Transactions on Modelling and Simulation vol 20, 1998 WIT Press, ISSN X

Size: px
Start display at page:

Download "Transactions on Modelling and Simulation vol 20, 1998 WIT Press, ISSN X"

Transcription

1 r-adaptive boundary element method Eisuke Kita, Kenichi Higuchi & Norio Kamiya Department of Mechano-Informatics and Systems, Nagoya University, Nagoya , Japan Abstract This paper presents a r-adaptive mesh refinement scheme for boundary element methods. Sample point error estimation scheme are applied for the error estimation of the boundary element method. Then, the extended and the global error indicators are defined from the computational errors and the fundamental solutions. Mesh refinement is carried out so that, in the refined mesh, the error indicator distributes uniformly on all boundary elements. The present method is applied to the two-dimensional elastic problem in order to confirm the validity of the present scheme. Key Words: Boundary Element Method, Adaptive Scheme, Sample Point Error Analysis, Two-Dimensional Elastic Problem. 1 Introduction The computational accuracy in boundary element analysis is strongly dependent on the boundary element discretization of the object under consideration. Therefore, the error estimation and the adaptive mesh refinement schemes have been studied widely[1, 2]. In the primary studies, the schemes for thefiniteelement methods were directly extended to the boundary element methods. However, the adaptive schemes for the boundary element methods have the different difficulties from the finite element methods. Firstly, the boundary element

2 270 Boundary Elements methods are mainly formulated by means of the collocation method and thus, the error estimation schemes for thefiniteelement method are not adequate for the collocation-type boundary element methods. Secondly, the error on a boundary element affects ones on the other elements due to the global property of the fundamental solutions. For overcoming these difficulties, Kamiya et al. [3] presented the sample point error estimation scheme and the global error indicator. Then, they employed them to the h-adaptive mesh refinement schemes. On the other hands, in this paper, we apply them to the r-adaptive mesh refinement schemes. In the present scheme, the error estimation is carried out by the sample point error estimation scheme. Then, the extended and the global error indicators are calculated from the computational errors and the fundamental solutions. The boundary elements are redistributed so that, in the refined mesh, the indicator distributes uniformly on all boundary elements. The present scheme is applied to the two-dimensional elastic problem in order to confirm its validity. 2 BEM and Error Estimation 2.1 Boundary Element Analysis We shall consider the two-dimensional elastic problem. The governing equation and the boundary conditions are given as: and <ryj = 0 (in ft) (1) Uk = Uk (on r*j, tk = fk (on I\) (2) where u^ and f& (k x,y) denote the displacement and the traction components in the ^-direction and the upper bar the specified boundary value. ^2, P^ and F^ are the domain occupied by the object and its displacement- and the traction-specified boundaries, respectively. Taking the Kelvin's solutions as the weight functions, we have the following boundary integral equation from Eq.(l)[4]: where pi and PJ denote the source and the integral points. Besides, CM is the parameter depending on where the point pi is placed. (3)

3 Boundary Elements 271 Discretizing the Eq.(3) by TV conforming linear boundary elements, we have N (4) where T/, HI and t/ denote the displacement component in /-direction on the node i and the displacement and the traction components in /-direction on the element jf, respectively. Uji and tji are approximated by the interpolating functions (j)\ and (f>2 as follows: Substituting the Eqs.(5) to the Eq.(4), we have * i <*> Hu = Gt (6) where u and t denote the nodal displacement and traction vectors and H and G the coefficient matrices. The boundary conditions are substituted into Eq.(6), which is solved for the unknowns. 2.2 Sample Point Error Estimation Scheme The boundary integral equation (3) is not satisfied on the other boundary points p( than pi. Therefore, in order that the Eq.(3) are held on the sample point p\, the errors e^i and en are added to the numerical solutions u and </, respectively. So we have = 0 (7) The residual of the boundary integral equation r&(p^) is defined as (8) Finally, from Eqs.(7) and (8), we have the relationship between the residual and the errors: (9)

4 272 Boundary Elements where e^i 0 on the boundary F^ and en 0 on the boundary The error distribution on the element is approximated as e<ul = euljv, en - eufi (10) *=!- * (11) where ( denotes the local coordinate taken on the element, which is defined as ± 1 on the both ends of the element and = 0 on its center. Discretizing the Eq.(9), we have Pi ^/ *' (12) Pi 6w, / flwr (13) JTui where N^i and NU (N = N^i -f NU) are the total number of elements on the boundaries F^ and F*,, respectively. Finally, we have This is solved for the error vector e. r = Be (14) 3 Error Indicators and Adaptive Process 3.1 Extended Error Indicator From Eq.(14), we have The extended error indicator \\r^\\ is defined as

