plies for thickness and orientation are chosen separately, which allows different plies to be linked together in the thickness or the orientation section. In the orientation section plies can be linked together symmetrically. Using this tool it is possible to read in the.layup file so that the names of the plies are visible to allow easier setup of the model. An example of the thickness setup is shown below (Figure 4), which includes linking Altair Engineering 2011 Composite Optimisation of an F1 Front Wing 4

5 of designable plies. This can reduce the size of the model and create a laminate that can be transferred to production with minimal effort. Figure 4: Thickness variables definition page of the composite optimisation setup tool 4.2 Continuous and Discrete Optimisation Phases In order to obtain the optimal solution two aspects of the optimisation need to be considered. At the end of the optimisation a discrete solution is desired as it is not possible to manufacture with fractions of ply thicknesses. In order to generate the optimal discrete solution two different options are available in OptiStruct Using the DDVOPT card in OptiStruct 11.0 it is possible to perform a completely discrete optimisation, where only discrete ply thickness are used during the optimisation, or it is possible to start with a continuous solution and then change to a discrete solution once the continuous phase has converged. Plotting the solution history for identical models with different DDVOPT values (Figure 5) it is possible to see that the objective history and the final solution are very different between the two approaches. In most cases it has been found that a more optimal solution has been obtained using the continuous solution, which changes to a discrete solution, than just using a discrete solution. Figure 5: Plot of the normalised mass, which is based on the minimum mass of the best discrete solution, at each stage of a fully discrete optimisation and a continuous->discrete solution. Altair Engineering 2011 Composite Optimisation of an F1 Front Wing 5

6 4.3 Global Iterations The second aspect that needs to be considered is whether a solution is a global or local optimum. With gradient based optimisation it is possible to obtain a local minimum especially when thickness and orientation are included in a single optimisation study. In order to ensure that the final solution is likely to be the globally optimal solution a new feature in OptiStruct 11.0 is used. A new card has been added which allows multiple optimisations to be performed in a single run. This is the DGLOBAL card and the format of the card can be seen below. With this card a specific number of global iterations can be specified. In this study 10 global iterations were performed in order to obtain the global minimum mass. At each of the global iterations the starting point of the DESVAR cards is modified and the solution is run until an optimum is found. The global optimal solution is then identified once the solution has finished. When the final iteration of each of the global iterations is plotted (Figure 7) it can be seen that there is a significant variation in the mass of the structure as well as the optimisation constraints. One unique global optimum solution is identified in this run. The more global iterations that are performed the more likely that the global optimum is obtained. Figure 6: DGLOBAL card format that determines the number of global iterations performed and how the starting points are identified for each of the iterations Figure 7: The local optimal solutions for each of the global iterations Altair Engineering 2011 Composite Optimisation of an F1 Front Wing 6

7 4.4 Global Optimal Solution Results When the thickness of the optimal solution is plotted (Figure 8) it can be seen that the thickness of the laminate in the second element is significantly greater than the thickness of first and third elements. The optimal thickness is similar to the Free sizing results. Figure 8: Thickness plot of the Global Optimum solution. The second element of the structure dominates the stiffness of this assembly with the Aerodynamic and FiA test constraints Figure 9: Deflection of the wing assembly for the FiA Deflection test on the Font wing Figure 10: Deflection of the wing for the Aerodynamic loading case Altair Engineering 2011 Composite Optimisation of an F1 Front Wing 7

8 Figure 11: Failure Index plot for the Aerodynamic loading case. The final solution is within the The deflection for the FiA load case has been maximised for this case and the Aerodynamic deflection characteristics have been met for this solution (Figures 9 & 10). Once the required stiffness of the wing has been achieved the strength of the structure is checked (Figure 11) and the solution was found to be acceptable without any reinforcement. With the HyperMesh Composite Optimisation setup tool it is possible to update the.layup file. This solution meets all of the structural requirements given for this project. Using the Composite Optimisation tool the.layup file was updated and the layup information for each of the parts can then be passed to manufacturing 5.0 Conclusions Composite optimisation has been an essential part of the composite design process at McLaren since This paper has shown that it is possible to determine the globally optimal solution for the design of a Formula One Front wing using some of the new features in OptiSruct. Using the HyperMesh Composite Optimisation Setup tool it is easy to setup a detailed sizing optimisation, based on a PCOMPG(P) definition of the laminate, and obtain a globally optimal solution. This makes it possible to turn most composite models into an optimisation study and generate optimal structures in very compressed timescales. 6.0 References [1] FIA Formula One Technical Regulations (2008) Altair Engineering 2011 Composite Optimisation of an F1 Front Wing 8

Targeting Composite Wing Performance Optimising the Composite Lay-Up Design

Targeting Composite Wing Performance Optimising the Composite Lay-Up Design Targeting Composite Wing Performance Optimising the Composite Lay-Up Design Sam Patten Optimisation Specialist, Altair Engineering Ltd Imperial House, Holly Walk, Royal Leamington Spa, CV32 4JG sam.patten@uk.altair.com

More information

Principal Roll Structure Design Using Non-Linear Implicit Optimisation in Radioss

Principal Roll Structure Design Using Non-Linear Implicit Optimisation in Radioss Principal Roll Structure Design Using Non-Linear Implicit Optimisation in Radioss David Mylett, Dr. Simon Gardner Force India Formula One Team Ltd. Dadford Road, Silverstone, Northamptonshire, NN12 8TJ,