5 Boundary Elements 273 where \\rj^\\ (k = x,y) is defined as 3.2 Global Error Indicator N?ll - E 11*2411 (17) i=x,y The extended error indicators %,%, -,77^ mean the effect from the error on the element i to the accuracy of the elements 1, 2, - -, N. On the other hands, the indicators 77%, %j,,7/7^ mean the effect from the elements 1, 2,, TV to the element i. Therefore, in order to simultaneously measure the effects from and to the element i, we define the global error indicator Hi as 3.3 Convergence Property of Error Assuming that there is no error at the nodes of the element, the relationship between the error on the element and the length of the element is given as lk-^l = ^ + o(^) (19) where && and /%& indicate the numerical solution and the length of the element at fc-th iteration, respectively. In the same manner, the following relationship is held at (fc-f l)-th iteration. 11% - 6&+i = #/4Li + o (/^Li) (20) Substituting the global error indicator Eq.(18) into the error norms on the left-hand sides of Eqs.(19) and (20), we have By eliminating K, we have H* ~ h,

6 274 Boundary Elements 3.4 Mesh Redistribution Process The whole boundary of the object under consideration is divided into boundary segments at the geometric corner points and at the boundary points where the boundary conditions vary. The segments are considered as the macro-elements. The process of the present scheme is as follows: 1. Specify the data of the macro elements (the coordinates of the end-points, the line-type of the segment, etc.). 2. Specify the total number of the boundary elements N. 3. Discretize the whole boundary by N equal-length boundary elements. 4. Perform boundary element analysis. 5. Perform error estimation. 6. Check the convergence criterion. If the convergence criterion is satisfied, the process is terminated. If not so, the process goes to the next step. (a) Calculating the global error indicator Hi and its average value (b) Calculate the number of the boundary elements on the macro element j\ where the summation Hi is taken for all boundary elements on the macro element j. (c) Discretize the macro element j by Nj boundary elements so that, in the refined mesh, the errors in all boundary elements are almost equal to (d) Go to step 4.

7 Boundary Elements 275 ty=1.0(kgf/cm2) G=1000(kgf/cm2) v=0.3 1 Figure 1: Object under consideration H h Initial 5th iteration H I I I I I I I h -4* Figure 2: Mesh partitions 4 Numerical Example A numerical example is shown in Fig.l. An initial mesh is constructed by the 40 equal-length elements. Figure 2 shows the boundary element meshes at initial and 5th (final) iterations. At the 5th iteration, the elements move to the stress concentration points A and B. The function distributions at both meshes are shown in Fig.3. We notice

8 276 Boundary Elements CO O Q_ X (a) Initial f I I t *x ly (b) 5th iteration Figure 3: Function distributions

9 200 Boundary Elements 111 O X (0 O T3 C LU I I I I iteration Figure 4: Convergence property of error indicators that the distributions at the 5th iteration are improved fairly since the elements move to the points A and B. Figure 4 shows the convergence property of the error indicators. Tf^ax and Tf^in means the maximum and the minimum values of H^ respectively. The maximum value and the difference between the maximum and the minimum values decreases as the process goes. 5 Conclusion This paper presented the r-adaptive schemes for the boundary element method. In the present schemes, the computational error is estimated by the sample point error estimation scheme. Then, according to the relationship between the error and the length of the element, the elements are redistributed on the whole boundary. The present scheme was applied to the two-dimensional elastic problem. As the process goes, the elements move to the stress concentration points and then, the error indicators are improved monotonously.

10 278 Boundary Elements References [1] N. Kamiya, editor. Special Issue on Error Estimate and Adaptive Meshes for FEM/BEM, Advances in Engineering Software, Vol. 15, pp [2] E. Kita and N. Kamiya. Recent studies on adaptive boundary element methods. Advances in Engineering Software, Vol. 19, No. 1, pp , [3] K. Kawaguchi and N. Kamiya, An adaptive BEM by sample point error analysis. Advances in Engineering Software, Vol. 9, pp , [4] C. A. Brebbia. The Boundary Element Method for Engineers. Pentech Press, 1978.

A mesh refinement technique for the boundary element method based on local error analysis

A mesh refinement technique for the boundary element method based on local error analysis A mesh refinement technique for the boundary element method based on local error analysis J. J. Rodriguez

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Shape optimal design using GA and BEM Eisuke Kita & Hisashi Tanie Department of Mechano-Informatics and Systems, Nagoya University, Nagoya 464-01, Japan Abstract This paper describes a shape optimization

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 36 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 36 In last class, we have derived element equations for two d elasticity problems

More information

Generalized framework for solving 2D FE problems

Generalized framework for solving 2D FE problems ENGN 2340 Computational Methods in Structural Mechanics Generalized framework for solving 2D FE problems Karthik Thalappully Overview The goal of the project was development of a FEA framework in C++ to

More information

PATCH TEST OF HEXAHEDRAL ELEMENT

PATCH TEST OF HEXAHEDRAL ELEMENT Annual Report of ADVENTURE Project ADV-99- (999) PATCH TEST OF HEXAHEDRAL ELEMENT Yoshikazu ISHIHARA * and Hirohisa NOGUCHI * * Mitsubishi Research Institute, Inc. e-mail: y-ishi@mri.co.jp * Department

More information

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1 Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, attilio.frangi@polimi.it Politecnico di Milano, February 3, 2017, Lesson 1 1 Politecnico di Milano, February 3, 2017, Lesson 1 2 Outline

More information

Revised Sheet Metal Simulation, J.E. Akin, Rice University

Revised Sheet Metal Simulation, J.E. Akin, Rice University Revised Sheet Metal Simulation, J.E. Akin, Rice University A SolidWorks simulation tutorial is just intended to illustrate where to find various icons that you would need in a real engineering analysis.