More information

NUMERICAL DESIGN OPTIMISATION OF A COMPOSITE REACTION LINK

NUMERICAL DESIGN OPTIMISATION OF A COMPOSITE REACTION LINK THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS NUMERICAL DESIGN OPTIMISATION OF A COMPOSITE REACTION LINK Y. Yang*, C. Schuhler, T. London, C. Worrall TWI Ltd, Granta Park, Cambridge CB21 6AL

More information

The Development of TruPly, an Efficient Composite Optimization Tool for Simulia Abaqus

The Development of TruPly, an Efficient Composite Optimization Tool for Simulia Abaqus 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA The Development of TruPly, an Efficient Composite Optimization Tool for Simulia Abaqus Martin

More information

Simulating the Suspension Response of a High Performance Sports Car

Simulating the Suspension Response of a High Performance Sports Car Simulating the Suspension Response of a High Performance Sports Car Paul Burnham McLaren Automotive McLaren Technology Centre, Chertsey Road, Woking, Surrey, GU21 4YH paul.burnham@mclaren.com Abstract

More information

Fast Tracking Rail Vehicle Design

Fast Tracking Rail Vehicle Design Fast Tracking Rail Vehicle Design Nigel Randell Senior Engineer Crash Safety, Bombardier Transportation UK Ltd Litchurch Lane, Derby, DE24 8AD, UK nigel.randell@uk.transport.bombardier.com Jérôme Rousseau

More information

Introduction to Nastran SOL 200 Design Sensitivity and Optimization

Introduction to Nastran SOL 200 Design Sensitivity and Optimization Introduction to Nastran SOL 200 Design Sensitivity and Optimization PRESENTED BY: CHRISTIAN APARICIO The Nastran Engineering SOL 200 questions? Lab Email me: christian@ the-engineering-lab.com Motivation

More information

Using Computer Aided Engineering Processes in Packaging Design Development

Using Computer Aided Engineering Processes in Packaging Design Development Using Computer Aided Engineering Processes in Packaging Design Development Jose Martinez, Miguel Angel Garcia Jose Luis Moreno Vicencio & Hugo Miranda Mabe, Mexico Mahesh Patel, Andrew Burkhalter, Eric

More information

Size Optimization of a Rail Joint

Size Optimization of a Rail Joint Size Optimization of a Rail Joint This exercise demonstrates how to perform a size optimization on an automobile rail joint modeled with shell elements. The structural model with loads and constraints

More information

Composites for JEC Conference. Zach Abraham ANSYS, Inc.

Composites for JEC Conference. Zach Abraham ANSYS, Inc. Composites for JEC Conference Zach Abraham ANSYS, Inc. 1 Our Strategy Simulation-Driven Product Development Fluid Dynamics Structural Mechanics Explicit Dynamics Low-Frequency Electromagnetics High-Frequency

More information

Topological optimization of the sti ener and layup of a rear wing sport car

Topological optimization of the sti ener and layup of a rear wing sport car Compositi Expo-congress Modena,14 Ottobre 2009 Topological optimization of the sti ener and layup of a rear wing sport car Mauro Parodi Exemplar srl Corso Castelfidardo, 30/A Torino IT luca.fattore@exemplarsolutions.it

More information

Simulation of fiber reinforced composites using NX 8.5 under the example of a 3- point-bending beam

Simulation of fiber reinforced composites using NX 8.5 under the example of a 3- point-bending beam R Simulation of fiber reinforced composites using NX 8.5 under the example of a 3- point-bending beam Ralph Kussmaul Zurich, 08-October-2015 IMES-ST/2015-10-08 Simulation of fiber reinforced composites

More information

ME 475 FEA of a Composite Panel

ME 475 FEA of a Composite Panel ME 475 FEA of a Composite Panel Objectives: To determine the deflection and stress state of a composite panel subjected to asymmetric loading. Introduction: Composite laminates are composed of thin layers

More information

Ply-based composite modeling with the new *ELEMENT_SHELL_COMPOSITE keyword

Ply-based composite modeling with the new *ELEMENT_SHELL_COMPOSITE keyword Ply-based composite modeling with the new *ELEMENT_SHELL_COMPOSITE keyword Summary Dr.-Ing. Ulrich Stelzmann Dr.-Ing. Matthias Hörmann CADFEM GmbH, Grafing b. München, Germany Because of their superior

More information

MODELLING OF AN AUTOMOBILE TYRE USING LS-DYNA3D

MODELLING OF AN AUTOMOBILE TYRE USING LS-DYNA3D MODELLING OF AN AUTOMOBILE TYRE USING LS-DYNA3D W. Hall, R. P. Jones, and J. T. Mottram School of Engineering, University of Warwick, Coventry, CV4 7AL, UK ABSTRACT: This paper describes a finite element

More information

Structural re-design of engine components

Structural re-design of engine components Structural re-design of engine components Product design cycle Design Development Testing Structural optimization Product knowledge Design freedom 2/18 Structural re-design of engine components Product

More information

Investigating the influence of local fiber architecture in textile composites by the help of a mapping tool

Investigating the influence of local fiber architecture in textile composites by the help of a mapping tool Investigating the influence of local fiber architecture in textile composites by the help of a mapping tool M. Vinot 1, Martin Holzapfel 1, Christian Liebold 2 1 Institute of Structures and Design, German