More information

INTERIOR POINT METHOD BASED CONTACT ALGORITHM FOR STRUCTURAL ANALYSIS OF ELECTRONIC DEVICE MODELS

INTERIOR POINT METHOD BASED CONTACT ALGORITHM FOR STRUCTURAL ANALYSIS OF ELECTRONIC DEVICE MODELS 11th World Congress on Computational Mechanics (WCCM XI) 5th European Conference on Computational Mechanics (ECCM V) 6th European Conference on Computational Fluid Dynamics (ECFD VI) E. Oñate, J. Oliver

More information

Development of a particle difference scheme for dynamic crack propagation problem

Development of a particle difference scheme for dynamic crack propagation problem Development of a particle difference scheme for dynamic crack propagation problem *Young-Choel Yoon 1) and Kyeong-Hwan Kim ) 1) Dept. of Civil Engineering, Myongji College, Seoul 10-776, Korea ) Dept.

More information

EN 10211:2007 validation of Therm 6.3. Therm 6.3 validation according to EN ISO 10211:2007

EN 10211:2007 validation of Therm 6.3. Therm 6.3 validation according to EN ISO 10211:2007 Therm 6.3 validation according to EN ISO 10211:2007 Therm 6.3 validation according to NBN EN ISO 10211:2007 eneral considerations and requirements for validation of calculation methods according to NBN

More information

The DRM-MD integral equation method for the numerical solution of convection-diffusion

The DRM-MD integral equation method for the numerical solution of convection-diffusion The DRM-MD integral equation method for the numerical solution of convection-diffusion equation V. Popov & H. Power Wessex Institute of Technology, Ashurst Lodge, Ashurst, Abstract This work presents a

More information

COMPUTER AIDED ENGINEERING. Part-1

COMPUTER AIDED ENGINEERING. Part-1 COMPUTER AIDED ENGINEERING Course no. 7962 Finite Element Modelling and Simulation Finite Element Modelling and Simulation Part-1 Modeling & Simulation System A system exists and operates in time and space.

More information

A spectral boundary element method

A spectral boundary element method Boundary Elements XXVII 165 A spectral boundary element method A. Calaon, R. Adey & J. Baynham Wessex Institute of Technology, Southampton, UK Abstract The Boundary Element Method (BEM) is not local and

More information

Transactions on Information and Communications Technologies vol 15, 1997 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 15, 1997 WIT Press,  ISSN Optimization of time dependent adaptive finite element methods K.-H. Elmer Curt-Risch-Institut, Universitat Hannover Appelstr. 9a, D-30167 Hannover, Germany Abstract To obtain reliable numerical solutions

More information

Adaptive-Mesh-Refinement Pattern

Adaptive-Mesh-Refinement Pattern Adaptive-Mesh-Refinement Pattern I. Problem Data-parallelism is exposed on a geometric mesh structure (either irregular or regular), where each point iteratively communicates with nearby neighboring points

More information

Finite Element Analysis Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology Madras. Module - 01 Lecture - 15

Finite Element Analysis Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology Madras. Module - 01 Lecture - 15 Finite Element Analysis Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology Madras Module - 01 Lecture - 15 In the last class we were looking at this 3-D space frames; let me summarize

More information

A New Infinite Boundary Element Formulation Applied to Three-Dimensional Domains

A New Infinite Boundary Element Formulation Applied to Three-Dimensional Domains A New Infinite Boundary Element Formulation Applied to Three-Dimensional Domains 1 Dimas Betioli Ribeiro and 2 João Batista de Paiva Abstract This work presents a bi-dimensional mapped infinite boundary

More information

Example 24 Spring-back

Example 24 Spring-back Example 24 Spring-back Summary The spring-back simulation of sheet metal bent into a hat-shape is studied. The problem is one of the famous tests from the Numisheet 93. As spring-back is generally a quasi-static

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Influence of the location of the contact point in node-to-point contact approaches using non conforming boundary element discretizations A. Blazquez & F. Paris Department of continuum Mechanics, E.S. de

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

ADAPTIVE APPROACH IN NONLINEAR CURVE DESIGN PROBLEM. Simo Virtanen Rakenteiden Mekaniikka, Vol. 30 Nro 1, 1997, s

ADAPTIVE APPROACH IN NONLINEAR CURVE DESIGN PROBLEM. Simo Virtanen Rakenteiden Mekaniikka, Vol. 30 Nro 1, 1997, s ADAPTIVE APPROACH IN NONLINEAR CURVE DESIGN PROBLEM Simo Virtanen Rakenteiden Mekaniikka, Vol. 30 Nro 1, 1997, s. 14-24 ABSTRACT In recent years considerable interest has been shown in the development

More information

Finite Element Method. Chapter 7. Practical considerations in FEM modeling

Finite Element Method. Chapter 7. Practical considerations in FEM modeling Finite Element Method Chapter 7 Practical considerations in FEM modeling Finite Element Modeling General Consideration The following are some of the difficult tasks (or decisions) that face the engineer

More information

LS-DYNA s Linear Solver Development Phase 2: Linear Solution Sequence

LS-DYNA s Linear Solver Development Phase 2: Linear Solution Sequence LS-DYNA s Linear Solver Development Phase 2: Linear Solution Sequence Allen T. Li 1, Zhe Cui 2, Yun Huang 2 1 Ford Motor Company 2 Livermore Software Technology Corporation Abstract This paper continues

More information

Guidelines for proper use of Plate elements

Guidelines for proper use of Plate elements Guidelines for proper use of Plate elements In structural analysis using finite element method, the analysis model is created by dividing the entire structure into finite elements. This procedure is known

More information

ADVANCES AT TELLES METHOD APPLIED IN SCIENTIFIC VISUALIZATION

ADVANCES AT TELLES METHOD APPLIED IN SCIENTIFIC VISUALIZATION Copyright 009 by ABCM January 04-08, 010, Foz do Iguaçu, PR, Brazil ADVANCES AT TELLES METHOD APPLIED IN SCIENTIFIC VISUALIZATION Carlos Andrés Reyna Vera-Tudela, candres@ufrrj.br Universidade Federal

More information

Santa Fe Trail Problem Solution Using Grammatical Evolution

Santa Fe Trail Problem Solution Using Grammatical Evolution 2012 International Conference on Industrial and Intelligent Information (ICIII 2012) IPCSIT vol.31 (2012) (2012) IACSIT Press, Singapore Santa Fe Trail Problem Solution Using Grammatical Evolution Hideyuki

More information

3D Nearest-Nodes Finite Element Method for Solid Continuum Analysis

3D Nearest-Nodes Finite Element Method for Solid Continuum Analysis Adv. Theor. Appl. Mech., Vol. 1, 2008, no. 3, 131-139 3D Nearest-Nodes Finite Element Method for Solid Continuum Analysis Yunhua Luo Department of Mechanical & Manufacturing Engineering, University of

More information

Simple Mesh Examples to Illustrate Specific Finite Element Mesh Requirements

Simple Mesh Examples to Illustrate Specific Finite Element Mesh Requirements Simple Mesh Examples to Illustrate Specific Finite Element Mesh Requirements Peter Fleischmann, Robert Kosik, Bernhard Haindl, and Siegfried Selberherr Institute for Microelectronics, TU Vienna, Gu6hausstrafie

More information

Finite Volume Methodology for Contact Problems of Linear Elastic Solids

Finite Volume Methodology for Contact Problems of Linear Elastic Solids Finite Volume Methodology for Contact Problems of Linear Elastic Solids H. Jasak Computational Dynamics Ltd. Hythe House 200 Shepherds Bush Road London W6 7NY, England E-mail: h.jasak@cd.co.uk H.G. Weller

More information

course outline basic principles of numerical analysis, intro FEM

course outline basic principles of numerical analysis, intro FEM idealization, equilibrium, solutions, interpretation of results types of numerical engineering problems continuous vs discrete systems direct stiffness approach differential & variational formulation introduction

More information

An automatic simulation tool for thermal analysis of gravity dams by BFM

An automatic simulation tool for thermal analysis of gravity dams by BFM Boundary Elements and Other Mesh Reduction Methods XXXVI 491 An automatic simulation tool for thermal analysis of gravity dams by BFM Jianming Zhang State Key Laboratory of Advanced Design and Manufacturing

More information

1314. Estimation of mode shapes expanded from incomplete measurements

1314. Estimation of mode shapes expanded from incomplete measurements 34. Estimation of mode shapes expanded from incomplete measurements Sang-Kyu Rim, Hee-Chang Eun, Eun-Taik Lee 3 Department of Architectural Engineering, Kangwon National University, Samcheok, Korea Corresponding

More information

An explicit feature control approach in structural topology optimization

An explicit feature control approach in structural topology optimization th World Congress on Structural and Multidisciplinary Optimisation 07 th -2 th, June 205, Sydney Australia An explicit feature control approach in structural topology optimization Weisheng Zhang, Xu Guo

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction ME 475: Computer-Aided Design of Structures 1-1 CHAPTER 1 Introduction 1.1 Analysis versus Design 1.2 Basic Steps in Analysis 1.3 What is the Finite Element Method? 1.4 Geometrical Representation, Discretization

More information

Transactions on Modelling and Simulation vol 20, 1998 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 20, 1998 WIT Press,   ISSN X Parallel indirect multipole BEM analysis of Stokes flow in a multiply connected domain M.S. Ingber*, A.A. Mammoli* & J.S. Warsa* "Department of Mechanical Engineering, University of New Mexico, Albuquerque,

More information

Adaptivity For Meshfree Point Collocation Methods In Linear Elastic Solid Mechanics