More information

A MODELING METHOD OF CURING DEFORMATION FOR CFRP COMPOSITE STIFFENED PANEL WANG Yang 1, GAO Jubin 1 BO Ma 1 LIU Chuanjun 1

A MODELING METHOD OF CURING DEFORMATION FOR CFRP COMPOSITE STIFFENED PANEL WANG Yang 1, GAO Jubin 1 BO Ma 1 LIU Chuanjun 1 21 st International Conference on Composite Materials Xi an, 20-25 th August 2017 A MODELING METHOD OF CURING DEFORMATION FOR CFRP COMPOSITE STIFFENED PANEL WANG Yang 1, GAO Jubin 1 BO Ma 1 LIU Chuanjun

More information

TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION

TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION TOPOLOGY OPTIMIZATION OF WING RIBS IN CESSNA CITATION [1],Sathiyavani S [2], Arun K K [3] 1,2 student, 3 Assistant professor Kumaraguru College of technology, Coimbatore Abstract Structural design optimization

More information

MSC.Patran Laminate Modeler

MSC.Patran Laminate Modeler MSC.Patran Laminate Modeler PRODUCT LINE MSC.Patran OVERVIEW For the development of optimized laminated structures CAPABILITIES Calculate failure indices Optimize materials, plies, and layups Size zones

More information

Step Change in Design: Exploring Sixty Stent Design Variations Overnight

Step Change in Design: Exploring Sixty Stent Design Variations Overnight Step Change in Design: Exploring Sixty Stent Design Variations Overnight Frank Harewood, Ronan Thornton Medtronic Ireland (Galway) Parkmore Business Park West, Ballybrit, Galway, Ireland frank.harewood@medtronic.com

More information

Morphing high lift structures: Smart leading edge device and smart single slotted flap Hans Peter Monner, Johannes Riemenschneider Madrid, 30 th

Morphing high lift structures: Smart leading edge device and smart single slotted flap Hans Peter Monner, Johannes Riemenschneider Madrid, 30 th Morphing high lift structures: Smart leading edge device and smart single slotted flap Hans Peter Monner, Johannes Riemenschneider Madrid, 30 th March 2011 Outline Background Project overview Selected

More information

ON GRADIENT BASED STRUCTURAL OPTIMIZATION OF A WIND TURBINE BLADE

ON GRADIENT BASED STRUCTURAL OPTIMIZATION OF A WIND TURBINE BLADE ON GRADIENT BASED STRUCTURAL OPTIMIZATION OF A WIND TURBINE BLADE E. Lund 1 and J.H. Sjølund 2 1 Department of Materials and Production, Aalborg University Fibigerstræde 16, DK-9220 Aalborg East, Denmark

More information

WEIGHT OPTIMIZATION OF A F1 COMPOSITE FRONT WING

WEIGHT OPTIMIZATION OF A F1 COMPOSITE FRONT WING WEIGHT OPTIMIZATION OF A F1 COMPOSITE FRONT WING 1 Ioannis Oxyzoglou, 2 Ioannis Nerantzis 1 University of Thessaly, Greece, 2 BETA CAE Systems S.A., Greece ABSTRACT The aim of this project is to give the

More information

Failure of Notched Laminates Under Out-of- Plane Bending. Phase VI Technical Review John Parmigiani Oregon State University

Failure of Notched Laminates Under Out-of- Plane Bending. Phase VI Technical Review John Parmigiani Oregon State University Failure of Notched Laminates Under Out-of- Plane Bending. Phase VI 2013 Technical Review John Parmigiani Oregon State University Failure of Notched Laminates Under Out-of-Plane Bending, all phases Motivation

More information

Topology Optimization of Flaring Tool Using OptiStruct

Topology Optimization of Flaring Tool Using OptiStruct Topology Optimization of Flaring Tool Using OptiStruct Rahul Nanche Engineer CAE Emerson Innovation Center Hinjewadi,Pune 411057 Sachin Magdum Lead Engineer Emerson Innovation Center Hinjewadi,Pune 411057

More information

Development of Lightweight Engine Mounting Cross Member

Development of Lightweight Engine Mounting Cross Member Development of Lightweight Engine Mounting Cross Member Nitin Babaso Bodhale Team Lead Tata Technologies Ltd Pimpri Pune-411018, India. nitin.bodhale@tatatechnologies.com Jayeshkumar Raghuvanshi Sr. Team

More information

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis 25 Module 1: Introduction to Finite Element Analysis Lecture 4: Steps in Finite Element Analysis 1.4.1 Loading Conditions There are multiple loading conditions which may be applied to a system. The load

More information

ACP (ANSYS Composite Prep/Post) Jim Kosloski

ACP (ANSYS Composite Prep/Post) Jim Kosloski ACP (ANSYS Composite Prep/Post) Jim Kosloski ACP Background ANSYS Composite PrepPost is an add-on module dedicated to the modeling of layered composite structures. ACP is now included with the Mechanical

More information

Innov Day Composites

Innov Day Composites Innov Day Composites Simuler les composites et leur mise en forme avec HyperWorks Innovation Intelligence Pierre-Christophe MASSON 23 Octobre 2014 About Us We help businesses succeed through the development

More information

Design Verification Procedure (DVP) Load Case Analysis of Car Bonnet

Design Verification Procedure (DVP) Load Case Analysis of Car Bonnet Design Verification Procedure (DVP) Load Case Analysis of Car Bonnet Mahesha J 1, Prashanth A S 2 M.Tech Student, Machine Design, Dr. A.I.T, Bangalore, India 1 Asst. Professor, Department of Mechanical

More information

A Graphical User Interface for Simulating Resin-Transfer-Molding Combining LS-DYNA and OpenFOAM

A Graphical User Interface for Simulating Resin-Transfer-Molding Combining LS-DYNA and OpenFOAM A Graphical User Interface for Simulating Resin-Transfer-Molding Combining LS-DYNA and OpenFOAM M. Martins-Wagner 1, M. Wagner 1, A, Haufe 2, C. Liebold 2 1 Ostbayerische Technische Hochschule Regensburg

More information

MSC/PATRAN LAMINATE MODELER COURSE PAT 325 Workbook

MSC/PATRAN LAMINATE MODELER COURSE PAT 325 Workbook MSC/PATRAN LAMINATE MODELER COURSE PAT 325 Workbook P3*V8.0*Z*Z*Z*SM-PAT325-WBK - 1 - - 2 - Table of Contents Page 1 Composite Model of Loaded Flat Plate 2 Failure Criteria for Flat Plate 3 Making Plies

More information

Predicting the mechanical behaviour of large composite rocket motor cases

Predicting the mechanical behaviour of large composite rocket motor cases High Performance Structures and Materials III 73 Predicting the mechanical behaviour of large composite rocket motor cases N. Couroneau DGA/CAEPE, St Médard en Jalles, France Abstract A method to develop

More information

Introduction of Optimization Tools in BIW Design

Introduction of Optimization Tools in BIW Design Introduction of Optimization Tools in BIW Design Himanshu Shekhar Deputy Manager, Maruti Suzuki India Ltd, Palam Gurgaon Road, Gurgaon. Vimal Kumar Deputy Manager, Maruti Suzuki India Ltd, Palam Gurgaon

More information

Laminates can be classified according to the fiber orientation.

Laminates can be classified according to the fiber orientation. Laminates Definition A laminate is an assemblage of individual lamina or plies bonded together normal to their principal plane (i.e., plies are stacked and bonded in their thickness direction). Laminates

More information

Modeling of Materials Getting to a Smaller Scale. Dr. Robert N. Yancey Altair Engineering

Modeling of Materials Getting to a Smaller Scale. Dr. Robert N. Yancey Altair Engineering Modeling of Materials Getting to a Smaller Scale Dr. Robert N. Yancey Altair Engineering Outline Background Current Research Pre- and Post-Processing Requirements Guiding the Analyst Setting up the Analysis

More information

Composite Materials Multi Objective Optimization using ANSA, META and modefrontier

Composite Materials Multi Objective Optimization using ANSA, META and modefrontier Composite Materials Multi Objective Optimization using ANSA, META and modefrontier Introduction As the composite materials market expands and more applications appear in the automotive, aerospace and naval

More information

IN-PLANE MATERIAL CONTINUITY FOR THE DISCRETE MATERIAL OPTIMIZATION METHOD

IN-PLANE MATERIAL CONTINUITY FOR THE DISCRETE MATERIAL OPTIMIZATION METHOD IN-PLANE MATERIAL CONTINUITY FOR THE DISCRETE MATERIAL OPTIMIZATION METHOD René Sørensen1 and Erik Lund2 1,2 Department of Mechanical and Manufacturing Engineering, Aalborg University Fibigerstraede 16,

More information

COMPOSITE DRAPING SIMULATION TO ENHANCE STRUCTURAL ANALYSIS

COMPOSITE DRAPING SIMULATION TO ENHANCE STRUCTURAL ANALYSIS COMPOSITE DRAPING SIMULATION TO ENHANCE STRUCTURAL ANALYSIS Paul Van Huffel Altair Engineering, Inc Abstract With composite analysis and optimization on the rise, the accuracy of our assumptions is becoming

More information

Commercial Implementations of Optimization Software and its Application to Fluid Dynamics Problems

Commercial Implementations of Optimization Software and its Application to Fluid Dynamics Problems Commercial Implementations of Optimization Software and its Application to Fluid Dynamics Problems Szymon Buhajczuk, M.A.Sc SimuTech Group Toronto Fields Institute Optimization Seminar December 6, 2011

More information

DESIGN, MANUFACTURING AND TESTING OF A SMALL- SCALE COMPOSITE MORPHING WING

DESIGN, MANUFACTURING AND TESTING OF A SMALL- SCALE COMPOSITE MORPHING WING THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS DESIGN, MANUFACTURING AND TESTING OF A SMALL- SCALE COMPOSITE MORPHING WING F. Michaud 1*, S. Joncas 1, R. Botez 1 1 Department of Automated Manufacturing

More information

Agenda. 9:00 Welcome. 1:00 - Computing Utilities. 9:15 - Mechanical Demonstration. 1:30 - CFD Update. 3:00 Break 3:15 ANSYS Customization Toolkit

Agenda. 9:00 Welcome. 1:00 - Computing Utilities. 9:15 - Mechanical Demonstration. 1:30 - CFD Update. 3:00 Break 3:15 ANSYS Customization Toolkit Agenda 9:00 Welcome 1:00 - Computing Utilities Introductions What is new at CAEA 9:15 - Mechanical Demonstration CAD connection utilities (within the CAD API) Mechanical setup Rigid Bodies, Joints, contact,