Adaptivity For Meshfree Point Collocation Methods In Linear Elastic Solid Mechanics University of South Carolina Scholar Commons Theses and Dissertations 2015 Adaptivity For Meshfree Point Collocation Methods In Linear Elastic Solid Mechanics Joshua Wayne Derrick University of South Carolina

More information

Analysis of Distortion Parameters of Eight node Serendipity Element on the Elements Performance

Analysis of Distortion Parameters of Eight node Serendipity Element on the Elements Performance Analysis of Distortion Parameters of Eight node Serendipity Element on the Elements Performance Vishal Jagota & A. P. S. Sethi Department of Mechanical Engineering, Shoolini University, Solan (HP), India

More information

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling CIVL 7/8117 1/43 Chapter 7 Learning Objectives To present concepts that should be considered when modeling for a situation by the finite element method, such as aspect ratio, symmetry, natural subdivisions,

More information

An improved DRM representation of partial derivatives

An improved DRM representation of partial derivatives An improved DRM representation of partial derivatives B. Natalini',V.Popov2 'Facultad deingenieria, Universidad Nacional del Nordeste, Argentina Wessex Institute of Technology, United Kingdom Abstract

More information

2.2 Weighting function

2.2 Weighting function Annual Report (23) Kawahara Lab. On Shape Function of Element-Free Galerkin Method for Flow Analysis Daigo NAKAI and Mutsuto KAWAHARA Department of Civil Engineering, Chuo University, Kasuga 3 27, Bunkyo

More information

A New Pool Control Method for Boolean Compressed Sensing Based Adaptive Group Testing

A New Pool Control Method for Boolean Compressed Sensing Based Adaptive Group Testing Proceedings of APSIPA Annual Summit and Conference 27 2-5 December 27, Malaysia A New Pool Control Method for Boolean Compressed Sensing Based Adaptive roup Testing Yujia Lu and Kazunori Hayashi raduate

More information

A Finite Element Method for Deformable Models

A Finite Element Method for Deformable Models A Finite Element Method for Deformable Models Persephoni Karaolani, G.D. Sullivan, K.D. Baker & M.J. Baines Intelligent Systems Group, Department of Computer Science University of Reading, RG6 2AX, UK,

More information

FOURTH ORDER COMPACT FORMULATION OF STEADY NAVIER-STOKES EQUATIONS ON NON-UNIFORM GRIDS

FOURTH ORDER COMPACT FORMULATION OF STEADY NAVIER-STOKES EQUATIONS ON NON-UNIFORM GRIDS International Journal of Mechanical Engineering and Technology (IJMET Volume 9 Issue 10 October 2018 pp. 179 189 Article ID: IJMET_09_10_11 Available online at http://www.iaeme.com/ijmet/issues.asp?jtypeijmet&vtype9&itype10

More information

Second-order shape optimization of a steel bridge

Second-order shape optimization of a steel bridge Computer Aided Optimum Design of Structures 67 Second-order shape optimization of a steel bridge A.F.M. Azevedo, A. Adao da Fonseca Faculty of Engineering, University of Porto, Porto, Portugal Email: alvaro@fe.up.pt,

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Automatic image-based stress analysis by the scaled boundary polytope elements

Automatic image-based stress analysis by the scaled boundary polytope elements Southern Cross University epublications@scu 3rd Australasian Conference on the Mechanics of Structures and Materials 14 Automatic image-based stress analysis by the scaled boundary polytope elements Chongmin

More information

Parallel Implementations of Gaussian Elimination

Parallel Implementations of Gaussian Elimination s of Western Michigan University vasilije.perovic@wmich.edu January 27, 2012 CS 6260: in Parallel Linear systems of equations General form of a linear system of equations is given by a 11 x 1 + + a 1n

More information

Fatigue Crack Growth Simulation using S-version FEM

Fatigue Crack Growth Simulation using S-version FEM Copyright c 2008 ICCES ICCES, vol.8, no.2, pp.67-72 Fatigue Crack Growth Simulation using S-version FEM M. Kikuchi 1,Y.Wada 2, A. Utsunomiya 3 and Y. Li 4 Summary Fatigue crack growth under mixed mode

More information

MODELING MIXED BOUNDARY PROBLEMS WITH THE COMPLEX VARIABLE BOUNDARY ELEMENT METHOD (CVBEM) USING MATLAB AND MATHEMATICA

MODELING MIXED BOUNDARY PROBLEMS WITH THE COMPLEX VARIABLE BOUNDARY ELEMENT METHOD (CVBEM) USING MATLAB AND MATHEMATICA A. N. Johnson et al., Int. J. Comp. Meth. and Exp. Meas., Vol. 3, No. 3 (2015) 269 278 MODELING MIXED BOUNDARY PROBLEMS WITH THE COMPLEX VARIABLE BOUNDARY ELEMENT METHOD (CVBEM) USING MATLAB AND MATHEMATICA

More information

Model Based Impact Location Estimation Using Machine Learning Techniques

Model Based Impact Location Estimation Using Machine Learning Techniques Model Based Impact Location Estimation Using Machine Learning Techniques 1. Introduction Impacts on composite structures result in invisible damages that need to be detected and corrected before they lead

More information

APPLICATION OF THE BOUNDARY ELEMENT METHOD TO THE SIMULATION IN TUNNELING

APPLICATION OF THE BOUNDARY ELEMENT METHOD TO THE SIMULATION IN TUNNELING ISSN 1809-5860 APPLICATION OF THE BOUNDARY ELEMENT METHOD TO THE SIMULATION IN TUNNELING Gernot Beer 1 Abstract The paper presents special solution techniques that need to be applied with the Boundary

More information

Continuum-Microscopic Models

Continuum-Microscopic Models Scientific Computing and Numerical Analysis Seminar October 1, 2010 Outline Heterogeneous Multiscale Method Adaptive Mesh ad Algorithm Refinement Equation-Free Method Incorporates two scales (length, time

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Lecture - 24 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras Lecture - 24 So in today s class, we will look at quadrilateral elements; and we will

More information

Journal of Theoretical and Applied Mechanics, Sofia, 2015, vol. 45, No. 2, pp

Journal of Theoretical and Applied Mechanics, Sofia, 2015, vol. 45, No. 2, pp Journal of Theoretical and Applied Mechanics, Sofia, 2015, vol. 45, No. 2, pp. 59 74 SOLID MECHANICS WAVE PROPAGATION DUE TO AN EMBEDDED SEISMIC SOURCE IN A GRADED HALF-PLANE WITH RELIEF PECULIARITIES.

More information

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution Multigrid Pattern I. Problem Problem domain is decomposed into a set of geometric grids, where each element participates in a local computation followed by data exchanges with adjacent neighbors. The grids

More information

Comparative Study of Topological Optimization of Beam and Ring Type Structures under static Loading Condition

Comparative Study of Topological Optimization of Beam and Ring Type Structures under static Loading Condition Comparative Study of Topological Optimization of Beam and Ring Type Structures under static Loading Condition Vani Taklikar 1, Anadi Misra 2 P.G. Student, Department of Mechanical Engineering, G.B.P.U.A.T,

More information

AN A PRIORI MODEL REDUCTION FOR ISOGEOMETRIC BOUNDARY ELEMENT METHOD

AN A PRIORI MODEL REDUCTION FOR ISOGEOMETRIC BOUNDARY ELEMENT METHOD ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

Nodal Integration Technique in Meshless Method

Nodal Integration Technique in Meshless Method IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 1 Ver. IV (Feb. 2014), PP 18-26 Nodal Integration Technique in Meshless Method Ahmed MJIDILA

More information

Stream Function-Vorticity CFD Solver MAE 6263

Stream Function-Vorticity CFD Solver MAE 6263 Stream Function-Vorticity CFD Solver MAE 66 Charles O Neill April, 00 Abstract A finite difference CFD solver was developed for transient, two-dimensional Cartesian viscous flows. Flow parameters are solved

More information

A meshfree weak-strong form method

A meshfree weak-strong form method A meshfree weak-strong form method G. R. & Y. T. GU' 'centre for Advanced Computations in Engineering Science (ACES) Dept. of Mechanical Engineering, National University of Singapore 2~~~ Fellow, Singapore-MIT

More information

Introduction to Finite Element Analysis using ANSYS

Introduction to Finite Element Analysis using ANSYS Introduction to Finite Element Analysis using ANSYS Sasi Kumar Tippabhotla PhD Candidate Xtreme Photovoltaics (XPV) Lab EPD, SUTD Disclaimer: The material and simulations (using Ansys student version)

More information

Efficient Storage and Processing of Adaptive Triangular Grids using Sierpinski Curves

Efficient Storage and Processing of Adaptive Triangular Grids using Sierpinski Curves Efficient Storage and Processing of Adaptive Triangular Grids using Sierpinski Curves Csaba Attila Vigh, Dr. Michael Bader Department of Informatics, TU München JASS 2006, course 2: Numerical Simulation:

More information

A Hybrid Magnetic Field Solver Using a Combined Finite Element/Boundary Element Field Solver

A Hybrid Magnetic Field Solver Using a Combined Finite Element/Boundary Element Field Solver A Hybrid Magnetic Field Solver Using a Combined Finite Element/Boundary Element Field Solver Abstract - The dominant method to solve magnetic field problems is the finite element method. It has been used

More information

Tomographic Algorithm for Industrial Plasmas

Tomographic Algorithm for Industrial Plasmas Tomographic Algorithm for Industrial Plasmas More info about this article: http://www.ndt.net/?id=22342 1 Sudhir K. Chaudhary, 1 Kavita Rathore, 2 Sudeep Bhattacharjee, 1 Prabhat Munshi 1 Nuclear Engineering

More information

Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure

Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure Challenge Problem 5 - The Solution Dynamic Characteristics of a Truss Structure In the final year of his engineering degree course a student was introduced to finite element analysis and conducted an assessment

More information

Set No. 1 IV B.Tech. I Semester Regular Examinations, November 2010 FINITE ELEMENT METHODS (Mechanical Engineering) Time: 3 Hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks

More information

An introduction to mesh generation Part IV : elliptic meshing

An introduction to mesh generation Part IV : elliptic meshing Elliptic An introduction to mesh generation Part IV : elliptic meshing Department of Civil Engineering, Université catholique de Louvain, Belgium Elliptic Curvilinear Meshes Basic concept A curvilinear

More information

Optimization of structures using convex model superposition

Optimization of structures using convex model superposition Optimization of structures using convex model superposition Chris P. Pantelides, Sara Ganzerli Department of Civil and Environmental Engineering, University of C/Wz, &;/f Za&e C;Yy, C/faA ^772, U&4 Email:

More information

FLOW VISUALISATION OF POLYMER MELT CONTRACTION FLOWS FOR VALIDATION OF NUMERICAL SIMULATIONS

FLOW VISUALISATION OF POLYMER MELT CONTRACTION FLOWS FOR VALIDATION OF NUMERICAL SIMULATIONS FLOW VISUALISATION OF POLYMER MELT CONTRACTION FLOWS FOR VALIDATION OF NUMERICAL SIMULATIONS R Spares, T Gough, M T Martyn, P Olley and P D Coates IRC in Polymer Science & Technology, Mechanical & Medical

More information

Boundary Elements 247

Boundary Elements 247 Boundary Elements 247 Regularizing transformation method for evaluation of singular and near-singular integrals M. Kathirkamanayagam, J.H. Curran and S. Shah Mf q/cw Eng, CWan'o, Ca/Wa Abstract Regularization

More information

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force CHAPTER 4 Numerical Models This chapter presents the development of numerical models for sandwich beams/plates subjected to four-point bending and the hydromat test system. Detailed descriptions of the

More information

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND

SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND Student Submission for the 5 th OpenFOAM User Conference 2017, Wiesbaden - Germany: SELECTIVE ALGEBRAIC MULTIGRID IN FOAM-EXTEND TESSA UROIĆ Faculty of Mechanical Engineering and Naval Architecture, Ivana

More information

The Application of. Interface Elements to Dissimilar Meshes in. Global/Local Analysis

The Application of. Interface Elements to Dissimilar Meshes in. Global/Local Analysis The Application of Interface Elements to Dissimilar Meshes in Global/Local Analysis John E Schiermeier Senior Development Engineer The MacNeal Schwendler Corporation Los Angeles, California Jerrold M Housner

More information

Investigation of a Robust Method for Connecting Dissimilar 3D Finite Element Models. David M. Trujillo 1. December 2005

Investigation of a Robust Method for Connecting Dissimilar 3D Finite Element Models. David M. Trujillo 1. December 2005 Investigation of a Robust Method for Connecting Dissimilar 3D Finite Element Models by David M. Trujillo 1 December 2005 1 Consultant, TRUCOMP, Fountain Valley, California trucomp@earthlink.net Abstract

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

Model Based Perspective Inversion

Model Based Perspective Inversion Model Based Perspective Inversion A. D. Worrall, K. D. Baker & G. D. Sullivan Intelligent Systems Group, Department of Computer Science, University of Reading, RG6 2AX, UK. Anthony.Worrall@reading.ac.uk

More information

Application of Spline Matrix for Mesh Deformation with Dynamic Multi-Block Grids

Application of Spline Matrix for Mesh Deformation with Dynamic Multi-Block Grids AIAA54 Application of Spline Matrix for Mesh Deformation with Dynamic Multi-Block Grids K.L. Lai, H.M. Tsai Temasek Laboratories, National University of Singapore Kent Ridge Crescent, SINGAPORE 96 F. Liu

More information

Adaptive Surface Modeling Using a Quadtree of Quadratic Finite Elements

Adaptive Surface Modeling Using a Quadtree of Quadratic Finite Elements Adaptive Surface Modeling Using a Quadtree of Quadratic Finite Elements G. P. Nikishkov University of Aizu, Aizu-Wakamatsu 965-8580, Japan niki@u-aizu.ac.jp http://www.u-aizu.ac.jp/ niki Abstract. This

More information

Modelling Flat Spring Performance Using FEA

Modelling Flat Spring Performance Using FEA Modelling Flat Spring Performance Using FEA Blessing O Fatola, Patrick Keogh and Ben Hicks Department of Mechanical Engineering, University of Corresponding author bf223@bath.ac.uk Abstract. This paper

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Beams. Lesson Objectives:

Beams. Lesson Objectives: Beams Lesson Objectives: 1) Derive the member local stiffness values for two-dimensional beam members. 2) Assemble the local stiffness matrix into global coordinates. 3) Assemble the structural stiffness

More information

A Source Localization Technique Based on a Ray-Trace Technique with Optimized Resolution and Limited Computational Costs

A Source Localization Technique Based on a Ray-Trace Technique with Optimized Resolution and Limited Computational Costs Proceedings A Source Localization Technique Based on a Ray-Trace Technique with Optimized Resolution and Limited Computational Costs Yoshikazu Kobayashi 1, *, Kenichi Oda 1 and Katsuya Nakamura 2 1 Department

More information

Investigation of Shape Parameter for Exponential Weight Function in Moving Least Squares Method