More information

AERODYNAMIC OPTIMIZATION OF A FORMULA STUDENT CAR

AERODYNAMIC OPTIMIZATION OF A FORMULA STUDENT CAR AERODYNAMIC OPTIMIZATION OF A FORMULA STUDENT CAR 1 Argyrios Apostolidis *, 2 Athanasios Mattas, 3 Aggelos Gaitanis, 4 Nikolaos Christodoulou 1 Aristotle Racing Team, Greece, 4 BETA CAE Systems S.A., Greece

More information

Shape optimisation using breakthrough technologies

Shape optimisation using breakthrough technologies Shape optimisation using breakthrough technologies Compiled by Mike Slack Ansys Technical Services 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Introduction Shape optimisation technologies

More information

On the Optimization of the Punch-Die Shape: An Application of New Concepts of Tools Geometry Alteration for Springback Compensation

On the Optimization of the Punch-Die Shape: An Application of New Concepts of Tools Geometry Alteration for Springback Compensation 5 th European LS-DYNA Users Conference Optimisation (2) On the Optimization of the Punch-Die Shape: An Application of New Concepts of Tools Geometry Alteration for Springback Compensation Authors: A. Accotto

More information

Topological optimization of the layup of a monolithic CFRP wingbox

Topological optimization of the layup of a monolithic CFRP wingbox Compositi Expo-congress Modena,14 Ottobre 2009 Topological optimization of the layup of a monolithic CFRP wingbox Luca Fattore Exemplar srl Corso Castelfidardo, 30/A 10129 Torino IT luca.fattore@exemplarsolutions.it

More information

FINITE ELEMENT ANALYSIS OF COMPOSITE BOATS

FINITE ELEMENT ANALYSIS OF COMPOSITE BOATS High Performance Yacht Design Conference Auckland, 4-6 December,2002 FINITE ELEMENT ANALYSIS OF COMPOSITE BOATS Don Campbell 1, don@matrix.co.nz Brian Jones 2, brianj@highmodulus.co.nz Abstract. Advances

More information

OPTIMIZATION OF STIFFENED LAMINATED COMPOSITE CYLINDRICAL PANELS IN THE BUCKLING AND POSTBUCKLING ANALYSIS.

OPTIMIZATION OF STIFFENED LAMINATED COMPOSITE CYLINDRICAL PANELS IN THE BUCKLING AND POSTBUCKLING ANALYSIS. OPTIMIZATION OF STIFFENED LAMINATED COMPOSITE CYLINDRICAL PANELS IN THE BUCKLING AND POSTBUCKLING ANALYSIS. A. Korjakin, A.Ivahskov, A. Kovalev Stiffened plates and curved panels are widely used as primary

More information

The Role of Finite Element Analysis in Light Aircraft Design and Certification

The Role of Finite Element Analysis in Light Aircraft Design and Certification The Role of Finite Element Analysis in Light Aircraft Design and Certification Nigel Bamber Wey Valley Aeronautics Ltd www.weyvalleyaero.co.uk Engineering Consultancy Civil and Military Aerospace and Motorsport

More information

Failure of Notched Laminates Under Out-of-Plane Bending Phase VII

Failure of Notched Laminates Under Out-of-Plane Bending Phase VII Failure of Notched Laminates Under Out-of-Plane Bending Phase VII Fall 2014 Meeting Mitchell Daniels, Levi Suryan, & John P. Parmigiani, Oregon State University Motivation and Key Issues Failure of Notched

More information

Applications of structural optimisation to AIRBUS A380 powerplant configuration and pylon design

Applications of structural optimisation to AIRBUS A380 powerplant configuration and pylon design Applications of structural optimisation to AIRBUS A380 powerplant configuration and pylon design ABSTRACT 2001-122 Stéphane GRIHON AIRBUS 316, Route de Bayonne 31060 Toulouse CEDEX France stephane.grihon@airbus.aeromatra.com

More information

Adjoint Solver Workshop

Adjoint Solver Workshop Adjoint Solver Workshop Why is an Adjoint Solver useful? Design and manufacture for better performance: e.g. airfoil, combustor, rotor blade, ducts, body shape, etc. by optimising a certain characteristic

More information

Modeling, Simulation and Optimization Analysis on Steering Knuckle Component For Purpose of Weight Reduction

Modeling, Simulation and Optimization Analysis on Steering Knuckle Component For Purpose of Weight Reduction Modeling, Simulation and Optimization Analysis on Steering Knuckle Component For Purpose of Weight Reduction W. M. Wan Muhamad 1, E. Sujatmika 1, Hisham Hamid 1 and Faris Tarlochan 2 1 UniKL Malaysia France

More information

ANSYS Element. elearning. Peter Barrett October CAE Associates Inc. and ANSYS Inc. All rights reserved.

ANSYS Element. elearning. Peter Barrett October CAE Associates Inc. and ANSYS Inc. All rights reserved. ANSYS Element Selection elearning Peter Barrett October 2012 2012 CAE Associates Inc. and ANSYS Inc. All rights reserved. ANSYS Element Selection What is the best element type(s) for my analysis? Best

More information

Analysis of Composite Aerospace Structures Finite Elements Professor Kelly

Analysis of Composite Aerospace Structures Finite Elements Professor Kelly Analysis of Composite Aerospace Structures Finite Elements Professor Kelly John Middendorf #3049731 Assignment #3 I hereby certify that this is my own and original work. Signed, John Middendorf Analysis

More information

COMPLIANCE MODELLING OF 3D WEAVES

COMPLIANCE MODELLING OF 3D WEAVES 6 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS COMPLIANCE MODELLING OF 3D WEAVES Prasad Potluri *, Andrew Long **, Robert J Young *, Hua Lin **, Yat-Tarng Shyng *, A Manan * * School of Materials,

More information

Efficient Shape Optimisation of an Aircraft Landing Gear Door Locking Mechanism by Coupling Abaqus to GENESIS

Efficient Shape Optimisation of an Aircraft Landing Gear Door Locking Mechanism by Coupling Abaqus to GENESIS Efficient Shape Optimisation of an Aircraft Landing Gear Door Locking Mechanism by Coupling Abaqus to GENESIS Mark Arnold and Martin Gambling Penso Consulting Ltd GRM Consulting Ltd Abstract: The objective

More information

Keisuke Sawada. Department of Aerospace Engineering Tohoku University

Keisuke Sawada. Department of Aerospace Engineering Tohoku University March 29th, 213 : Next Generation Aircraft Workshop at Washington University Numerical Study of Wing Deformation Effect in Wind-Tunnel Testing Keisuke Sawada Department of Aerospace Engineering Tohoku

More information

EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY

EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY EXACT BUCKLING SOLUTION OF COMPOSITE WEB/FLANGE ASSEMBLY J. Sauvé 1*, M. Dubé 1, F. Dervault 2, G. Corriveau 2 1 Ecole de technologie superieure, Montreal, Canada 2 Airframe stress, Advanced Structures,

More information

Development of a computational method for the topology optimization of an aircraft wing

Development of a computational method for the topology optimization of an aircraft wing Development of a computational method for the topology optimization of an aircraft wing Fabio Crescenti Ph.D. student 21 st November 2017 www.cranfield.ac.uk 1 Overview Introduction and objectives Theoretical

More information

Light Weighting of Body Structure for Drive-Away Structure-Borne Noise Targets

Light Weighting of Body Structure for Drive-Away Structure-Borne Noise Targets Light Weighting of Body Structure for Drive-Away Structure-Borne Noise Targets Bhaskar R Gangu Lead Engineer GMTCI ITPB Bangalore 560066 INDIA bhaskar.gangu@gm.com Varun Agarwal Technical Lead GMTCI ITPB

More information

Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure

Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure In the final year of his engineering degree course a student was introduced to finite element analysis and conducted an assessment

More information

RD-1070: Analysis of an Axi-symmetric Structure using RADIOSS

RD-1070: Analysis of an Axi-symmetric Structure using RADIOSS RADIOSS, MotionSolve, and OptiStruct RD-1070: Analysis of an Axi-symmetric Structure using RADIOSS In this tutorial, you will learn the method of modeling an axi- symmetry problem in RADIOSS. The figure

More information

Efficient Robust Shape Optimization for Crashworthiness

Efficient Robust Shape Optimization for Crashworthiness 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Efficient Robust Shape Optimization for Crashworthiness Milan Rayamajhi 1, Stephan Hunkeler

More information

Practical Examples of Efficient Design Optimisation by Coupling VR&D GENESIS and LS-DYNA

Practical Examples of Efficient Design Optimisation by Coupling VR&D GENESIS and LS-DYNA Practical Examples of Efficient Design Optimisation by Coupling VR&D GENESIS and LS-DYNA David Salway, GRM Consulting Ltd. UK. Paul-André Pierré, GRM Consulting Ltd. UK. Martin Liebscher, Dynamore GMBH,

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

Optimization of Tow Steered Fiber Orientation Using the Level Set Method

Optimization of Tow Steered Fiber Orientation Using the Level Set Method 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Optimization of Tow Steered Fiber Orientation Using the Level Set Method Christopher J. Brampton

More information

Advanced Finite Element Model for AE-MDB Side Impact Barrier

Advanced Finite Element Model for AE-MDB Side Impact Barrier Advanced Finite Element Model for AE-MDB Side Impact Barrier Authors: M. Asadi 1, P. Tattersall 1, B. Walker 2, H. Shirvani 3 1. Cellbond Composites Ltd. 2. ARUP Campus (UK) 3. Anglia Ruskin University

More information

USING OPENFOAM AND ANSA FOR ROAD AND RACE CAR CFD

USING OPENFOAM AND ANSA FOR ROAD AND RACE CAR CFD USING OPENFOAM AND ANSA FOR ROAD AND RACE CAR CFD Robert Lewis *, Andrew Mosedale, Ivor Annetts TotalSim Ltd, UK KEYWORDS aerodynamics, optimisation, RANS, DES ABSTRACT Optimisation of the glass-house

More information

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workshop 2 Transonic Flow Over a NACA 0012 Airfoil. Introduction to CFX WS2-1 Goals The purpose of this tutorial is to introduce the user to modelling flow in high speed external aerodynamic applications.