Investigation of Shape Parameter for Exponential Weight Function in Moving Least Squares Method 2 (2017) 17-24 Progress in Energy and Environment Journal homepage: http://www.akademiabaru.com/progee.html ISSN: 2600-7662 Investigation of Shape Parameter for Exponential Weight Function in Moving Least

More information

IMAGE ANALYSIS DEDICATED TO POLYMER INJECTION MOLDING

IMAGE ANALYSIS DEDICATED TO POLYMER INJECTION MOLDING Image Anal Stereol 2001;20:143-148 Original Research Paper IMAGE ANALYSIS DEDICATED TO POLYMER INJECTION MOLDING DAVID GARCIA 1, GUY COURBEBAISSE 2 AND MICHEL JOURLIN 3 1 European Polymer Institute (PEP),

More information

CHAPTER 5 FINITE ELEMENT METHOD

CHAPTER 5 FINITE ELEMENT METHOD CHAPTER 5 FINITE ELEMENT METHOD 5.1 Introduction to Finite Element Method Finite element analysis is a computer based numerical method to deduce engineering structures strength and behaviour. Its use can

More information

A gradient-based multiobjective optimization technique using an adaptive weighting method

A gradient-based multiobjective optimization technique using an adaptive weighting method 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA A gradient-based multiobjective optimization technique using an adaptive weighting method Kazuhiro

More information

Learning Module 8 Shape Optimization

Learning Module 8 Shape Optimization Learning Module 8 Shape Optimization What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with

More information

Adaptive numerical methods

Adaptive numerical methods METRO MEtallurgical TRaining On-line Adaptive numerical methods Arkadiusz Nagórka CzUT Education and Culture Introduction Common steps of finite element computations consists of preprocessing - definition

More information

Faculty of Mechanical and Manufacturing Engineering, University Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat, Johor, Malaysia

Faculty of Mechanical and Manufacturing Engineering, University Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat, Johor, Malaysia Applied Mechanics and Materials Vol. 393 (2013) pp 305-310 (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.393.305 The Implementation of Cell-Centred Finite Volume Method

More information

Concept of Curve Fitting Difference with Interpolation

Concept of Curve Fitting Difference with Interpolation Curve Fitting Content Concept of Curve Fitting Difference with Interpolation Estimation of Linear Parameters by Least Squares Curve Fitting by Polynomial Least Squares Estimation of Non-linear Parameters

More information

SEG/San Antonio 2007 Annual Meeting

SEG/San Antonio 2007 Annual Meeting Yaofeng He* and Ru-Shan Wu Modeling and Imaging Laboratory, Institute of Geophysics and Planetary Physics, University of California, Santa Cruz, CA, 95064, USA Summary A one-way and one-return boundary

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

High Performance Computing: Tools and Applications

High Performance Computing: Tools and Applications High Performance Computing: Tools and Applications Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology Lecture 15 Numerically solve a 2D boundary value problem Example:

More information

Computer Life (CPL) ISSN: Finite Element Analysis of Bearing Box on SolidWorks

Computer Life (CPL) ISSN: Finite Element Analysis of Bearing Box on SolidWorks Computer Life (CPL) ISSN: 1819-4818 Delivering Quality Science to the World Finite Element Analysis of Bearing Box on SolidWorks Chenling Zheng 1, a, Hang Li 1, b and Jianyong Li 1, c 1 Shandong University

More information

Module: 2 Finite Element Formulation Techniques Lecture 3: Finite Element Method: Displacement Approach

Module: 2 Finite Element Formulation Techniques Lecture 3: Finite Element Method: Displacement Approach 11 Module: 2 Finite Element Formulation Techniques Lecture 3: Finite Element Method: Displacement Approach 2.3.1 Choice of Displacement Function Displacement function is the beginning point for the structural

More information

Best Practices for Contact Modeling using ANSYS

Best Practices for Contact Modeling using ANSYS Best Practices for Contact Modeling using ANSYS 朱永谊 / R&D Fellow ANSYS 1 2016 ANSYS, Inc. August 12, 2016 ANSYS UGM 2016 Why are these best practices important? Contact is the most common source of nonlinearity

More information

Abstract. Introduction

Abstract. Introduction The efficient calculation of the Cartesian geometry of non-cartesian structures J.M. Freeman and D.G. Ford Engineering Control and Metrology Research Group, The School of Engineering, University of Huddersfield.

More information

ANSYS AIM Tutorial Stepped Shaft in Axial Tension

ANSYS AIM Tutorial Stepped Shaft in Axial Tension ANSYS AIM Tutorial Stepped Shaft in Axial Tension Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Contents: Problem Specification 3 Learning Goals 4 Pre-Analysis & Start Up 5 Calculation

More information

A PSE for Finite Element Method

A PSE for Finite Element Method A PSE for Finite Element Method A PSE for Finite Element Method Application Research and Development Division, FUJITSU LIMITED, 1-1, Kamikodanaka 4, Nakahara-ku, Kawasaki 211-8588, Japan shimizu.koichi@jp.fujitsu.com,

More information