More information

Visualization of Manufacturing Composite Lay-up Technology by Augmented Reality Application

Visualization of Manufacturing Composite Lay-up Technology by Augmented Reality Application Visualization of Manufacturing Composite Lay-up Technology by Augmented Reality Application JOZEF NOVAK-MARCINCIN, JOZEF BARNA, LUDMILA NOVAKOVA-MARCINCINOVA, VERONIKA FECOVA Faculty of Manufacturing Technologies

More information

Application of Shell elements to buckling-analyses of thin-walled composite laminates

Application of Shell elements to buckling-analyses of thin-walled composite laminates Application of Shell elements to buckling-analyses of thin-walled composite laminates B.A. Gӧttgens MT 12.02 Internship report Coach: Dr. R. E. Erkmen University of Technology Sydney Department of Civil

More information

Internal Forces and Moments

Internal Forces and Moments Introduction Internal Forces and Moments To a very large extend this chapter is simply an extension of Section 6.3, The Method of Sections. The section on curved cables is new material. The section on

More information

Virtual Product Development for HCV -FUPD Structure

Virtual Product Development for HCV -FUPD Structure Virtual Product Development for HCV -FUPD Structure Shailesh Kadre Principal CAE Analyst Mahindra Engineering Services #128/A, Sanghavi Compound, Chinchwad Pune, 411 018 Ravindra Kumar Senior CAE-Analyst

More information

The CAE- Driven Mechanical Design Process

The CAE- Driven Mechanical Design Process The CAE- Driven Mechanical Design Process A graduate- level mechanical engineering course inspired by Inspire Mark JAKIELA Hunter Professor of Mechanical Design Washington University in St. Louis Syllabus

More information

Multilevel optimization of. of Composite panels under complex load and boundary conditions.

Multilevel optimization of. of Composite panels under complex load and boundary conditions. Loughborough University Institutional Repository Multilevel optimization of composite panels under complex load and boundary conditions This item was submitted to Loughborough University's Institutional

More information

Automating Canister Design for Powder HIP

Automating Canister Design for Powder HIP Automating Canister Design for Powder HIP Charley Carpenter Ben Tomita Borja Lazaro Toralles Net Shape Technology Manager MTC Advanced Research Engineer MTC Senior Research Engineer MTC 03-10-2017 Net

More information

Multi-Disciplinary Design of an Aircraft Landing Gear with Altair HyperWorks

Multi-Disciplinary Design of an Aircraft Landing Gear with Altair HyperWorks Multi-Disciplinary Design of an Aircraft Landing Gear with Altair HyperWorks Altair Engineering, October 2008 Introduction Task: To design an aircraft landing gear that meets design requirements of several

More information

OPTIMIZATION OF COMPOSITE WING USING GENETIC ALGORITHM

OPTIMIZATION OF COMPOSITE WING USING GENETIC ALGORITHM 21 st International Conference on Composite Materials Xi an, 20-25 th August 2017 OPTIMIZATION OF COMPOSITE WING USING GENETIC ALGORITHM Haigang Zhang, Xitao Zheng, Zhendong Liu School of Aeronautics,

More information

VARIABLE STIFFNESS COMPOSITE LAMINATES FOR DOUBLY CURVED PLATES USING LAMINATION PARAMETERS

VARIABLE STIFFNESS COMPOSITE LAMINATES FOR DOUBLY CURVED PLATES USING LAMINATION PARAMETERS 21 st International Conference on Composite Materials Xi an, 20-25 th ugust 2017 VRIBLE STIFFNESS COMPOSITE LMINTES FOR DOUBLY CURVED PLTES USING LMINTION PRMETERS Matthew Thomas 1, Paul M, Weaver 2 and

More information

Analysis of fluid-solid coupling vibration characteristics of probe based on ANSYS Workbench

Analysis of fluid-solid coupling vibration characteristics of probe based on ANSYS Workbench Analysis of fluid-solid coupling vibration characteristics of probe based on ANSYS Workbench He Wang 1, a, Changzheng Zhao 1, b and Hongzhi Chen 1, c 1 Shandong University of Science and Technology, Qingdao

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Global to Local Model Interface for Deepwater Top Tension Risers

Global to Local Model Interface for Deepwater Top Tension Risers Global to Local Model Interface for Deepwater Top Tension Risers Mateusz Podskarbi Karan Kakar 2H Offshore Inc, Houston, TX Abstract The water depths from which oil and gas are being produced are reaching

More information

A NEW APPROACH IN STACKING SEQUENCE OPTIMIZATION OF COMPOSITE LAMINATES USING GENESIS STRUCTURAL ANALYSIS AND OPTIMIZATION SOFTWARE

A NEW APPROACH IN STACKING SEQUENCE OPTIMIZATION OF COMPOSITE LAMINATES USING GENESIS STRUCTURAL ANALYSIS AND OPTIMIZATION SOFTWARE 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization 4-6 September 2002, Atlanta, Georgia AIAA 2002-5451 A NEW APPROACH IN STACKING SEQUENCE OPTIMIZATION OF COMPOSITE LAMINATES USING

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference FEM AND FSI SIMULATIONS OF IMPACT LOADS ON GRP SUBSEA COMPOSITE COVERS Kjetil Rognlien, MSc Technical Consultant EDR AS, Norway 2008 ANSYS, Inc. All rights reserved.

More information

midas NFX 2017R1 Release Note

midas NFX 2017R1 Release Note Total Solution for True Analysis-driven Design midas NFX 2017R1 Release Note 1 midas NFX R E L E A S E N O T E 2 0 1 7 R 1 Major Improvements Midas NFX is an integrated finite element analysis program

More information

ME Optimization of a Frame

ME Optimization of a Frame ME 475 - Optimization of a Frame Analysis Problem Statement: The following problem will be analyzed using Abaqus. 4 7 7 5,000 N 5,000 N 0,000 N 6 6 4 3 5 5 4 4 3 3 Figure. Full frame geometry and loading

More information

MUD DEPOSITION SIMULATION AT THE CRFM OF AN AUTOMOBILE USING CFD

MUD DEPOSITION SIMULATION AT THE CRFM OF AN AUTOMOBILE USING CFD Blucher Engineering Proceedings Agosto de 2014, Número 2, Volume 1 MUD DEPOSITION SIMULATION AT THE CRFM OF AN AUTOMOBILE USING CFD SIMULATION Filipe Fabian Buscariolo¹, Julio Cesar Lelis Alves², Leonardo

More information

A NUMERICAL SIMULATION OF DAMAGE DEVELOPMENT FOR LAMINATED WOVEN FABRIC COMPOSITES

A NUMERICAL SIMULATION OF DAMAGE DEVELOPMENT FOR LAMINATED WOVEN FABRIC COMPOSITES A NUMERICAL SIMULATION OF DAMAGE DEVELOPMENT FOR LAMINATED WOVEN FABRIC COMPOSITES Tetsusei Kurashiki 1, Yujiro Momoji 1, Hiroaki Nakai 1, and Masaru Zako 1 1 Department of Management of Industry and Technology,

More information

Computer Life (CPL) ISSN: Finite Element Analysis of Bearing Box on SolidWorks

Computer Life (CPL) ISSN: Finite Element Analysis of Bearing Box on SolidWorks Computer Life (CPL) ISSN: 1819-4818 Delivering Quality Science to the World Finite Element Analysis of Bearing Box on SolidWorks Chenling Zheng 1, a, Hang Li 1, b and Jianyong Li 1, c 1 Shandong University

More information

SUBMERGED CONSTRUCTION OF AN EXCAVATION

SUBMERGED CONSTRUCTION OF AN EXCAVATION 2 SUBMERGED CONSTRUCTION OF AN EXCAVATION This tutorial illustrates the use of PLAXIS for the analysis of submerged construction of an excavation. Most of the program features that were used in Tutorial

More information

A05 Steel Catenary Riser Systems

A05 Steel Catenary Riser Systems A05 Steel Catenary Riser Systems Introduction This example contains three examples of steel catenary risers (SCRs). These are: Catenary with Spar Catenary with SemiSub Lazy Wave with FPSO The example also

More information

Reducing overdesign with predictive performance and producibility simulation

Reducing overdesign with predictive performance and producibility simulation American Society of Composites 29 th technical Conf., 16 th US-Japan Conf. on Composite Materials, San Diego, USA, September 10, 2014 Reducing overdesign with predictive performance and producibility simulation

More information

APPROACHING A RELIABLE PROCESS SIMULATION FOR THE VIRTUAL PRODUCT DEVELOPMENT

APPROACHING A RELIABLE PROCESS SIMULATION FOR THE VIRTUAL PRODUCT DEVELOPMENT APPROACHING A RELIABLE PROCESS SIMULATION FOR THE VIRTUAL PRODUCT DEVELOPMENT K. Kose, B. Rietman, D. Tikhomirov, N. Bessert INPRO GmbH, Berlin, Germany Summary In this paper an outline for a strategy

More information

Composite Bike Frame Optimization (Updated to , by Premanand Suryavanshi)

Composite Bike Frame Optimization (Updated to , by Premanand Suryavanshi) Composite Bike Frame Optimization (Updated to 2017.2, by Premanand Suryavanshi) In this tutorial, you learn the steps required to perform a ply orientation optimization for a composite structure. The figure

More information

Free-Shape Optimization of a 3-D Bracket using the Free-shape Method

Free-Shape Optimization of a 3-D Bracket using the Free-shape Method Free-Shape Optimization of a 3-D Bracket using the Free-shape Method In this exercise, shape optimization on a solid bracket model will be performed using the Free- Shape optimization method. The objective

More information

PLAXIS 2D - SUBMERGED CONSTRUCTION OF AN EXCAVATION

PLAXIS 2D - SUBMERGED CONSTRUCTION OF AN EXCAVATION PLAXIS 2D - SUBMERGED CONSTRUCTION OF AN EXCAVATION 3 SUBMERGED CONSTRUCTION OF AN EXCAVATION This tutorial illustrates the use of PLAXIS for the analysis of submerged construction of an excavation. Most

More information

Efficient Topology, Topometry and Sizing Optimisation for LS-DYNA Analysis Problems. Coupling LS-DYNA to VR&D GENESIS

Efficient Topology, Topometry and Sizing Optimisation for LS-DYNA Analysis Problems. Coupling LS-DYNA to VR&D GENESIS Efficient Topology, Topometry and Sizing Optimisation for LS-DYNA Analysis Problems Coupling LS-DYNA to VR&D GENESIS Martin Gambling Managing Director GRM Consulting Ltd, Leamington Spa, UK Summary: For

More information

Modal Based Optimization of TAPS Using OptiStruct

Modal Based Optimization of TAPS Using OptiStruct Modal Based Optimization of TAPS Using OptiStruct Yogesh Jaju Sr. Manager CAE Dana India Technical Centre Pvt. Ltd 501 Pride Silicon Plaza Pune 411016 India Ulhas Patil Sr. Project Engineer - CAE Dana

More information